

NATO STANDARD

AEDP-5

NATO STANDARD ISR LIBRARY INTERFACE
(NSILI)

IMPLEMENTATION GUIDE

Edition 2

MAY 2013

NORTH ATLANTIC TREATY ORGANIZATION

Allied Engineering Documentation Publication

Published by the
NATO STANDARDIZATION AGENCY (NSA)

© NATO/OTAN

INTENTIONALLY BLANK

NORTH ATLANTIC TREATY ORGANIZATION (NATO)

NATO STANDARDIZATION AGENCY (NSA)

NATO LETTER OF PROMULGATION

6 May 2013

1. The enclosed Allied Engineering Documentation Publication AEDP-5,
NATO STANDARD ISR LIBRARY INTERFACE (NSILI) IMPLEMENTATION
GUIDE, which has been approved by the nations in the JCGISR, is promulgated
herewith.

2. AEDP-5 (Edition 2) is effective upon receipt/will come into effect on [NED]
and supersedes AEDP-5 (Edition 1) which shall be destroyed in accordance with
the local procedure for the destruction of documents.

3. No part of this publication may be reproduced, stored in a retrieval system,
used commercially, adapted, or transmitted in any form or by any means,
electronic, mechanical, photo-copying, recording or otherwise, without the prior
permission of the publisher. With the exception of commercial sales, this does
not apply to member nations and Partnership for Peace countries, or NATO
commands and bodies.

4. This publication shall be handled in accordance with C-M(2002)60.

~
Dr. Cihangir Aksit, TUR Civ
Director NATO Standardization Agency

 ii

Copyright:
(C) Copyright NATO. This document is a derived work from a submission from NATO Joint
Capability Group on Intelligence, Surveillance and Reconnaissance (JCGISR). Some rights reserved
- (CC) Attribution-
You are free:

- to copy, distribute, display, and perform/execute the work
- to make derivative works
- to make commercial use of the work

Under the following conditions:
- (By:) attribution. You must give the original author (NATO NAFAG Air Group IV now the JCGISR) credit.
- For any reuse or distribution, you must make clear to others the license terms of this work.

Any of these conditions can be waived if you get permission from the copyright holder NATO. Your fair use and other
rights are in no way affected by the above. This is a human-readable summary of the Legal Code (the full license is
available from Creative Commons <http://creativecommons.org/licenses/by/2.0/>).

 i

RECORD OF AMENDMENTS

No.

Reference/date of

amendment

Date

Entered

Signature

 ii

Table of Contents

Glossary of Terms and Definitions .. v
Terms and Definitions ... v
Acronyms and Abbreviations .. v

FOREWORD.. ix
1. Introduction ... 1
2. Aim ... 1
3. Background ... 1
4. Goal .. 2
5. Scope... 3
6. Reference Documents ... 3

6.1 Technical References ... 3
6.2 Policy and Planning Documents ... 4
6.3 North Atlantic Treaty Organization Standardization Agreements (STANAGs)

and Allied Engineering Documentation Publications (AEDPs) 4
6.4 International Standards .. 5
6.5 Federal Information Processing Publications ... 5
6.6 NGA Specifications and Publications .. 5

ANNEX A: Implementation Guidance ... 1
A.1. The Development Environment .. 1

A.1.1 Resources .. 1
A.1.2 Use of GIAS and UCOS .. 1
A.1.3 Object Request Brokers .. 1

A.2. Login Process – Develop LibraryMgr ... 4
A.2.1 Connecting to a Database .. 4
A.2.2 NSILI Client/Server Connection .. 5
A.2.3 Server Set-up and Generation of IOR-Files .. 5
A.2.4 HTTP(S) servers and their configuration (to be addressed) 7
A.2.5 Security issues for the Server (to be addressed) .. 7
A.2.6 Download of IORs to NSILI clients .. 7
A.2.7. Connecting to the NSILI server ... 8

A.2.7.1 Connecting the Client .. 8
A.2.7.2 Connections over the Internet .. 8
A.2.7.3 Login Process ... 9

A.2.8. Query Process – Develop CatalogMgr .. 9
A.2.8.1 CatalogMgr - Client Side ...10
A.2.8.2 CatalogMgr - Server Side ..17
A.2.8.3 Parsing the BQS-Query (refer to Annex F of STANAG 4559, Edition 3)20
A.2.8.4 Converting BQS-Query to Database –Query ...21
A.2.8.5 RequestManager ...21

A.2.9 Order Process – Develop Product/ OrderMgr .. 22
A.2.9.1 Product retrieval...23
A.2.9.2 OrderMgr interface ..23
A.2.9.3 OrderRequest interface ...29
A.2.9.4 ProductMgr ...30
A.2.9.5 AccessManager ...31
A.2.9.6 Order Attributes get_parameter_request ...31

A.2.10 Requests and Callbacks ... 31
A.2.10.1 Requests...32
A.2.10.2 Callback...32

 iii

ANNEX B: NATO ISR Dissemination Architecture ... 1
B.1. Overview .. 1
B.2. Security .. 1

B.2.1. Community of Interest Released Information .. 1
B.2.2. Security adaptor layer... 3

B.3. STANAG 4559 and Web Services ... 4
B.3.1. Augmenting STANAG 4559 CORBA Based Libraries with Web Services ... 4

B.4. Multiple Libraries and Bandwidth Management .. 5
ANNEX C: Test and Certification... 1
C.1. NSILI Server Test Suite ... 1
C.2. Test Venues:... 2
C.3. Test Preconditions: ... 2
C.4. STANAG Compliance: ... 2
ANNEX D: Configuration Management .. 1
D.1. Purpose .. 1
D.2. Scope .. 1
D.3. STANAG Management Organization .. 2
D.4. Change Management.. 4
D.5. Meeting Procedures .. 9
ANNEX E: Data Models and Metadata .. 1
ANNEX F: Employment Guidance ... 1
F.1. Video and Streaming Data ... 1
F.2. Removing Data from a CSD .. 1
F.3. United States Imagery and Geospatial Information Systems (USIGS)
Architecture Common Object Specification (UCOS) Interface Definition Language
(IDL) .. 2
F.4. CSD Replication Mechanism ... 3

Table of Figures

Figure 1 – COI’s and Libraries Using the STANAG 4559 Interface 2
Figure 2 – Information Exchange Gateways .. 3
Figure 3 – Augmenting STANAG 4559 CORBA Based Libraries with Web Services 5
Figure 4 – Change Management Process .. 7
Figure 5 – Change Proposal Form .. 8
Figure 6 – Consolidated Change Proposal Report and Log Format Example 9

List of Tables

Table A - 1 – Specifying a Chip ... 25

 iv

 v

Glossary of Terms and Definitions

Terms and Definitions

The following terms and definitions are fundamental to the scope and interoperable
implementation of the STANAG 4559 and this AEDP-5. The STANAG 4559 has been developed
using several paradigms for access and interaction. The terminology developed has been utilized
to describe functionally the role the interface has with the rest of the NIIA and other applications.
Terms have also been aligned with the ISO TC211 Terms database which is freely available from
ISO Technical Committee 211 at:
http://www.isotc211.org

Term Definition
Client software component that can invoke an operation from a server (ISO Standard 19118)
Library The centralized access point for a client to gain functional parts of a system. In

password authenticating systems such as the US Image Product Library, this
centralized access point allows or denies functional parts. In the product library, there
is only one Library Object shared among all users.

Manager The functional parts of the product library. Managers can be implemented for
activities such as query submission and product ordering. In a STANAG 4559
implementation it is possible to share the Managers between all users of the system
because no username/password protection is specified.

Requests The mechanism for completing, tracking, and canceling activities requested of the
library. When any activity is performed by a client, the server will issue a request to
the client. Three different models of waiting can be utilized by the client to determine
if a server activity has completed. These models allow for a wide range of flexibility
in how the client is developed. The models are: polling completion, interrupt
completion, and blocked completion.

Server a particular instance of a service (ISO 19128)
Service distinct part of the functionality that is provided by an entity through interfaces

(ISO/IEC TR 14252 (Adapted from))

Acronyms and Abbreviations
The following acronyms are used for the purpose of this agreement.

Acronym or
Abbreviation Definition

AAP Allied Administrative Publication
AEDP NATO Allied Engineering Documentation Publication
AL Attachment Levels
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ASIISG All Source Intelligence Integration Sub Group, the ISRIWG previously

served integration of only imagery STANAGs

http://www.isotc211.org/

 vi

Acronym or
Abbreviation Definition

BICES/LOCE Battlefield Information Collection and Exploitation Systems / Linked Ops-
Intel Center Europe

Bi-SC Bi-Strategic Commands for (NATO) Automated Information Systems. The
Bi-SC AIS Core Capability Geographic Services project is aimed at providing
NATO’s Strategic and Subordinate Commands with Geographic Services,
implemented through the Bi-SC AIS Core Services.

BNF Backus-Naur Form
BQS Boolean Query syntax
C4I Command Control, Communications, Computers and Intelligence
CENTAUR Cross-Domain Enterprise All-Source User Repository
CAESAR Coalition Aerial Surveillance and Reconnaissance
CCS Common coordinate system as used in STANAG 4545
COI Community of Interest
CORBA Common Object Request Broker Architecture
CSD (MAJIIC) Coalition Shared Data server / Database
CST Custodial Support Team
D&R IDM Discovery and Retrieval Interface Design Model, based on NSG
DAG Directed Acyclic Graph
DB Data Base
DCT Discrete Cosine Transform
DES Data Extension Segment
DGIWG Digital Geospatial Information Working Group
DL Display Levels
FTP File transfer protocol
GEOINT Geospatial Intelligence
GIAS Geospatial and Imagery Access Services specification
GMTI Ground Moving Target Indicator
HTTPS Hyper Text Transfer Protocol Secure
IDD Interface Design Document
IDL Interface Definition Language
IEEE Institute of Electrical and Electronics Engineers, Inc
IEC International Electro-technical Commission
IEG Information Exchange Gateway
IIOP Internet Inter-ORB Protocol
ILOC Image Location
IOR Initial Object Reference
IP Internet Protocol
IPIWG (NATO) Intelligence Project Implementation Working Group

 vii

Acronym or
Abbreviation Definition

ISAF International Security Assistance Force
ISO International Organization for Standardization
ISR Intelligence, Surveillance and Reconnaissance
ISRPL ISR Product Library
JCGISR Joint Capability Group on ISR
JDBC JAVA Data Base Connectivity
JDK JAVA Development Kit
JISR Joint ISR
JNI JAVA Native Interface
JPIP JPEG 2000 Interaction Protocol
JWID Joint Warrior Interoperability demonstration
LAN Local area network
MAJIIC
Metadata

Multi-sensor Airborne/ground Joint ISR Interoperability Coalition
Structured data about data used to aid the identification, description,
location or use of information resources. (Source: Government On-line
Metadata Standard)

NAFAG NATO Air Force Armaments Group
NAT Network Address Translator
NCIA
NC3TA

NATO Communication and Information Agency

NGA (USA) National Geospatial-Intelligence Agency
NIIA NATO ISR Interoperability Architecture
NMRR NATO Metadata Registry and Repository
NSA NATO Standards Agency
NSG (USA) National System for Geospatial-intelligence
NSILI NATO Standard ISR Library Interface
ODBC Object Data Base Connectivity
OMG Object Management Group
ORB Object Request Broker
POA Portable Object Adaptor
POC Point of Contact
RFC Request for Change
RFI Request for information
RRDS Reduced Resolution Data Set
RTP Real-time Transfer Protocol
SLOC Symbol Location
SOAP Simple Object Access Protocol

 viii

Acronym or
Abbreviation Definition

SQL Syntax query language
STANAG NATO Standardization Agreement
STGP Shared Tactical Ground Picture
TRE Tagged Record Extension
UCOS USIGS Common Object Specification
USIGS
URL

United States Imagery and Geospatial Information Systems
Uniform Record Locator

VM Virtual machine
WAN
XML

Wide area network
Extensible Markup Language

 ix

FOREWORD

This document updates the original AEDP-5 dated April 2008, and provides the North Atlantic
Treaty Organization (NATO) Intelligence, Surveillance and Reconnaissance (ISR) community with
technical guidance on developing and testing implementations of the STANAG 4559 NATO
Standard ISR Library Interface (NSILI). NSILI is the standard for formatting and exchanging digital
ISR data and related products between the libraries of NATO nations. The NSILI Standard is part of
a family of Standards that are assembled under NATO Joint Capabilities Group ISR (JCGISR) to
ensure the exchange of multi-national intelligence and reconnaissance information.

The NATO JCGISR NSILI Custodial Support Team (CST) developed this document in accordance
with current NATO procedures and guidelines under the direction and oversight of the NATO
Secondary Imagery Format (NSIF) Custodian. Forward all comments, recommendations, additions,
deletions, and other pertinent data that may be of use in improving this document to:

NSILI Custodian
Attn: Laura Moore
National Geospatial-Intelligence Agency
National Center for Geospatial Intelligence Standards
Mail Stop L-66
3838 VOGEL RD
US – ARNOLD MO 63010-6238
Ph: (314) 676 0290
Fax: (314) 676 3015

 1

1. Introduction

Allied Engineering Document Publication (AEDP)-5, Edition 2 provides updated technical and
management guidance for implementing the NATO STANAG 4559: NSILI as part of the NATO
ISR Interoperability Architecture (NIIA) for ISR systems. STANAG 4559: NSILI is the standard
for metadata attribute descriptions and protocol definitions for the discovery and interchange of
ISR data among NATO member ISR product libraries.

The aim of the NIIA is to promote interoperability for the exchange of ISR information, including
primary and secondary (post-exploitation) imagery, moving target indicator, digital motion
imagery and electronic intelligence and signals reports among NATO Command Control
Communications, Computers and Intelligence (C4I) Systems.

Four levels of interoperability are defined in NATO interoperability publications. The NIIA
provides a foundation and means to collect, store and exchange data and adheres to
accomplishing the levels of interoperability. The four levels of interoperability are:

1 Degree 1: Unstructured Data Exchange. Involves the exchange of human-

interpretable unstructured data such as the free text found in operational estimates,
analysis and papers.

2 Degree 2: Structured Data Exchange. Involves the exchange of human-interpretable
structured data intended for manual and/or automated handling, but requires manual
compilation, receipt and/or message dispatch.

3 Degree 3: Seamless Sharing of Data. Involves the automated sharing of data
amongst systems based on a common exchange model.

4 Degree 4: Seamless Sharing of Information. An extension of degree 3 to the
universal interpretation of information through data processing based on co-operating
applications.

It should be noted that the objective of the NIIA is to achieve interoperability at Degree 2. With
the implementation of STANAG 4559 and definition of data models /XML discovery and
retrieval schemas for the data formats defined in the NIIA, higher degrees of interoperability will
be obtained.

2. Aim
This update to AEDP-5, Edition 1 provides technical information that was recognized or
developed during the design and interoperability testing of STANAG 4559 implementations
during the period 2008-2011. The information found herein was identified as important in
designing NSILI implementations that are interoperable in an ISR mission and information
exchange network. The AEDP provides guidance on options that may be used in an NSILI
implementation and considerations for future developments in the NSILI STANAG.

3. Background

The NSILI Standard (STANAG 4559) specifies a common software interface to be implemented
and exist for all NATO interoperable library systems containing ISR data. The interface provides

 2

electronic search and retrieval capabilities for distributed users to find products from distributed
libraries in support of, but not limited to, rapid mission planning and operation, strategic analysis,
and intelligence preparation of the battlefield. Product Libraries and the NSIL Interface are
viewed as a key standards-based technology utilized within existing Request for Information
(RFI) procedures.

Within the NIIA, formats for ISR data are defined that include NSIF (STANAG 4545) for
multiple still images, text and graphics segments, and the relative orientation of each with respect
to the other segments of the image; NSIF also includes provisions for additional types and
volumes of data that were not anticipated at the time the format standard was created. Because of
this continued expansion of applications of NSIF, the NSILI has been seen to provide a discovery
and retrieval capability for a variety of ISR data types. The flexibility of NSILI has been proven
in NATO JCGISR and other forums with ISR Ground Moving Target Indicator (STANAG 4607
– GMTI) and Digital Motion Imagery (STANAG 4609), which serve to prove the broader utility
of NSILI. The NSILI CST is developing data models based on the JCGISR Metadata
Harmonization effort that address interoperable discovery and retrieval methods. Expectations of
the NSILI application to future ISR data types serve to further promote this concept. Found
within Annex E of STANAG 4559, Edition 3, is a description of the Data Model attribute types
and domains; this model will be the reference point for other discovery and retrieval data models
as they are defined.

Substantive changes from Edition 2 of STANAG 4559 and Edition 1 of AEDP-5:

� FTP has been disallowed with implementation of Edition 3 of STANAG 4559. FTP data
transfer is addressed in Edition 2 of STANAG 4559 and Edition 1 of AEDP-5.

� Edition 3 of STANAG 4559 carries a revised data model developed in concert with the
MAJIIC1 project2. Later editions of STANAG 4559 data models will be separated from
the STANAG and provided as a separate reference/ located on the password protected
NMRR website at Hypertext Transfer Protocol Secure (HTTP(S))://nmrr.nc3a.nato.int.
Note that at this writing the NMRR website is not fully operational.

� Edition 3 of STANAG 4559 has additionally incorporated the use of HTTPS in
accordance with direction from the NATO information security guidance.

4. Goal

The overall goal of NSILI is for users of ISR data to have timely access to distributed ISR
information as constraints of operational libraries and security policies permit. The NSILI AEDP

1 Multi-Sensor Aerospace-Ground Joint ISR Interoperability Coalition (MAJIIC) is a nine nation project,
which aimed to maximise the military utility of surveillance and reconnaissance resources through the
development and evaluation of operational and technical means for interoperability of a wide range of ISR
assets. The nine nations participating in the MAJIIC project are Canada, France, Germany, Italy,
Netherlands, Norway, Spain, United Kingdom and the United States of America. The nations have
appointed the NATO Consultation, Command and Control Agency (NC3A) as a facilitator for the project
and to provide overall technical management. In 2010 NC3A merged with other NATO agencies and the
new Agency was renamed the “NATO Communications and Information Agency (NCIA)”.

2 The MAJIIC developments regarding STANAG 4559 were an enhancement of the Edition 2 data model
and an implementation of the STANAG. These developments led to the Coalition Shared Data (CSD)
server, which was part of the deployment within JISR Step1 to ISAF.

 3

supports users and developers by discussing development experiences of existing
implementations and providing recommendations for implementation design. Adoption of the
NSILI Standard, this AEDP and applicable test tools within Coalition environments, is
encouraged by the NSILI CST and the JCGISR as a means to establish and stabilize the
interoperability foundation and enable standards-based web-enabled ISR data exchange.

5. Scope

This document includes technical guidance information for developing and testing implementations of
NSILI. The sections of this document are as follows:

Annex A: Implementation Guidance

Annex B: NATO ISR Dissemination Architecture Issues

Annex C: NSILI Test and Certification Criteria

Annex D: NSILI Configuration Management Plan

Annex E: Data Models Attribute Types and Domains

Annex F: United States Imagery and Geospatial Information Systems Architecture (USIGS)

Common Object Specification Interface Definition Languages (UCOS IDLs)

Annex G: Employment Guidance

The latest versions of NATO STANAG 4559, the NSILI AEDP-5, Edition 1 and supporting documents are
publicly available at: http://www.nato.int/structur/AC/224/home.htm. Select “topics” in the left column
and then select STANAG 4559 summary. All versions of the Standard and the AEDP-5 can then be
selected and downloaded along with supporting documents, ratification status and contact information.

6. Reference Documents

6.1 Technical References
1. MTR 99W: MITRE TECHNICAL REPORT
2. IEEE: Technology of Object-Oriented Languages and Systems September 22 - 25, 1998

Beijing, China
3. Implementation of a Geospatial Imagery Digital Library Using Java and CORBA p. 280

P.D. Coddington, K.A. Hawick, K.E. Kerry, J.A. Mathew, A.J. Silis D.L. Webb, P.J.
Whitbread, C.G. Irving, M.W. Grigg, R. Jana, K. Tang

4. OMG Organisation link http://www.omg.org/technology/corba/corbadownloads.htm
5. JacORB http://www.inf.fu-berlin.de/~brose/jacorb
6. MICO http://www.mico.org/
7. ORBacus http://www.iona.com/products/orbacus_home.htm)
8. SUN-JDK-ORB http://java.sun.com/j2se/1.4.2/docs/api/org/omg/CORBA/doc-

files/compliance.html),
9. Java, idl2j, http://java.sun.com/j2se/1.4.2/
10. VBOrb http://home.t-online.de/home/Martin.Both/vborb.html

http://www.nato.int/structur/AC/224/home.htm
http://home.t-online.de/home/Martin.Both/vborb.html

 4

11. VisiBroker http://www.borland.com/visibroker/

6.2 Policy and Planning Documents
NATO AAP-3 (J)
Edition 1, Rev 1, 27
April 2011

Procedures for the Development, Preparation, Production, and the
Updating of NATO Standardization Agreements (STANAGs) and
Allied Publications (APs)

NATO AEDP-2
Vol 1

Introduction and explanation of the NATO ISR Interoperability
Architecture, Sep 2005

NATO AEDP-2
Vol 2

NIIA Management, test and certification guidance, Sep 2005

NATO AEDP-2
Vol 3

NIIA Technical guidance, Sep 2005

NATO AEDP-2
Vol 4

NIIA Terms and Definitions: Sep 2005

6.3 North Atlantic Treaty Organization Standardization Agreements
(STANAGs) and Allied Engineering Documentation Publications
(AEDPs)

STANAG 4545 NATO Secondary Imagery Format (NSIF)
Edition 1, Amendment 1, 14 April 2000

STANAG 4559 NATO Standard ISR Library Interface (NSILI)
Edition 3, November 2010

STANAG 4607 NATO Ground Moving Target Indicator Format (GMTI)
Edition 3, September 2010

STANAG 4609 NATO Digital Motion Imagery Format (MI),
Edition 3, October 2009

STANAG 4633 NATO Signals Intelligence and Electronic Signals Management, working
draft January 2005

STANAG 4658
(Study)

NATO Cooperative ELINT/ESM Geolocation (NCEEG) Standard (no
date available)

STANAG 4676

NATO ISR Tracking Standard (no date available)

STANAG 7023 NATO Primary Imagery Format, Edition 3, 16 September 2004
AEDP-4 Subject: NATO Secondary Imagery Format (NSIF) Implementation

Guide, Edition 1, 2007
AEDP-7 Subject: NATO Ground Moving Target Indicator (GMTI) Format

Implementation Guide , Edition 1, April 2008

AEDP-8 Subject: NATO Motion Imagery (MI) STANAG 4609 Edition 3
Implementation Guide, December 2009

 5

AEDP-12 (draft) NATO ISR Tracking Standard (NITS) Implementation Guide (Date TBD)

NSILI Server Test
Suite Specification

Some validation, test suite and tools are available on the NCIA
Collaboration Development Test Evaluation network (NCIA coordination
required). Plans call for eventually making the tools available on the
password protected MAJIIC portal under the Tools link:
https://majiic.nc3a.nato.int/MAJIIC/Tools/Forms/by%20STANAG.aspx

Request access to the test tools through the STANAG 4559 Custodian.

6.4 International Standards
IEEE Technology of Object-Oriented Languages and Systems, Sept 22-25,

1998
ISO 3166 Country Codes

6.5 Federal Information Processing Publications
FIPS 10-4 (sun set
status by U.S.)

Countries, Dependencies, Areas of Special Sovereignty, and Their
Principal Administrative Divisions, April 1995 (Copies of the above
FIPS are available on the web at https://disronline.csd.disa.mil/a/.
Password/CAC required for access.)

6.6 NGA Specifications and Publications

D&R IDM

Discovery & Retrieval Interface Data Model, Ver. M, dated 9/30/2007

GIAS Geospatial and Imagery Access Service Specification
National Imagery and Mapping Agency
Version 3.5.1, 6 August 2001

UCOS USIGS Common Object Specification,
National Imagery and Mappng Agency,
Version 1.5.1a, 5 October 2001
http://www.nato.int/structur/AC/224/ag4/4559/4559_UCOS151Approve
dplus%20EIT_nu.pdf

https://majiic.nc3a.nato.int/MAJIIC/Tools/Forms/by%20STANAG.aspx
https://disronline.csd.disa.mil/a/

 6

MTR 99W Mitre Technical Report, Geospatial and Imagery Access Services
Specification David P. Lutz, November
1999http://www.omg.org/docs/gis/99-11-03.doc

STDI-0002 The Compendium of Controlled Extensions (CE) for the National
Imagery Transmission Format (NITF),
Version 4.0, August 2011

 A-1

ANNEX A: Implementation Guidance

A.1. The Development Environment
A.1.1 Resources
STANAG 4559, NSILI, is specified using Interface Definition Language (IDL) files of GIAS and
UCOS (see next section). These IDL files written using the Object Management Group (OMG)
IDL Specification contain the definitions of interfaces, data types and error conditions in a
programming language-independent notation. By using appropriate IDL parsers, these files can be
readily compiled into CORBA software components for various programming languages
including (not exclusive):

 C
 C++,
 Java
 Ada95,
 Smalltalk
 Visual Basic

For the interoperability tests conducted amongst the NSILI CST, the most common language
used was Java. There is currently only one client implementation based on C++. As far as it is
known, no other languages have been used for an NSILI implementation. This document does
not restrict the developer’s choice of language.

Several operating systems on different platforms have been tested, to include:

 Windows
 UNIX (Sun Solaris)
 Linux (Redhat and S.u.S.E)
 MAC OS (Macintosh)

This document does not restrict the use of any operating system or platform configuration.

A.1.2 Use of GIAS and UCOS
For NSILI, a subset of the GIAS and the United States Imagery and Geospatial Information
System (USIGS) Common Object Specification (UCOS) of the National Geospatial Intelligence
Agency (NGA) is used. These documents and the IDL files needed for implementation are
available in PDF and HTML from the open NATO Standards web site, along with the 4559
STANAG and this document (see Annex F for more on GIAS and UCOS and a link to the
associated documentation).

For further information see references:

A.1.3 Object Request Brokers
For the middleware implementation, various Object Request Brokers (ORBs) are available. See
the reference section on OMG‘s web site for examples of freeware and shareware (link in
reference section). Of the variety of Object Request Brokers (ORBs) that are available and have

 A-2

been used within an NSILI implementation -- CORBA version, GIOP version, IIOP version, and
vendor specific versions -- interoperability between different ORBs has been proven during
interoperability tests performed between NSILI implementations at various times in the
maturation process of the NSIL Interface. See below in this section for the findings of these
interoperability tests.

Some of the ORBs and their properties are listed below; those that have been tested for NSILI are
highlighted in bold letters:

1. JacORB see reference section for links, Java, IDL/Java mapping,
2. MICO open source, see reference section for links, C++, IDL2C++
3. ORBacus commercial, fully CORBA 2.4, C++, Java, see reference section for links.
4. SUN-JDK-ORB (open source, CORBA 2.3.2 also IDL to Java conversion software

Java, idl2j see reference section for links.
5. TAO (open source, CORBA 2.2, C++)
6. VBOrb open source, partially CORBA 2.4, Visual Basic, IDL2VB, see reference

section for links.
7. VisiBroker commercial, CORBA 2.6, C++, Java, see reference section for links.

The ORBs highlighted in the list above (JAC-ORB, SUN jdk , VisiBroker) have been tested
against each other, and in the process it has been shown that versions of certain ORBs were not
interoperable with others or caused problems.. Testing identified the following problems:

General:

An Errata Sheet was posted for Edition 1 of NSILI to modify the use of CORBA 2.4 and use of
future CORBA versions was approved provided they were compatible with 4559. The latest
version of CORBA is 3.1 (ref: Object Management Group (OMG) Web Site).

VisiBroker:

1. Visibroker’s smart agent (osagent), that is an additional, dynamic, distributed

directory service, could not be used for newer S.u.S.E Linux operating system
versions. For versions higher than 8.2, obviously runtime libraries are missing. No
further investigations were made, because the NSILI server could not be started
without the osagent.

2. VisiBroker ORB can use both ”PERSISTENT“ or ”TRANSIENT“ CORBA-Policies

3. A Virtual Machine (VM) parameter for a server using VisiBroker ORB has to be set
to achieve interoperability with ORBs of other vendors:

By default this VM parameter is set to “true“. In this case a marshalling error is caused when
receiving the query results.

Other tests with ORBs, such as the JDK 1.4-ORB, showed some features that could cause
marshalling errors.

Dvbroker.orb.tcIndirection=false

 A-3

JDK 1.4.1 ORB

1. When the CORBA Policy is set to “PERSISTENT“ in version 1.4.1 of the Java
ORB the CORBA-Policy caused errors. This behaviour could not be explained.

2. The IDL-Parser for the JDK-ORB generates the argument UCO.DAGList for the
method complete_DAG_results defined in the interface SubmitQueryRequest,
although the argument defined in the IDL file is GIAS.QueryResults. Both types
have the same structure. Obviously, the IDL parser is ignoring the preceding
type definition. This could be an issue when switching from one
implementation using a certain ORB to an implementation using the JDK ORB.

3. To generate the structure DAG_Results, different attribute values have to be
inserted into any (The purpose of any is to encapsulate data of an arbitrary type)
It was observed that attributes (File Length) of the type, UCOS_FILE_SIZE that is
a type definition of double, could not be extracted from the corresponding any
value. Thus for internal use in the NSILI CST test community, attributes of type
UCOS_FILE_SIZE were generally set to double for this inserting and extracting
process. It appears there is a bug in the JDK CORBA implementation that
disallows the use of type definition UCOS_FILE_SIZE. It should be kept in
mind that for more sophisticated data models other attribute types might cause
equivalent problems.

The ORB validation tests do not intend to restrict the developer to certain versions or platforms
but are included for completeness. Examples of ORB instances are displayed below for
information only.

Operating
System

Windows UNIX Windows Windows Linux Windows+
Linux

Programming
Languages

Java Java Java. C++ Java Java

ORB JDK JDK JAC-ORB VisiBrok
er

JDK VisiBrok
er+JDK

Implementat
ions

Client
+Server

.

Client
+Server

Client +
Server.

Client Client
+

Server

Client
+Server

 A-4

A.2. Login Process – Develop LibraryMgr
As described in STANAG 4559, Annex C, there are two primary activities involved in initiating a
session of interaction with an ISR library:

� Creation of a database connection to an ISR library or a corresponding digital index
(metadata database). This functionality is not part of the NSILI server.

� Set up of an NSILI client/server connection to have access to an ISR library.

Both activities shall be described in the next two subsections.

A.2.1 Connecting to a Database
Although the first activity is not part of NSILI, a short overview is provided to enhance
understanding of how ISR databases and other data sources can be accessed. In order to view or
to get the data, an appropriate API between the NSILI server and the original database is needed.
This API can be designed by using various languages such as Visual Basic, C++ or Java. To
avoid the creation of additional interfaces the API should be part of the NSILI server and should
use the same language. In fact there are two well-known database connectivity APIs
recommended for an NSILI implementation as well as other “object-relational mapping
technology tools, such as “Hibernate”:

� Object-relational tools (example; Hibernate)
� Microsoft’s Object Database Connectivity (ODBC) and
� Java Database Connectivity (JDBC).

Hibernate is used for data based connectivity by NATO implementations. ODBC API offers
connectivity to almost all databases on almost all platforms and is a widely used programming
interface for accessing relational databases. It is applicable for C, C++ and Visual Basic
implementations. ODBC cannot be used directly with Java programs. In this case an additional
JAVA Native Interface (JNI) is needed. Alternatively the JDBC API can be used. Because many
current NSILI implementations are using Java, the basic steps required to handle JDBC are
described below as an example:

Step
1

Loading appropriate driver:
 Use Class.ForName(“[Path].Driver”).newInstance();

Step
2

Establishing a connection:
 Use the following syntax to get connected to the
database:
 Connection conn = DriverManager.getConnection
(String URL,String user, String
 password)URL=
jdbc:<subprotocol>://[hostname][:port]/<subname>

Step
3

Creating JDBC statements (these statements are objects
that can be executed):
 Statement stmt = conn.createStatement();

Step
4

Executing the statement (As a parameter an (SQL) query has
to be passed. This SQL query is obtained by parsing the
corresponding BQS statement):
 ResultSet rs = stmt.executeQuery(“<SQL query>”);

Step Retrieving result sets (several methods are available to

 A-5

5

loop through the result sets):
 rs.next(), rs.getInt(), rs.getString() etc.

Step
6

Closing the connection and the statement objects, the
close() method is used:
 conn.close(), stmt.close()

Several interesting features can be derived from this implementation scheme:

 The JDBC API allows a connection to remote databases in a LAN or even a WAN. By

selecting port numbers and individual IP addresses, firewall configurations can be
adapted.

 Security issues can be taken into account by using user IDs and passwords

A.2.2 NSILI Client/Server Connection

As stated already in STANAG 4559, the networks and communications interfaces should be
consistent with the NATO C3 Technical Architecture (NC3TA). NSILI itself describes a
client/server application based on CORBA. While Edition 2 of STANAG 4559 (available on
NATO Public Web Site) has foreseen FTP for accessing the Initial Object Reference (IOR) string
(see below) and accessing directly the products in the library, Edition 3 of STANAG 4559 has
changed FTP to HTTP and additionally incorporated the use of secure http (HTTP(S)) in
accordance with direction from the NATO information security guidance.

CORBA based programs, implemented in different programming languages, can interoperate on a
network of distributed computers using different operating systems. For the communication
between client and server, the standard protocol IIOP is used. The following step-by-step
description shows what happens each time a client connects to a server system.

STANAG 4559 requires a server to publish the CORBA reference to the Library object as an
Initial Object Reference (IOR) string, and make that accessible via http(s). The first necessary
step is to exchange a so-called CORBA IOR, which itself was generated by an NSILI server
application. This IOR with information about the hardware (IP-address, port number) and the top-
level interface (in the case of NSILI, the Library Interface) is converted to a string, which is
written to an ASCII file. On the NSILI server side, the system needs to establish a link to an
HTTP(S).

For future implementations, the generation of IORs, their download to NSILI client via HTTP(S),
appropriate protocols and the selection of parameters shall be described in the next subsections.

A.2.3 Server Set-up and Generation of IOR-Files

To set up the NSILI server and to generate an IOR-File for the client/server binding, several basic
initialization steps have to be accomplished. For a better understanding, code snippets for a Java
and a C++ implementation are added to the process steps below:

 A-6

Step
1

Initialization of an Object Request Broker with appropriate
arguments:
 Java:
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);
 C++: CORBA::ORB_var orb = CORBA::ORB_init (argc,
argv);

Step
2

Creation of a “root” Portable Object Adapter (POA) as
default POA.
The “root” POA is managed by the ORB and is always
available to an application through the ORB initialization
interface resolve_initial_references:
 Java:
 org.omg.CORBA.Object robj =
 orb.resolve_initial_references("RootPOA");

 POA rootPOA =
org.omg.PortableServer.POAHelper.narrow(robj);
 C++:
 CORBA::Object_var robj =orb-
>resolve_initial_references
 ("RootPOA");

 PortableServer::POA_var
rootPOA=PortableServer::POA::_narrow
 (robj);

Step
3 Creation of a “child” POA for the top level Interface

“Library” with appropriate policies by invoking the
create_POA factory operation on a parent POA (here root
POA):
 Java:
 POA poaLibrary = rootPOA.create_POA("Library_poa",
 rootPOA.the_POAManager(), new org.omg.CORBA.Policy[] {
…});

 C++:
 PortableServer::POAManager_var poa_manager =
 rootPOA->the_POAManager (); CORBA::PolicyList polices
(…);policies.length (…); policies0] =…;…
PortableServer::POA_var poaLibrary = rootPOA-
>create_POA(

"Library_poa", poa_manager.in (),policies);
Step
4

Creation and explicit activation of the “Library” servant:
 Java:
 LibraryImpl myLibraryImpl = new LibraryImpl(“Library”);
 poaLibrary.activate_object_with_id(“Library”.getBytes(),
 myLibraryImpl)
 C++:
 LibraryImpl myLibraryImpl;
 PortableServer::ObjectId_var Libid =
 PortableServer::string_to_ObjectId ("Library");

 A-7

 poaLibrary->activate_object_with_id (Libid.in
(),&myLibraryImpl);

Step
5

Creation of an object reference from a servant:
 Java:

Org.omg.CORBA.Object objref =
poaLibrary.servant_to_reference(myLibraryImpl);
C++:
CORBA::Object_var objref = poaLibrary-
>servant_to_reference (&myLibraryImpl);

Step
6

Generation of an IOR-file:
 Java:

FileWriter fw =new FileWriter(“[path]/<ior-file-
name>”);
fw.write(orb.object_to_string(objref));
fw.close();
C++:
CORBA::String_var ior =orb->object_to_string (objref);

 ofstream of (“[path]/<ior-file-name>”); of <<
ior;of.close ();

Step
7

Activating the NSILI server:
 Java:

rootPOA.the_POAManager().activate();
orb.run();
C++:
poa_manager->activate();

 orb->run();

The steps shown above are an implementation example. The definition of policies, the activation
of servants (explicit/implicit), or the ways individual POAs are nested with each other are not a
subject covered in this AEDP.

To allow client/server binding in accordance with STANAG 4559, only an Initial Object
Reference (IOR)-file derived from the Library server has to be provided. This file has to be
accessible and downloadable via HTTP(S). Details for this procedure are described in the next
subsection.

A.2.4 HTTP(S) servers and their configuration (to be addressed)

A.2.5 Security issues for the Server (to be addressed)

Example configuration for a read and/or write access on a HTTP(S) Server (to be addressed)

These URLs must be made available to the NSILI clients. Depending on the security level, this
can be done by the corresponding means of communication (email, phone, fax).

A.2.6 Download of IORs to NSILI clients

In the last two subsections the preparations to establish the client/server connection have been
described from the server side. Now we shall have a more profound and detailed view on the
client side. The first steps on the client side are to:

 A-8

 process the server generated URL
 access the corresponding HTTP(S) server and
 download the IOR file.

A.2.7. Connecting to the NSILI server
In this last section the basis for the client/server connection is established.

�
A.2.7.1 Connecting the Client
Three basic steps have to be performed in the client application for a successful server
connection. Examples of the steps are given below. On completion of these steps the user should
receive a logged on message from the server which will identify the engaged library, and an
established connection.

1. The ORB has to be initialized (with additional arguments)

2. The IOR string has to be converted to a CORBA object

3. The CORBA object is narrowed

A.2.7.2 Connections over the Internet

To initiate a CORBA connection to a TCP firewall protected server in an Internet environment,
the client has to use defined port numbers and the firewall IP-address. This firewall IP address has
to be mapped to an internally known, private address of the server on the server side, using a
Network Address Translator (NAT). NATs allow a single device, such as a firewall or a router, to
act as an agent between the Internet and a local (or "private") network. This means for a client
that only a single, unique IP address is required to access even several different servers in a LAN.
The router (firewall) then maps this IP-address to the predefined server. The specification for
NATs can be found in the Request for Change (RFC) 1631.

There are two essential problems when trying to use the Internet Inter-ORB Protocol (IIOP)

Java:
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
C++:
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

Java:
org.omg.CORBA.Object objRef=orb.string_to_object(ior_string);
C++:
CORBA::Object_var objRef = orb->string_to_object (ior_string);

Java:
Library mylibrary =GIAS.LibraryHelper.narrow(objRef);
C++:
Library::Library_var mylibrary =Library::_narrow(objRef.in());

 A-9

across today’s firewalls:

Location-transparency and the dynamic allocation of addresses as done by CORBA
middleware make it difficult to know in advance the host and port addresses used for
transactions.
Addressing information contained in an object reference is invalidated when crossing a
Network Address Translating router.

The first problem can be avoided by using fixed IP addresses and communication ports. As
already described for HTTP(S), all this information has to be known in advance to get the right
firewall configuration. Using appropriate IOR files that contain both the “official” IP address and
the internal “private” IP address can solve the second problem. Further information and guidance
is available through the OMG CORBA Firewall Transversal Specification
http://www.info.fundp.ac.be/~ven/CIS/OMG/firewall%20traversal.pdf

Other Comments

The Java ORB has special settings to address some of the issues.

For the orbd program the option: "-port NNN" fixes the port used for
communicating with the nameserver to a given port.

For the orbd program the option:
"-JDcom.sun.CORBA.ORBServerHost= remotely_known_host" publishes the given remote host (or IP
address, as known outside the firewall), instead of an internal IP address of the server.

A Java CORBA program can be started with the option:
"-Dcom.sun.CORBA.ORBServerHost=remotely_known_host" to publish the remote host in the IOR string
and other CORBA references.

A Java CORBA program can be started with the option:
"-Dcom.sun.CORBA.POA.ORBPersistentServerPort=NNN" to fix the port used for communication
between client a server to a given port.

A.2.7.3 Login Process

Many interoperability tests and experiments have been performed between the nations’
implementations within the last several years. A successful login process has proven to be the key
for interoperability. Usually minor changes for the other interfaces were necessary when
appropriate configurations and codes were used to establish the FTP3/HTTP(S) and CORBA
connections. This is true for connections in Local Area Network (LAN) and Wide Area
Networks (connections over the Internet).

A.2.8. Query Process – Develop CatalogMgr

This part of the AEDP describes implementation details for the CatalogMgr. For a detailed
description of the functionality refer to [STANAG4559] and [GIAS351]. The description
provided in this Annex is divided into a Client side and a Server side description. The description
templates are written in Java but should be applicable easily to any implementation language.

3 FTP is no longer supported in STANAG 4559 Edition3.

 A-10

Pseudo Code is written as Java Comment.

A.2.8.1 CatalogMgr - Client Side

The CatalogMgr holds the functionality of querying the Catalog of the ISR-Library. For this
purpose, it has 2 methods:

 hit_count returns the amount of hits for the specified query via HitCountRequest.
(2.8.1.3) Counting hits with hit_count()

 submit_query returns the result of the specified query via SubmitQueryRequest. (2.8.1.5)
Searching Catalog with submit_query()

Both methods use the GIAS.Query Struct, see [GIAS351]

It should be understood, that a subsequent call of hit_count() and submit_query() could
theoretically have a different amount of results, if the database is modified between calls.

A.2.8.1.1 CatalogMgr Reference

As basis for further operation the Client has to get a CatalogMgr Reference. During the Login-
process the Client requested and received a Library-Reference, which will enable the request of
all managers associated with the Library. The code sample below shows how a CatalogMgr
Reference request is achieved in Java.

A.2.8.1.2 Counting hits with hit_count()

The Client can determine the number of results (“hits”) that would be returned from the Query.
A successful invocation of this operation returns a reference to a HitCountRequest object.
If invocation fails the following exceptions are raised:

Exception Meaning
UnknownViewName ViewName in aQuery is unknown.
BadQuery aQuery is syntactically invalid
BadQueryAttribut
e

aQuery contains an attribute unknown to
the CatalogMgr

Further Experiences on these exceptions:

Unknown ViewName: The ViewName is mandatory. It can be asked from the CatalogMgr for

Client.java: getting CatalogMgr Reference

LibraryManager mgr =
Library.getManager(“CatalogMgr”);
CatalogMgr catalogManager =
CatalogMgrHelper.narrow(mgr);

 A-11

instance as CatalogMgr.get_view_names() or must at least be hard coded as
“PRODUCT_DEFAULT_VIEW”..

Bad Query: This is mostly an error generated by the server’s BQS-Parser. The BQS-Query is
incorrect.

Bad QueryAttribute: Mostly: ViewName and Attributename do not match. See Section 3.2.5 (The
GIAS::Query struct).

A.2.8.1.3 HitcountRequest

The HitCountRequest is returned by a successful invocation of the hit_count operation of the
CatalogMgr. It provides the operation complete() to retrieve the count of the results of the
submitted query. The possible States of HitCountRequest, which the Client can see, and their
meaning is displayed below. Further operations concern the calls of the RequestManager (see
Section (2.8.5).

A.2.8.1.4 HitcountRequest.complete()

This operation allows a client to complete processing of the HitCountRequest. This operation
blocks until the requested operation reaches an end state. A successful invocation of this
operation (State “COMPLETED”) returns a value that indicates the total number of results
(“hits”) that would be returned if the query was executed.

State Description
PENDING Initial state
IN_PROGRESS Query started
COMPLETED result is available
ABORTED Request aborted

Result is not valid
CANCELED Request canceled

Result is not valid

 A-12

Using Callbacks is optional and can be denied by the server (register_callback will fail). Further
descriptions for the use of callbacks and what has to be taken into account can be found in
Section 2.8.2.5 Requests and Callbacks of this Annex. Callbacks can be useful on long-time
operations and asynchronous events.

Client.java: Creating a callback (tbd)

Client.java: hit_count() (synchronous call)
org.omg.CORBA.IntHolder hitCount = new
org.omg.CORBA.IntHolder();
GIAS.HitCountRequest hitRequest=null;
UCO.State hitState=null;
GIAS.Query aQuery= ...;
try {
 hitRequest = CatalogManager.hit_count(aQuery, new
NameValue[0]);
 ...
 }
try {
 hitState = hitRequest.complete(hitCount);
 ...
 }
return hitCount.value;

Client.java: hit_count() (using callback)

 org.omg.CORBA.IntHolder hitCount = new
org.omg.CORBA.IntHolder();
 GIAS.HitCountRequest hitRequest=null;
 UCO.State hitState=null;
 GIAS.Query aQuery= ...;

 try {
 hitRequest = CatalogManager.hit_count(aQuery, new
NameValue[0]);
 ...
 }
 Callback cb = getCallbackObject (hitRequest);
 String CallBackID =
hitRequest.register_callback(cb);

if (CallBackId != null) // Server
accepts Callbacks

 {
 waitForNotify(); // do something else ...
 hitRequest.freeCallback(CallBackId);
 }

 Try
 {
 hitState = hitRequest.complete(hitCount);
 ...
 }

 A-13

A.2.8.1.5 Searching Catalog with submit_query()

This operation allows a client to submit a query to the CatalogMgr.
This operation needs as input parameters:

 The GIAS.Query.
 The resultlist tells the server which Metadata to provide
 The SortAttributeList for sorting the results
 The Propertylist defaults to “WGS84”

The type of resultlist is from type UCO.NameList. The Client tells the server, which Metadata the
client wants to have. The list is a subset of the Metadata of the selected View in the Query. The
Client can get the complete list with DataModelMgr.get_attributes().If the list is empty, then no
metadata attributes will be returned just the UID.Product.
.

The SortAttributeList tells the server, how and by which attributes the results have to be sorted.
This list may only consist of sortable attributes. If the list is empty, then the order is server
implementation specific.

A successful invocation of this operation will return a reference to a SubmitQueryRequest object
described below.
If invocation fails, standard exceptions are raised, as described in Table 8

A.2.8.1.6 SubmitQueryRequest

The SubmitQueryRequest is returned by a successful invocation of the submit_query operation of
the CatalogMgr. It provides operations to retrieve the results of the submitted query in two forms:
as a DAG (Direct Acyclic Graph) or as a XML-Document. This interface defines the following
operations:

 set_number_of_hits()
 complete_DAG_results()
 complete_XML_results()

If complete_StringDAG_results() is not supported and the server will raise a
CORBA.NO_IMPLEMENT-Exception. . Further operations concern the calls of the
RequestManager (see Section (2.8.5). Possible states of SubmitQueryRequest and their meanings
are displayed below:

State Description
PENDING Initial state
IN_PROGRESS Searching started
RESULTS_AVAILABLE

First Results available, results are not
completed

COMPLETED Server has all results completed
ABORTED Request aborted

Results are not valid
CANCELED Request canceled

Results are not valid

 A-14

A.2.8.1.7 Set_number_of_hits

The operation set_number_of_hits allows a client to delimit the number of results (“hits”) that are
returned by the invocation of one of the “complete“-operations.

The number of hits should be geared to the required format for the results.
The value entered is valid just for the actual SubmitQueryRequest.

A.2.8.1.8 complete_DAG_results

The Client completes processing of the SubmitQueryRequest with this operation.. .. A successful
invocation returns a UCO.DAGList structure containing results from the query. The number of
results contained in this list depends from the history of the submitQueryRequest and the server
implementation.

� If the client has set number of Hits, the number will be less or equal this limit.

� Otherwise all results or a server-internal limit of results will be returned.

The call has to be repeated, until the return list is empty.

If the operation is cancelled or aborted, the results in the list are no longer valid.

Client.java: submit_query()

 String[] results = null;
 GIAS.SubmitQueryRequest subRequest=null;
 UCO.State subState=null;
 GIAS.Query aQuery= ...;

 try {
 subRequest = CatalogManager.submit_query(aQuery,
 results,sort,props);

 ...
 }

Client.java: (client side) set_number_of_hits

 Unsigned long hits = ...;
 GIAS.SubmitQueryRequest subRequest=...;
 try {
 subRequest.set_number_of_hits (hits);

 ...
 }

 A-15

A.2.8.1.9 Complete_XML_results

The Client completes processing of the SubmitQueryRequest with this operation.. A successful
invocation returns a UCO.XMLDocument structure containing results from the query. The number
of results contained in this list depends on the history of the submitQueryRequest and the server
implementation.

� If the client has a set number of Hits, the number will be less or equal this limit.

� Otherwise all results or a server-internal limit of results will be returned.

The call has to be repeated, until the return list is empty.

� If the operation is cancelled or aborted, the results in the list are no longer valid.

� As there is no XML Schema defined at the moment, the resulting XML-Document is
Library Specific.

.

A.2.8.1.10 Building the BQS-Query

The following examples are provided as guidance to the developer in constructing a BQS query
string that expands on the discussion of the BQS query examples given in STANAG 4559, Annex

Client.java: complete_DAG_results() (synchronous)

 State Status=null;
 GIAS.DAGListHolder dresults = new DAGListHolder();
 GIAS.SubmitQueryRequest subRequest=...;

 try {
 Status = subRequest.complete_DAG_results(dresults);
if ((number_of_results < number_of_hits) || (number_of_results
== 0)) // all results retrieved
else // further results available
 }

Client.java: complete_XML_results (synchronous)

State Status=null;
 GIAS.StringHolder xresults=new StringHolder();
 GIAS.SubmitQueryRequest subRequest=...;
 try {
 Status = subRequest.complete_XML_results(dresults);
 if ((number_of_results <
number_of_hits)||(number_of_results == 0))
 // all results retrieved
 else // further results available
 }

 A-16

F.

A.2.8.1.11 Some Examples of the BQS-Query with NSIL_ALL_VIEW

Query for date and time:
"NSIL_FILE.dateTimeDeclared > '2005/10/09 12:00:0.0'“looks for all products younger than
specified date

Same query, attribute given as fully qualified attribute name:
"NSIL_PRODUCT:NSIL_FILE.dateTimeDeclared > '2005/10/09 12:00:0.0'“

Using wildcards:
"(NSIL_IMAGERY.comments LIKE '%bridge%' or NSIL_IMAGERY.comments LIKE
'%Munich%')" looks for products with an NSIL_IMAGERY comments , which contains the
words “bridge“ or “Munich” . The round bracket closes the logical “or’, could be omitted in this
case.

Using text comparison:
"NSIL_IMAGERY.category = 'SAR' or NSIL_IMAGERY.category = 'VIS'" looks for products
whose NSIL_IMAGERY category matches exactly 'VIS' or 'SAR'.

Geospatial query (1)
"spatialGeographicReferenceBox inside RECTANGLE (60.0 , 5.0 , 5.0 , 60.0)" looks for
products, whose spatialGeographicReferenceBox is completely inside the specified rectangle
(upperleft , lowerright). Coordinates are in degrees (latitude, longitude).

Geospatial query (2)
"spatialGeographicReferenceBox intersect POLYGON (55.0 , 5.0 , 55.0 , 9.0 , 52.0 , 9.0 , 52.0 ,
5.0 ,55.0,5.0)" looks for products which are completely or partially inside specified polygon.
Arrangement of the coordinates is counter clockwise. Coordinates are in degrees (latitude,
longitude).

Geospatial query (3)
"spatialGeographicReferenceBox within 20000 meters of POINT (48.0 , 11.5)"; looks for
products, whose spatialGeographicReferenceBox is completely inside a circle of 20 km round
specified point. Coordinates are in degrees (latitude, longitude).

A.2.8.1.12 Converting Boolean Query Syntax (BQS) to Structured Query Language (SQL)
Syntax

Though it may be possible to convert BQS to SQL syntax with only string replacements,
implementers have found it easier to use a parser generator to create a parser for BQS, and use the
parse-tree to build the SQL.

[STANAG4559] contains the Backus Naur Form (BNF) notation for the BQS in Annex F.
Writing the input for a parser generator based on this BNF notation is relatively straightforward.

Note: There can be problems related to parsing the BQS using a generated parser. For
example, valid operators and values are dependent on the type of attribute. A
straightforward parser will not be able to validate the query completely for correctness.

 A-17

Solution: After creating the parse tree with the parser, the parse tree can be checked for
incompatible attribute-operator and attribute-value pairs.

Mapping geospatial operators to SQL is highly database specific. There are Implementations that
use Oracle DB with Spatial module (Oracle 11g has geospatial module embedded). Other
implementations use PostgreSQL DB with PostGIS and Microsoft SQL Server 2008 with
geospatial support.

A.2.8.2 CatalogMgr - Server Side

The CatalogrMgr implements the functionality of querying the Catalog of the ISR-Library on
Server Side. For this purpose, it has 2 methods:

� hit_count returns the amount of hits for the specified query via HitCountRequest.
� submit_query returns the result of the specified query via SubmitQueryRequest.

There are several common topics:

� Parsing the BQS-Query
� Convert BQS-Query to Database –Query
� Connecting to RequestManager

When creating the CatalogMgr server implementation all users are able to share the same
CatalogMgr instance because in the STANAG 4559 text the choice was made to ignore the access
criteria. If a server chooses to also allow access criteria along with “anonymous“ usage that is
required by STANAG 4559, the server may need a CatalogMgr instance per user in order to hold
the access criteria.

The code provided in the following examples is intended to illustrate some of the logic that has
been applied to the methods. [Per NGA44] [M.D45]

A.2.8.2.1 hit_count() - Server side

 A-18

On server side the hit-count()-invocation has to create a HitCountRequest, add it to the
RequestManager and return it to the caller. HitCountRequestImpl is the Implementation of the
interface.

A.2.8.2.1.1 HitCountRequest

The HitCountRequest analyzes the Query with the BQSParser converts it to the Database Query
and executes the Query. If analysis or execution fails, appropriate exceptions have to be raised.

A.2.8.2.1.2 State.COMPLETED

The server has to check, whether the execution of the Query has finished. This means the
HitCountRequest has reached an “end state” (COMPLETED, ABORTED, CANCELED). The
server will wait for an “end state“to be reached. If the Query was successful
(State.COMPLETED), the result is read, Result and State are returned. Alternatively if it is
allowed to postpone the DBQuery until complete() is called, considering that it can be quite fast.
The state would immediately be set to State.COMPLETED

Server.java: CatalogMgr.hit_count()

GIAS.Query aQuery= ...;
 try {
 HitCountRequestImpl sv = new
HitCountRequestImpl(catalogMgr, aQuery);
 org.omg.CORBA.Object ref = orb.activate_object(sv);
 HitCountRequest request =
HitCountRequestHelper.narrow(ref);
 requestManager.addRequest(sv);
 ...
 return request; // return HitCountRequest

Server.java: HitCountRequest.

 BQSParser bqp = new BQSParser (aQuery);

 attributeDefs = bqp.analyze(); // analyzes
BQS-Query

 DatabaseQuery dq = new DatabaseQuery (attributeDefs);
 // Create Database-Query
 sq.execute(); // Executes Query
 State = State.COMPLETED;
 if (use_callback)
 send_notify();

 A-19

If the Query reaches State.ABORTED or State.CANCELED......

A.2.8.2.2 Submit_query() - Server side

On server side the submit_query()-invocation has to create a SubmitQueryRequest, add it to the
RequestManager and return it to the caller. SubmitQueryRequestImpl is the Implementation of
the interface.

A.2.8.2.3 SubmitqueryRequest

The SubmitQueryRequest analyzes the Query with the BQSParser converts it to the Database
Query and executes the Query. If analysis or execution fails, appropriate exceptions have to be
raised.
The execution of the query by the SubmitQueryRequest can be done at several opportunities. If the
query is expected to take a short amount of time it may be executed even before the CatalogMgr
returns the SubmitQueryRequest to the client. The state will be COMPLETED immediately
when the client receives the request reference.
The incoming results of the query are stored in a unique structure, such as an
UCO.NameValueList or a HashMap. If using callbacks, SubmitQueryRequest has to notify the
client when the number of results exceeds the set_number_of_hits() or as execution is completed.

A.2.8.2.4 Complete_XXX_results() (to be completed)

The server has to wait, until one of the following conditions is fulfilled:

Server.java: HitcountRequest.complete()

 while (!State.isAnEndState())
 Wait();
 If (State == State.COMPLETED)
 number_of_hits.value = getNrOfHits (); // get result
 return state; // return state

Server.java: CatalogMgr.submit_query()

 GIAS.Query aQuery= ...;
 try {
 SubmitQueryRequestImpl sv = new
SubmitQueryRequestImpl(...);
 org.omg.CORBA.Object ref = orb.activate_object(sv);
 SubmitQueryRequest request =
SubmitQueryRequestHelper.narrow(ref);
 requestManager.addRequest(sv);
 ...
 return request; // return
SubmitQueryRequest

 A-20

� SubmitQueryRequest has reached an end State (COMPLETED, ABORTED,
CANCELED).

� SubmitQueryRequest is in State RESULTS_AVAILABLE and the number_of_results is
greater or equal number_of_hits.

If State is COMPLETED, the number of returned results is counted as follows:

� If number_of_hits is set, number_of_hits or the rest of the results will be returned
� If number_of_hits is not set, but the server has an internal limit, the limit or the rest of the

results will be returned.
� Elsewhere all remaining results will be returned.

If State is RESULTS_AVAILABLE, number_of_hits or the rest of the results will be returned.

A.2.8.2.5 Building the DAGList-Result

The DAG lists are defined in the GIAS and USIGS Common Objects Specification (UCOS)
Supporting Documents found at: http://www.nato.int/structur/AC/224/home.htm. Select topics
in the left column and then select Standards, and then AEDPs to find the reference documents.

A.2.8.3 Parsing the BQS-Query (refer to Annex F of STANAG 4559,
Edition 3)

Server.java: SubmitQueryRequest.complete_XXX_result()

while (true)
 {
 if (State.isAnEndState())
 break;
 if ((State == State.RESULTS_AVAILABLE) && (no_res >=
no_hits))
 break;
 wait();
 }
 If (State.isAnEndState() && State == State.COMPLETED)
 {
 If (limit.isSet())
 If (limit < no_res)
 Results[] = getResults (limit);
 else
 Results[] = getResults (no_res);
 else
 Results[] = getResults (no_res);
 }
 Else
 Results[] = getResults (limit);
 return state;

http://www.nato.int/structur/AC/224/home.htm

 A-21

A.2.8.4 Converting BQS-Query to Database –Query

A.2.8.4.1 Converting BQS to SQL Syntax

Though it may be possible to convert BQS to SQL syntax with only string replacements,
implementers have found it easier to use a parser generator to create a parser for BQS, and use the
parse-tree to build the SQL.

STANAG 4559 contains the BNF notation for the BQS in Annex F. It is relatively straight
forward to write the input for a parser generator based on this BNF notation.

 Note: There can be problems related to parsing the BQS using a generated parser. For

example, valid operators and values are dependent on the type of attribute. A straightforward
parser will not be able to validate the query completely for correctness.

 Solution: After creating the parse tree with the parser, the parse tree can be checked for

incompatible attribute-operator and attribute-value pairs.

Mapping geospatial operators to SQL is highly database specific. There are implementations that
use Oracle DB with Spatial module (Oracle 11g has geospatial module embedded). Other
implementations use PostgreSQL DB with PostGIS and Microsoft SQL Server 2008.

A.2.8.5 RequestManager

Whenever a user logs in into the Library (by calling get_manager) a new manager instance of the
requested type is created, unless there is already an instance of that manager for the user.
Therefore, users will only see their own managers and they are not able to look into the library
managers of other users. As defined in GIAS, all managers, other than the DataModelMgr, derive

class Domain Model

«interface»
Library

«interface»
LibraryMgr

«interface»
RequestMgr

«interface»
OrderMgr

«interface»
CatalogMgr

«interface»
OrderRequest

«interface»
SubmitQueryRequest

«interface»
Request

User
0..*

1 0..*

1 0..*

 A-22

from the RequestMgr interface, which is derived from the LibraryMgr interface.
The managers derived from the RequestMgr interface contain associated requests returned by the
methods of that manager. As shown in the image above, the OrderMgr has associated
OrderRequests, and the CatalogMgr has SubmitQueryRequests (HitCountRequests are not shown
for simplicity reasons). A manager can only know about those requests it created (by an
invocation of one of its methods). A manager will never know about requests created by another
RequestMgr.
As a result, all of the methods of the RequestMgr interface that take a Request as a parameter can
only use requests generated by this specific RequestMgr. All requests created by other
RequestMgrs are unknown to this RequestMgr and will return an UnknownRequest exception.

As displayed above, the ORB references to the implementation object is available to the outside
world through its implemented interfaces. As a result, the OrderMgr implementation can be
viewed as a LibraryMgr, as a RequestMgr and as an AccessMgr. On a CORBA level, all three
interfaces are accessed using the same Initial Object Request (IOR) address.

A.2.9 Order Process – Develop Product/ OrderMgr

class Domain Model

«interface»
LibraryMgr

«interface»
RequestMgr

«interface»
AccessMgr

«interface»
OrderMgr

OrderMgrImplementation ORB

 A-23

A.2.9.1 Product retrieval
After querying on product metadata there are several possibilities to retrieve the product itself, as
well as files related to the product.

� Order product on-line using the OrderMgr, delivery by HTTP(S) or e-mail, Order product
with alteration using the OrderMgr (e.g. only part of an image, or chip)

� Order off-line products like paper maps using the OrderMgr.
� Request related files to be delivered by HTTP(S) using the ProductMgr.
� Direct retrieval by a URL given in a metadata attribute of the product or related files.

All libraries must support product delivery via the OrderMgr. Support for alterations, and off-line
products will depend on the library implementation.

Libraries supporting related files must support delivery using the ProductMgr.

A.2.9.1.1 Comparison of direct access versus ordering

Retrieving a product using a URL is by far the easiest to implement retrieval method in a client. The
NSIL_ALL_VIEW view for example contains the NSIL_FILE.productURL attribute. It will contain
a URL. In most modern programming languages retrieving a URL is very easy.

Several limitations exist with using this URL linkage. No conversion, packaging, or chipping can be
specified in this notation. Also, multiple products cannot be retrieved to a machine other than the
client.

A URL allows many different protocols to be used. In general libraries should use only “HTTP”,
“HTTPS” protocols for file-based direct access. Client implementers should note that other protocols
could be used. For example a video stream could be identified by an “RTP” protocol. Another
example could be a JPIP protocol for JPEG2000 images.

A URL allows specification of a communication port number. This provides flexibility on the server
side, e.g. to have two libraries (test and production) running on the same system, but providing
products on a different port. Network and firewall must be considered because they must allow
routing of network packets from the required port.

Ordering using the OrderMgr and related file retrieval via the ProductMgr will in contrast use the
HTTP protocol to send the files. The OrderMgr also allows sending files using e-mail or a hardcopy
or physical media was ordered and will be delivered physcially. The advantage of the OrderMgr is its
many packaging and conversion options. For example, products can be very large images (hundreds
of megabytes). The OrderMgr allows selecting only a subset or chip of the image, saving big on
bandwidth (but requiring more processing power on the server).

The OrderMgr and ProductMgr send files to an HTTP(S) server (push), while the direct access URL
allows a client to pull files. The OrderMgr and ProductMgr require the client to have access to an
HTTP(S) server where they can send the files to.

A.2.9.2 OrderMgr interface

The OrderMgr provides many options to allow a flexible ordering process:

� Alterations: chipping, scaling, changing image compression, changing image mode.
� Different delivery protocols: HTTP(S), e-mail, physical

 A-24

� Different packaging options: separate files or packaged in a ZIP or TAR file, with or
without file compression.

Appendix 1 of Annex D of [STANAG4559] is mostly dedicated to the ordering options and
possible values to use in ordering fields. The following sections detail implementation issues for
the OrderMgr not given in the STANAG.

A.2.9.2.1 Image Chipping

Image chipping is the process of creating a subset or chip of an image. Libraries can contain very
large images (hundreds of gigabytes). An operator may be interested only in a particular area.
Instead of retrieving the whole image to the client, the OrderMgr can chip the area of interest
from the large image and send only that smaller image to the client. Currently the only type of
subsection allowed is rectangular (re: GIAS dated 6 August 2001, Pg. 8, Paragraph 2.2.1.2).

There are several advantages: The client may not be able to deal with very large images (due to
memory or processing restrictions); in networks with limited bandwidth transferring the full
image may not be feasible.

A.2.9.2.1.1 Specifying a chip

The main data structure to specify a chip is GIAS.ImageSpec. Table D-1- 6 in Appendix 1 of
Annex D of [STANAG4559] details the possible field values. A chip is specified using the
sub_section and geo_region_type fields. Refer to [GIAS351] for details of the GeoRegionType
type. For products with multiple image segments, the imageid field allows selection of the single
segment to chip (see also section below on multi-image products).
Table A-5 contains a description of the chipping options.

geo_region_type sub_section Comments

ALL Irrelevant No chipping, use full
image (all segments)

LAT_LON x = longitude, y =
latitude in decimal
degrees

Chip using geographic
coordinates. Will only
work for images with
geo-location
information. It is a
rectangle with top and
bottom parallel to the
image top and bottom.

LINE_SAMPLE_FULL Coordinates in the
coordinate system of
the full resolution
image (the product).

Don’t use NSIF CCS, but
single image

coordinates. Requires
knowledge of full image

size
LINE_SAMPLE_CHIP Coordinates in the

coordinate system of
the OVERVIEW related
file.

Allows selecting the
area of interest using
the smaller OVERVIEW
file. Server needs to
know scale factor of
OVERVIEW file.

NULL_REGION Irrelevant No chipping, no image.

 A-25

Table A - 1 – Specifying a Chip

In one typical use case, assuming a large image product, a client could first retrieve the related
file of type “OVERVIEW”. The user can visually select the area of interest. The client will use
the GeoRegionType.LINE_SAMPLE_CHIP value to indicate the selected coordinates are based
on the OVERVIEW related file.

In another typical use case the user may have expressed an area of interest and the client
automatically orders chips of products overlapping the geographic boundaries of the area of
interest. The GeoRegionType.LAT_LON would be used in this case.

A.2.9.2.1.2 Overview related file

The related file of type OVERVIEW must be an NSIF file. Because chipping will only chip a
single image segment (see section on multi-image products for more details), it is necessary that
the OVERVIEW related file reflects the same structure as the NSIF product file. This includes:

� Same number of image segments
� Image segments in same order
� All image sub-headers included.

In summary it must be a scaled down version of the NSIF product file.

[STANAG4559 calls for a maximum image dimension of 1024x1024 for the OVERVIEW related
file to allow the client display to fully present the image without sub-sampling. For easy scaling,
the OVERVIEW related file could be a “reduced resolution image” (usually this is an R5 level
Reduced Resolution Data Set (RRDS) as specified in [NSIF-AEDP-4] Annex E. This implies a
scale factor that is a power of 2, which can be expressed in the IMAG field in the image sub-
header. When using another scale factor, the ICHIPB Tagged Record Extension (TRE) must be
included to accurately specify the scale factor.

Keeping the same block-masks and padding pixels as the full image segments can be useful in
some cases. Chipping is sometimes limited to a single block, so knowing the block structure can
be useful if the overview is used to define a chip.

In other cases keeping the overview file small may be a requirement, and using C8 (JPEG 2000)
compression is desired, but C3 (JPEG Discrete Cosine Transform (DCT)) may be acceptable. In
keeping many small blocks this may cause a lot of processing overhead. In such cases joining all
blocks may be desired.

Note that it is not always possible for a client (nor for the server) to calculate the size of the image
in the product file from the size of the image in the OVERVIEW related file., Many times it is
possible taking into account the IMAG sub-header field and ICHIPB TRE. The product file might
be a chip itself, so the IMAG in the product file may not be 1, and it could already have an
ICHIPB TRE. So the client cannot always use the GeoRegionType.LINE_SAMPLE_FULL when
ordering a chip based on the OVERVIEW file, but should use the
GeoRegionType.LINE_SAMPLE_CHIP.

The server must know the scale factor used to produce the OVERVIEW related file when a chip

 A-26

is ordered with LINE_SAMPLE_CHIP. It could either store the scale factor in a file or database,
or recompute it from the image size in both the OVERVIEW and product files.

A.2.9.2.1.3 Chipping multi-image products

NSIF image files can have multiple image segments. The important thing about chipping of
multi-segment products is to understand how systems create products of this nature and their use
of the Display Levels (DL) and Attachment Levels (AL) along with the use of the Image Location
(ILOC) and the Symbol Location (SLOC). For example multiple image segments could be used
for:

� Several partly overlapping photographs that together form a larger picture (e.g. of a coast
line).

 Annotating images or icons.
 Multiple distinct images, possibly with different geospatial coordinates, having a logical

rather than a positional relation.

Chipping multiple image segments (all those that intersect with the chipping area) adds a lot of
complexity. There are even some cases where it is impossible to define the meaning of the order
contents when dealing with multiple image segments.

Given the complexity and possible problems in correctly interpreting the resulting NSIF file of a
multi-segment chip, it is recommended only to chip single image segments.

The ImageSpec structure contains a field "imageid". This is intended to indicate which image
segment from a multi-segment NSIF file should be chipped. The imageid is numeric; it is taken

to be the sequence number of the image segment, starting with 0 for the first image segment
within a multi segment file.

A.2.9.2.1.4 Side note on chipping multiple segments

An NSIF file can contain multiple images, but also multiple graphic and text segments containing
additional annotations. The given chipping recommendation means ignoring all those. This
section contains some more details on the problems to be solved when chipping multiple
segments.

Some possibilities with multiple images e.g.:

 To be considered for imageid definition:

 If imageid is empty, the image segment with attachment
level 0 and the lowest display level is used.

 If imageid is numeric, it is taken to be the sequence
number of the image segment, starting with 0 for the first
image segment. (alternative would be the display level).

 If imageid is not numeric, the first image segment with
IID1 field equal to the imageid is chosen.

 A-27

� Join all image segments (and possibly also graphics segments) into one image and chip
that. The resulting image will be of the requested size (including cutting off graphic
segments on the chipping borders). The usability of such an image is questionable for
strategic analysis but is usable as a tactical picture, because most metadata, including
detailed location and orientation, are lost.

� Chip all images individually, assuming the chip coordinates are relative to the Common
Coordinate System (CCS) of the NSIF file.

� Exclude image segments that are completely invisible (or include them with an empty
image so the metadata (such as comments) is kept. But, in that case the CCS may be
larger than the chipping bounds.

� Or include only the main image

For files with Graphic segments e.g.:

� Include all graphic segments
� Include only graphic segments that are completely within the chipping bounds
� Include only graphic segments that are at least partly within the chipping bounds (but this

will mean the resulting CCS will be larger than the chipping bounds).
� Try to chip the graphic segments to exclude elements of a graphic segment outside the

chipping bounds. But this might cripple the graphics so much they cannot be
comprehended anymore.

� Exclude all graphic segments

For Non-graphical segments like Text or DES e.g.:
• Exclude all
• Exclude DES but include Text, e.g. if the purpose of chipping is to limit bandwidth and a

DES segment contains a large audio (or worse, video) recording, then including the DES
segment defeats the purpose of chipping.

• Include all
• Don't allow chipping if there is a DES segment that is not an overflow.

Below is a list of problems to be encountered when dealing with multi-segment image chips.

� A problem may be that one of the intersecting images was attached to a non-intersecting
image. The best thing to do in this case is to not include this intersecting image if the area
of interest is not part of the intersection. If it is part of the intersection then it may require
user intervention. Remove all segments (also graphic and text) attached to a segment that
is removed as a result of chipping. Annotating images and icons could be misinterpreted
if they would be chipped (be only partly visible). So only include image segments other
than the main one that are completely within the bounds of the chipping area. This
strategy will obviously not work well for NSIF files with partly overlapping photos. The
question is whether the annotated images are useful without the graphic or text segments.
So the graphic and text segments should be considered for inclusion. Some graphics may
be related to part of an image segment that is not in the chip.

� In general the chips should be put together as one would for a single image merge from
multiple images with possible overlaps in the CCS.

 If chipping with GeoRegionType.LAT_LON, and the NSIF file contains multiple image

segments with geospatial location (IGEOLO field), each image segment must be chipped
separately.

 A-28

� Image segments (e.g. annotated images) without IGEOLO fields cannot be chipped with

GeoRegionType.LAT_LON and must be removed from the chipped file.

A.2.9.2.2. Sub-header fields in a chipped image

When creating the image chip, some file and image sub-header fields need to be changed:

 NROWS, NCOLS: Reflect the size of the chipped image.
 PVTYPE, IREP, and others: If besides chipping also a different image mode or

compression is requested in by the order.
 IGEOLO: when present it must be recomputed to represent the new geospatial bounds of

the image. It must be recomputed even when an ICHIPB TRE is added or changed
(contrary to e.g. the BLOCKA TRE, which must not be recomputed when the ICHIPB
TRE is used).

 CLEVEL: The chip may be much smaller than the original NSIF file. It will contain just
one image segment, while the original NSIF file could have had several. These factors
may influence the CLEVEL.

 FDT: Represents the time when the file with the chip was created.
 FL, HL, NUMI, etc: The File Length, Header Length, number of segments, and related

fields all need to be recomputed.
� ONAME: Name of the Originator which can include library identification.
� OPHONE: . Contact details of file Originator.

Other image sub-header fields must not be changed, specifically:

� IDATIM: defined as the date the image was acquired. See also [NSIF-AEDP-4], Annex
A, section 23.
� Since chipping does not change the acquisition time, IDATIM must not be changed.

A.2.9.2.3 Extended and user defined sub-headers in chipped images

The Compendium of Controlled Extensions [STDI-0002] contains useful information including
TREs for imagery in [STDI-0002]. Another reference is the [NSIF-AEDP-4], Annex C section
5.5.15 and Annex D, section 4.1.30 & 4.7 on reduced resolution imagery.

Several TREs contain acquisition parameters needed to correctly interpret or geolocate the image.
In NSIF images the IMAG field in the image sub-header indicates whether those TREs where
recomputed in a reduced resolution image. The ICHIPB TRE is more relevant for chipping. Its
presence indicates that other TREs where NOT recomputed. The information in the ICHIPB TRE
allows a client to compute the coordinates in the chipped image back to the original image, and
thus to the other TREs that contain information relative to the original image.

For NSIF image segments there are two options when creating a chip:

a. To recalculate and update all metadata in the TREs and not include an ICHIPB tag, or
b. To leave the existing metadata in the TREs unchanged and add the ICHIPB tag.

It is recommended to always use the ICHIPB TRE, so the other TREs can be included in the
chipped image without change. Repeated recalculation of metadata could deteriorate the quality

 A-29

of the metadata.

If the original image already contained an ICHIPB TRE, the data contained in it must be
recomputed to reflect the new chip-of-a-chip. The offsets and magnification must refer to the full
image size, because the other TREs refer to it. Note that the original full size unchipped image
need not be available in the library. The ICHIPB TRE carries enough information to correctly
interpret the other TREs.

Some support data in TREs relate to scan blocks within a single blocked image segment.
Chipping can cause some scan blocks to not be included in the chip, invalidating support data.
The ICHIPB TRE can only relate back to a single original scan block number. [STDI-0002]
therefore recommends not chipping across block boundaries.

A.2.9.2.4 Naming of file(s) in the delivery package

STANAG 4559, Edition 3, Annex D, Appendix 1, section D 3.1.2-1-3 contains a description of
the file naming strategy.

Specifying multiple HTTP(S) locations with a non-empty file_name in at least one FileLocation
and ordering separate files should not be allowed, because that could result in differently named
files at each HTTP(S) site, and no possibility to report this back in the DeliveryManifest.elements
structure. The DeliveryManifest.packet_name must be filled in, this field should contain the
product filename which could include its extension e.g .tar or .zip.

A.2.9.2.5 Reduced sized images

One alteration the OrderMgr can do is create a reduced sized image. In [STANAG4559] Table D-
1-6, the ImageSpec.rrds field is intended for this.

� An rrds of 0 indicates the image is at normal size.
� A value of 1 requests the image at half of the normal width and height.
� A value of 2 requests the image at a quarter of the normal width and height.
� For each further level the width and height need to be divided by 2.

See also [NSIF-AEDP-4], Annex D (NSIF approved Support Data Extension Listing), e.g. on
setting the IMAG sub-header field correctly.

Multiple rrds levels could be requested, since the rrds field is a list. The intent is to ship multiple
files, one for each requested level. The DeliveryDetails for the product should contain multiple
file names, one for each requested level.

A.2.9.3 OrderRequest interface

A.2.9.3.1 OrderSize in request_details
The OrderRequest.request_details method must provide, among others, an OrderSize. The
OrderSize may not be accurately known until the order is completed, especially when the order
will be a zipped file or must do chipping.

The OrderSize in the request_details need not be static. It could contain a best guess initially, and
change over time when a better guess can be made. E.g. start with the total of all file sizes.

 A-30

Use 0.0 to indicate the OrderSize is not known.

A.2.9.3.2 HTTP(S) Server for Order Manager
Using the OrderMgr the client needs to have access to an HTTP(S) server. Clients could set up
an HTTP(S) server on their own system, allowing direct file access to the delivered package.

Some clients may not be able to have a local HTTP(S) server. They can use any other HTTP(S)
server they have access to. The server would deliver the package there, and the client needs to
retrieve it. This solution may double the network traffic, because the package needs to go over the
line twice.

The HTTP(S) server could be local to the NSILI server. In this case the package needs to be only
once on the network. A disadvantage is the additional administrative work on the NSILI server
side to maintain HTTP(S) accounts for all clients.

A.2.9.4 ProductMgr

The ProductMgr Interface provides operations that allow the client to determine characteristics of
a specific product and retrieve related files associated with that product, such as thumbnail and
overview images.

A.2.9.4.1 GetParametersRequest
Clients can access product metadata attributes in two ways:

1. Pass the desired result attributes to the CatalogMgr.submit_query method.
2. Request only the product reference via the CatalogMgr and use the

ProductMgr.get_parameters method to get the attributes.

Besides requesting a list of attributes, a few special names can be passed to the
ProductMgr.get_parameters method:

� ALL: request all metadata attributes available for the product. This will include attributes
that are not queryable.

� ORDER: Attributes relating to ordering. This could include both server capabilities with
respect to ordering, such as supported transformations, and product metadata needed for
ordering, such as the size of the image. Order attributes are further discussed in section
2.9.6 of this document

A.2.9.4.2 GetRelatedFilesRequest

Related files like a thumbnail or overview can be retrieved using the ProductMgr. Libraries may
also provide direct access URLs in the metadata as an alternative retrieval method. In the
NSIL_ALL_VIEW view the NSIL_RELATED_FILE.URL field is intended for these direct
access URLs.

The location parameter of the ProductMgr.get_related_files method provides the hostname,
username and password, and directory path where the server can copy the related files. It is
assumed, though not explicitly documented in the STANAG, that the HTTP(S) protocol with
standard HTTP(S) ports is used to deliver the files, just as the OrderMgr delivers files by

 A-31

HTTP(S).

While the list of Related File Types was at one point to include footprint, text, xml, reccexrep,
recon4, video, html and audio the fact that there is no specification for these file types caused the
CST to not include them in the list of standard related file types in [STANAG4559] Appendix 1
Annex D. The CST does recognize that these and other file types will be found in an ISRPL and
should be acceptable to a knowledgeable NSILI implementation.

The ProductMgr can be used to provide alterations, by using a naming convention for the related
file type. The capability will be limited to predefined transformations, and usually these
transformations have been performed by the server at ingest rather than being done on request.
But it should be pointed out that the related file types need to be standardized, or at least well-
understood between client and server for the results to be reliable.
For example the related file type “OVERVIEW_JPEG” could provide the overview image in
JPEG format instead of NSIF format. “PRODUCT_R1” could indicate a related file in NSIF
format at half the original size.

A.2.9.5 AccessManager

The ProductMgr and OrderMgr implement the AccessManager interface. The AccessManager
methods are really only useful for orders. The ProductMgr also implements it because it was
anticipated that some systems might store thumbnails or overview images (or other related files)
off-line. But most systems store those on-line.

NSILI clients should therefore prefer use of the OrderMgr to call the AccessManager methods.

In [STANAG4559] the ProductAccess use_mode has been removed to make it clear that using
the AccessManager methods on the ProductMgr is not useful.

Since the server still needs to implement the AccessManager methods in the ProductMgr, it may
choose to implement them with the same code as the OrderMgr.

A.2.9.6 Order Attributes get_parameter_request

In order to access metadata of artifacts, the client can either make a call to the search interface
(CatalogMgr/StandingQueryMgr) of the library or access the ProductMgr. When accessing the
ProductMgr, it is required that the UID:Product reference for the product is available to the client
before invoking the ProductMgr. Such a reference can be received from previous search
operations or from an ingest of a product.

The parameter “desiredParameters” indicates the attribute which shall be contained in the
returned upon calling “complete” on the returned request.

The DAGs returned by this operation are identical to the DAGs returned by the search interfaces
(CatalogMgr/StandingQueryMgr). Note that the operation only works with UID:Product
references that point to an actual product. UID:Product references pointing to associations will
not return the metadata of the association.

A.2.10 Requests and Callbacks

 A-32

A.2.10.1 Requests

A.2.10.1.1 Deleting a request

The effect of calling RequestManager.delete_request for a request that is not in an end-state, such
as PENDING, RESULTS_AVAILABLE or SUSPENDED state, should be to first cancel the
request, then delete it. Because the CANCEL state will not trigger a notify method on the
callback, the client, when using a callback, will only see a Callback.release.

A.2.10.1.2 Request.cancel versus RequestManager.delete_request

Both Request.cancel and RequestManager.delete_request will stop request processing and
indicate that no more results are needed. Request.cancel will keep the Request, and thus the
resources associated with it, until a timeout period has passed. RequestManager.delete_request
will allow the server to immediately delete the request.

The client should not expect any results to be available after calling cancel. The server is allowed
to free resources associated with a request, except those needed during the timeout period, after a
call to cancel.

The only reason to use Request.cancel is to be able to use the request object to get the state. For
example when a client uses a request, and the server, or a server administration client wants to
cancel a request for some reason, they can use the cancel method. The client will be able to check
the request state to know the request was cancelled and not normally ended. Normally clients
should use RequestManager.delete_request to free server resources as soon as possible.

A.2.10.1.3 SUSPENDED state

The SubmitStandingQueryRequest and SubmitQueryOrderRequest have methods pause and
resume to make the request go in and out of the SUSPENDED state. Other requests do not have
such methods. Still [GIAS351] Appendix G indicates the SUSPENDED state for other requests.
Requests other than SubmitStandingQueryRequest and SubmitQueryOrderRequest are not
required to implement the SUSPENDED state.

Advanced servers may put a request in a SUSPENDED state, e.g. when the request is inactive and
the server wants to temporarily swap it to disk to free memory.

A.2.10.2 Callback

A.2.10.2.1 SubmitQueryRequest callback and state interpretation

When using callbacks with a SubmitQueryRequest, the client expects the server to start
processing the request and notifying the client when finished (or in the case of the
RESULTS_AVAILABLE state when it has enough results to allow the client to call the
complete_XXX_results method without blocking). The server should not wait for a call to
SubmitQueryRequest.complete before starting to process the request.

If the client has not called the set_number_of_hits method, the server must choose some number
of hits to be able to go in the RESULTS_AVAILABLE state. Some implementations will never

 A-33

hit the RESULTS_AVAILABLE state, because their initial number of hits is very high. Those
implementations will immediately go to the COMPLETED state. The state diagram for
SubmitQueryRequest in [GIAS351] allows such a state change from start to IN_PROGRESS to
COMPLETED without ever hitting RESULTS_AVAILABLE.

A more common situation could be where the number of results is less than the number of hits per
invocation of complete_XXX_results. Before getting enough results to trigger
RESULTS_AVAILABLE all results have been computed, and the request goes to the
COMPLETED state.

A.2.10.2.2 Callbacks are optional

For callbacks, it bears mentioning that both clients and servers that are supporting callbacks
should consider failure recovery mechanisms. Both systems need to be able to gracefully handle
all conditions that could reasonably occur regarding system availability.

Since callbacks are optional, clients should also be able to fall back to synchronous retrieval of
results, in case a server is not supporting callbacks.

A.2.10.2.3 Preventing deadlocks when implementing callbacks

Implementations have found that attention should be given to the synchronous nature of CORBA
calls. For example, consider the following pieces of (pseudo) code:

Client1.java: (client side)

Client1CallbackImpl.java: (client side)

callback = new Client1CallbackImpl();
org.omg.CORBA.Object ref = activate_object(callback);
synchronized(callback) {
 // Attempt to make sure the callbackId is set in our
callback
 // before the server calls it. This may cause a deadlock.
 String callbackId =
request.register_callback(CallbackHelper.narrow(ref));
 callback.setCallbackId(callbackId);}

public synchronized void setCallbackId(String
aCallbackId)
{
 callbackId = aCallbackId;
}
public synchronized void _notify(UCO.State theState,
 UCO.RequestDescription description)
{
 log("Called callbackid " + callbackId + " ...");
 ...
}

 A-34

SomeRequestImpl.java: (server side)

Here the client tries to make sure the logging in the callback _notify method will print a valid
callbackId. But the server, on registration of the callback immediately calls back the notify
method (synchronously). Since the client is holding a flag on the callback object, the server call
has to wait until the client releases the flag, but the client is waiting for the server to return from
the register_callback. In other words this is a deadlock situation.

public String register_callback (Callback acallback)
throws InvalidInputParameter, ProcessingFault, SystemFault
{
 ...
 if (alreadyCompleted) {
 acallback._notify(getState(), getDescription());
 }
 ...
}

 A-35

Below is another example, this time deadlocking the server.

Client2.java

SumbitQueryRequestImpl.java: (server side)

While registering the callback, the client is called back by the server already, and immediately
tries to get the results. But since the server is holding the flag within the register_callback
method, the complete_DAG_results method is waiting for the release of the flag, which will

private SubmitQueryRequest queryRequest = null;

public void run()
{
 queryRequest = catalogMgr.submit_query(....);
 callback = new CallbackImpl();
 org.omg.CORBA.Object ref = activate_object(callback);
 queryRequest.register_callback(CallbackHelper.narrow(ref));
}
 ...
private class CallbackImpl
{
 public synchronized void _notify(UCO.State theState,
 UCO.RequestDescription description)
 {
 ...
 if (theState == UCO.State.COMPLETED) {
 ...
 queryRequest.complete_DAG_results(...);
 }
 }
 ...
}

public synchronized String register_callback (Callback acallback)
throws InvalidInputParameter, ProcessingFault, SystemFault
{
 ...
 if (alreadyCompleted) {
 acallback._notify(getState(), getDescription());
 }
 ...
}
// Synchronized to prevent multiple concurrent calls
public synchronized complete_DAG_results(....)
{
 ...
}

 A-36

never happen, i.e. a deadlock.

Solution:

1. Implementers of NSILI clients must be aware of this, and try not to synchronize
callback code.

2. Implementers of NSILI servers must either make the callback asynchronous or use a
separate thread to do the callback, thus not blocking the register_callback method.

In Java the callback can be done asynchronously using code like:

The disadvantage of asynchronous calls is that there is no way to get exceptions back. Opening
the port seems to still be synchronous, so you will get an exception if the client cannot be
reached. For example, with a firewall between a client and server that didn't allow the connection
to be made back from the server to the client, the server will hang for some time in the
send_oneway method until the attempt times out. CORBA debugging showed that it was trying to
open the port on the client.

org.omg.CORBA.Request request = cb._request("notify");
Any stateAny = request.add_in_arg();
StateHelper.insert(stateAny, getState());
Any requestDescriptionAny = request.add_in_arg();
RequestDescriptionHelper.insert(requestDescriptionAny,
getDescription());
request.send_oneway();

 B-1

ANNEX B: NATO ISR Dissemination Architecture

B.1. Overview

The NSILI is a key element in the NIIA, which in turn supports the NATO ISR dissemination
Architecture. By adhering to the NSILI guidelines, participating Nations create an effective
dissemination network that allows them to both populate and access each other’s libraries. The
end result of this effort is the creation of a robust environment that enables seamless and effective
data exchanges that optimize warfighting capability. However, before the NSILI, or the network
itself can be fully effective, issues such as security and releasability must be addressed.

B.2. Security
STANAG 4559 assumes that security issues are handled “outside” of the API, as described in the
STANAG Aim section:
“The overall goal is for the users, who may be intelligence analysts, imagery analysts,
cartographers, mission planners, simulations and operational users from NATO countries, to have
timely access to distributed ISR information if Host Nation operational restrictions and security
policies permit this access”.

This view is reinforced in the ANNEX B; Key Assumption d: “The NSIL interface assumes that
servers and clients are installed on System High networks with network and workstation protections
appropriate to the classification level of the network. It is assumed that all information loaded into
an NSIL library is authorized for access by all users authorized for the network. Neither NSIL
libraries nor clients add additional protections beyond that provided by the network and workstation
security protections of the operational network”.

Note: Some implementers use organic applications that test the releasability markings for consistency
and if an inconsistency is noted the data is not ingested. Future test cases should be designed to test
for this capability.

GIAS, which STANAG 4559 is based on, supports usage of an AccessCriteria object which could be
passed when getting a manager e.g. the CatalogMgr. In STANAG 4559 it was chosen to not use the
AccessCriteria. To allow security policies within the STANAG 4559 API, one could employ the
GIAS AccessCriteria mechanism. Introduction of AccessCriteria into a future version of the
STANAG will affect server and client implementations, but it is assumed that this can be done with
relatively few changes.

Employing the AccessCriteria mechanism is not the only option for implementing security policies
with STANAG 4559. Another option would be to build security mechanisms around (or on top of)
libraries using the STANAG 4559 interface. Two such mechanisms are discussed in the following
subsection:

1) Community of Interest (COI) released information

2) Security adaptor layer

B.2.1. Community of Interest Released Information

 B-2

One approach for looking at security is to look at the “space” of information sharing. STANAG 4559
has traditionally focused on one all-inclusive “information sharing space”. In reality, information
sharing architectures could often be configured as multiple interconnected subsets of the whole
space. The subsets are so-called “Communities of Interest” (COI).

A “Community of Interest” (COI) is defined as a dynamic group, set up to perform or support a
mission, operation or activity. A COI may also be a stable group such as “HQx / J2 – Intel”, though it
may also be formed ad hoc for a specific mission.

A COI is a “space” where information is shared. As such it is homogeneous in terms of security; i.e.
all COI participants are in the same security domain. Each COI should have a designated CSD that
ensures it has the global metadata set for all products to be shared within the network.

It can be assumed that the different COIs will filter the information they expose/release to other COIs
exemplified by the BICES/LOCE network. Libraries using the STANAG 4559 interface could be
used as the information exchange mechanism between these COIs, as illustrated in Figure 1 below.

Figure 1 – COI’s and Libraries Using the STANAG 4559 Interface
Architectures as shown in the figure above will allow the different COIs to have one or more STANAG 4559
libraries within the COI where all clients will have access to all information. At the same time the
COI can dedicate one STANAG 4559 library as the “exchange” library were only information
approved for release outside the COI will be posted. When the information has been released to the
exchange library, the original STANAG assumption that all information loaded into the library is
available for access by all authorized users still applies.

The approach of using STANAG 4559 libraries to expose released information from COIs to the
coalition has been demonstrated in the Multi-sensor Aerospace-ground Joint ISR Interoperability
Coalition (MAJIIC) project Cross - Domain Enterprise All-Source User Repository (CENTAUR).
Similarly, Canada has employed a configuration where a CSD is designated as a Border CSD that
exposes released information to the external COI enabling the retrieval of products across the border
while disguising the product source location.

 B-3

B.2.2. Security adaptor layer
Another approach for working with Communities of Interest would be to move the “exchange
libraries” on the inside of the release filter. This is illustrated in Figure B-2 Information Exchange
Gateways and Libraries Using the STANAG 4559 Interface below.

Figure 2 – Information Exchange Gateways

Release filters often includes usage of firewalls, which typically will prevent an NSIL client on the
outside of the COI from communicating with an NSIL server on the inside using the CORBA-based
STANAG 4559 interface. The main reason for this obstacle is that CORBA requires more ports to be
opened than a strict firewall configuration will allow. One way to solve the problem of restrictions in
the “release filter” is to use a different communication protocol between the COIs (e.g. pure HTTP,
or a Web Service using SOAP, which needs only one port and is ASCII character based).

For clients residing within the same COI as the server, normal STANAG 4559 interfaces between
clients and servers will apply. The original STANAG assumption that all information loaded into the
library is available for access by all authorized users still applies as long as clients and servers are
within the same COI.

Instantiations of this notional architecture can take several forms. Depending on how advanced the
adaptor layer is designed, security features like authentication and integrity could be implemented
between the COIs. It would also be possible, based on authentication, to grant different clients
different levels of product access.

An example of one such architecture was demonstrated by NC3A at the Joint Warrior
Interoperability Demonstration (JWID) in 2004. In the JWID scenario, clients on the “blue” COI
were querying an NSIL server on the “red” COI by communication over HTTP through an “HTTP-
to-NSILI” adaptor residing on the inside of the red COI. Similarly clients on the red COI were

NSIL
Server

NSILI to
“Web Service”

Adaptor

“red COI”

“blue COI”

4559,
CORBA

HTTP,
SOAP

Information
Exchange
Gateway

(IEG)

HTTP,
SOAP

NSIL
Server

NSILI to
“Web Service”

Adaptor

NSIL
client

“r”
NSIL
client
“b”

NSIL
Server
NSIL
Server

NSILI to
“Web Service”

Adaptor

NSILI to
“Web Service”

Adaptor

“red COI”

“blue COI”

4559,
CORBA

HTTP,
SOAP

Information
Exchange
Gateway

(IEG)

HTTP,
SOAP

NSIL
Server
NSIL
Server

NSILI to
“Web Service”

Adaptor

NSILI to
“Web Service”

Adaptor

NSIL
client

“r”
NSIL
client
“b”

 B-4

communicating with the blue COI server.

The “release filter” employed at JWID was the so-called Information Exchange Gateway (IEG). The
IEG is a NATO developed concept to achieve a means to concentrate (point of presence) and secure
information exchange between NATO Bi-Strategic Commands Automated Information System (Bi-
SC AIS) Automated Information Systems and Command and Control systems that reside in external
domains.

� This security architecture, by tailoring the “adaptors”, should in theory be configurable to
support any security requirement.

� security architecture, by tailoring the “adaptors”, should in theory be configurable to
support any security requirement. cept to a in external COIs.

� security architecture, by tailoring the “adaptors”, should in theory be configurable to
support any security requirement.

B.3. STANAG 4559 and Web Services
The current trend in software development is to employ Web Services as part of system
architectures, and a question that needs to be answered is ‘how Web Services relates to STANAG
4559’. There are two radically different ways to look at Web Services and STANAG 4559:

1) Web Services can be employed as a complementary technology to the CORBA based
STANAG 4559. Special services could be implemented using Web Services technology
that could add value to STANAG 4559 based architectures:

a. It could add more advanced security capabilities using authentication and
integrity checks as described in section B.1.2 above.

b. It could potentially allow “new client implementations” simplified access to
information in STANAG 4559 libraries (assuming the Web Service adaptors
provide very basic functionality), and hence provide a potentially quicker path to
interoperability.

2) Web Services can be used to build a completely new and alternative architecture from
scratch for sharing ISR information, employing different querying mechanisms, ordering
mechanisms, etc. This would basically mean developing a new STANAG.

It is not within the scope of the AEDP to enter an analysis of pros and cons of Web Service based
architecture versus CORBA based architecture, nor if there are any benefits in choosing to re-
implement a library sharing mechanism using Web Services. Because of the number of legacy
systems that exist using the STANAG 4559 API, and because the STANAG 4559 API is a mature
and proven technology, this document will only look at Web Services as a technology for adding
value to STANAG 4559 architectures and not as a replacement technology. Future versions will
implement web services as appropriate.

B.3.1. Augmenting STANAG 4559 CORBA Based Libraries with Web
Services
Integrating Web Services with a STANAG 4559 client is the approach chosen by the
NATO/Coalition project Shared Tactical Ground Picture (STGP). In STGP, the content of a
STANAG 4559 based MAJIIC Coalition Shared Database (CSD) is exposed through Web
Services.

Providing Web Services interfaces to STANAG 4559 CORBA based libraries can be
implemented as adaptor layers directly on the STANAG 4559 server, or as adaptor layers on

 B-5

STANAG 4559 clients, as shown in Figure B-7 Augmenting STANAG 4559 Libraries with Web
Services below.

Figure 3 – Augmenting STANAG 4559 CORBA Based Libraries with Web Services

It is probably both simpler and cleaner to integrate the Web Service adaptors with the STANAG
4559 client software, than integrating directly with the server software.

B.4. Multiple Libraries and Bandwidth Management
There will be scenarios on inhomogeneous networks where available bandwidth will vary
between network nodes. Figure B-5 COI’s and STANAG 4559 Libraries of this Annex could be
seen as an example of such a network. In such networks clients in one network node might need
to access libraries residing on different network nodes. A consequence of such architectures is
that one particular product might travel multiple times between two nodes (e.g. two clients in
node A asks for the same image from an IPL in node B). This multiple transmission of the same
product between nodes is unnecessarily reducing the overall available bandwidth.

Solutions to solve the problem of duplicate transmissions over a wide area network are outside
the scope of STANAG 4559, but this AEDP will provide a short overview of potential
approaches.

There are at least three different approaches that could be chosen to address this problem. Each of
the three approaches assumes that there is at least one STANAG 4559 library per network node,
and each of the solutions assumes that the clients only connect to one server (a local server
residing on the same network node).

Alternative solutions:

1) Metadata only replication with product caching: All metadata is
replicated/synchronized between libraries on all nodes. After the first client on a node
pulls down a product, the product is cached within the network node. If a second client on
the same node requests the same product it is fetched from the local network cache.

Web
Service

y

STANAG
4559

Server

CORBA

WS IPL
Client

1

“traditional”
4559

clients

CORBA

“SQL”

DB

Web
Service

xSTANAG
4559
client WS IPL

Client
2

HTTP, SOAP

IPL STANAG 4559 to
WS adaptors

Web
Service

y

STANAG
4559

Server

CORBA

WS IPL
Client

1

“traditional”
4559

clients

“traditional”
4559

clients

CORBA

“SQL”

DB

Web
Service

xSTANAG
4559
client WS IPL

Client
2

HTTP, SOAP

IPL STANAG 4559 to
WS adaptors

 B-6

2) Full product replication: All products are replicated between all libraries on all
nodes. This means that clients will always find every product at their local library. A
penalty of this approach is that everything is replicated whether it is needed at a node or
not. This may lead to wasteful bandwidth usage.
3) Search broker with partial product caching: The search broker will transparently
perform queries on all libraries known to the broker on behalf of its client. After a client
has downloaded a product, it might be cached as long as the client uses direct access to
the product and is not using the OrderMgr.

Assuming that the typical scenario will have library contents that consist of products that are
mostly of a size that is significantly larger than the metadata needed to describe these products,
and; where clients frequently request products from servers residing in remote nodes, the
preferred solution is probably the first one - “metadata only with product caching”. Product
caching will have a better effect on saving bandwidth compared to the third solution with partial
product caching since it will also allow caching of products ordered through the OrderMgr. If the
assumption that frequent requests to servers in remote nodes is not correct, the third solution
might be an equally good solution.

The second solution is not a viable alternative if there are any large-sized products in the libraries,
which there typically will be given that images and video clips are normally large-sized files.

One consequence of employing the metadata replication solution is that the server software must
be extended such that the OrderMgr can function as a proxy to the remote library OrderMgr in
cases when the product resides with a remote library. In addition to this extension, a mechanism
for ingest of metadata from remote libraries must be implemented, and each product must be
universally and uniquely identifiable in the metadata. In other words, metadata must only be
received from the “source” library to prevent multiple metadata entries for the same product.

 C-1

ANNEX C: Test and Certification

C.1. NSILI Server Test Suite

The development of an NSILI Server Test Suite is an ongoing collaboration between NCIA,
MAJIIC and NSILI CST members. The purpose of the test suite is twofold. First, it provides
ability to validate STANAG 4559 compliance against the agreed baseline (currently STANAG
4559, Edition 3). Second, it serves to identify change requirements to ensure the STANAG
and/or AEDP-5 documentation remains up to date. In addition to testing, the test suite and its
resident tools can be used to support set-up and execution for exercises, demonstrations, and even
operational venues.

As stated above, the development of the Test Suite is ongoing. In its initial stages the test suite is
designed to support MAJIIC2 agreements that are not part of the STANAG 4559. Use of the Test
Suite without modification could result in an external (to MAJIIC2) server implementation being
considered (partially) "red" by the Test Suite even though it completely complies with
STANAG4559, Edition 3. Future development should address MAJIIC2 variances and be
integrated with development of the next edition of STANAG 4559 to ensure interoperability
between "MAJIIC2 CSDs" and "external CSDs".

Another consideration is the types of testing. CSD server testing could consist of two distinct
types of tests, CSD to CSD interoperability testing and “end-to-end” testing. End-to-end tests
have multiple steps such as 1) ingestion of an JISR product into the CSD, 2) alerting by CSD of
subscribing users, 3) synchronisation on metadata to other CSD servers, 4) searching on local and
remote CSD for products by users, 5) retrieval of product from a remote CSD to a local CSD
server and 6) retrieval of products from a local CSD server to a user application.

Determining a baseline is a core test requirement, because there will almost always be multiple
implementations of any STANAG Edition. To ensure a valid test of Standards conformance the
Custodian and the CST must first agree to the baseline, and more specifically, agree to a base line
data model. Until recently data models were incorporated into the STANAG documents;
however, under current procedures the STANAG will not include technical information. The
current documentation strategy for NSILI is to post NSILI data models either on the NMRR or on
the US Metadata Registry (MDR), whichever is accessible to NATO users at the time.
Implementers will be able to use the data models as they choose. The source of the data models
may be from experimentation activities, such as those conducted by NCIA, or from models
developed within an operational environment. Currently there are sample data models that may
be viewed once access is approved by navigating to the NMRR site: https://nmrr.nc3a.nato.int
and using the following sequence:

� After login, in the menu, click “Browse > Documents”.
� Then, under “By Namespace” click on “NATO interim > NIIA > STANAG 4559”. (A

small note: please, wait until the page is fully loaded before clicking any of the links,
otherwise the next page will display incorrectly).

� In the main window, you’ll see the list of registered documents. Click the one you would
like to review.

� At the bottom you’ll see the document’s registration details, including a link to view and
download the artifact respectively (i.e. “View artifact” and “Download artifact”).

� Before you can view/download you may be asked to renew your log in information.

https://nmrr.nc3a.nato.int/

 C-2

C.2. Test Venues:

The STANAG 4559 Custodian seeks venues for testing that will enable those Nations with
STANAG 4559 compliant library systems to investigate their respective levels of interoperability
within Coalition networks. Past venues have included Trials (Unified Vision), lab tests and
demonstrations (Empire/Enterprise Challenge for example).

C.3. Test Preconditions:

The current version of the NSILI Server Test Suite requires data to be present in the server being
tested otherwise a number of tests will fail while others will fail to fully test the server in a
meaningful way. Certain tests may also fail if the data is in the wrong format, notably the
testGet_related_files test case would fail if there is no data containing related THUMBNAIL
files. This can be resolved by ensuring a standard data-set is loaded into the Server before the test
suite is run. The exact makeup of a data-set needed to fully exercise the Test Suite is outside of
the remit of this document but the following provides some guidelines:

The dataset should conform to the following rules

� It should contain known quantities of products of a variety of all data types supported by
the STANAG

� It should contain a known number of products within a specified geographic bounds
� It should contain a known number of products with associated related files and their types

If the STANAG Test Suite specification is updated to define such a data set then the Test Suite
could be updated to provide more checking of return types. For example given, an assumption
about the dataset contents, the ProductManager.get_related_file_types() method could be checked
to ensure that the correct range of types for a given product type are supported.

The Test Suite specification should not attempt to define the exact contents of a data set; instead it
should merely define a set of rules that ensures the Test Suite can properly check that the Server
being tested conforms to the STANAG.

C.4. STANAG Compliance:

Compliance to the ISR Standardization Agreements and the NIIA are not rigidly qualified for all
of the STANAGs, although initiatives are under consideration that will establish test and
certification laboratories or test suites for each. The NIIA provides a foundation and means to
collect, store and exchange data and adheres to accomplishing the levels of interoperability. For
these reasons the Joint ISR Capability Group leads or participates in trial, exercise and
experiment events that help implementers determine their levels of interoperability and
development program to accomplish the desired exchange capability.

NATO interoperability publications define four levels of interoperability. Those levels of
interoperability are:

Degree 1 (Unstructured Data Exchange): Involves the exchange of human-interpretable

 C-3

unstructured data such as the free text found in operational estimates, analysis and
papers.

Degree 2 (Structured Data Exchange): Involves the exchange of human-interpretable
structured data intended for manual and/or automated handling, but requires manual
compilation, receipt and/or message dispatch.

Degree 3 (Seamless Sharing of Data): Involves the automated sharing of data amongst systems
based on a common exchange model.

Degree 4 (Seamless Sharing of Information): An extension of degree 3 to the universal
interpretation of information through data processing based on co-operating
applications.

 D-1

ANNEX D: Configuration Management

CONFIGURATION MANAGEMENT
FOR THE

STANAG 4559
NATO STANDARD ISR LIBRARY INTERFACE

D.1. Purpose

The purpose of this Annex is to provide the framework for the management of STANAG 4559
and all associated documents. If the guidance discussed below conflicts with guidance contained
in the AAP-3 version that is current at the time, the AAP-3 guidance will take precedence.

Documents related to Configuration Management:

STANAG 4559

� Allied Engineering Document Publication – 5, NATO Standard ISR Library

Interface Implementation Guidence (AEDP-5).
� NSILI Server Test Suite Specification Documentation. A new set of Coalition

Shared Data (CSD) system test tools is in development by the MAJIIC2
Program, which is supported by NCIA.These test tools require maturation on a
continuous basis with support from the MAJIIC2 Nations and other participating
NATO Nations. The test tools currently reside on NCIA’s Collaborative
Development Test Evaluation (CDTE) network, which requires implementers to
coordinate with NCIA for access. Other access paths are being considered, but
are not available at this writing.

Other Referenced Documents

� NATO AEDP-2, NATO Intelligence Integration Architecture (NIIA).
� AAP-3 Procedures for the Development, Preparation, Production, and the

Updating of NATO Standardization Agreements (STANAGs) and Allied
Publications (APs)

� AC/224(JCGISR)D(2008)0003; Terms of Reference (TOR) for the NATO
NAFAG Joint Capability Group on Intelligence, Surveillance, and
Reconnaissance (JCGISR) and the All-Source Intelligence integration Sub-
Group (ASIISG)

D.2. Scope

This annex provides the framework for configuration management of STANAG 4559 and all
associated documents. Participating NATO member nations define their respective levels of
participation and all NATO member nations have equal opportunity to have their respective
positions voiced in the STANAG 4559 community. Decisions made within this framework
are subject to final approval of NATO Air Forces Armament Group (NAFAG) Joint
Capabilities Group on ISR (JCGISR,) in order to ensure the proper placement of STANAG

 D-2

4559 within the overall NATO Imagery Interoperability Architecture (NIIA). The
configuration management structure outlined in this document is compatible with the NATO
guidelines defined in AAP-3, Procedures for the Development, Preparation, Production, and
the Updating of NATO Standardization Agreements (STANAGs) and Allied Publications
(APs).

D.3. STANAG Management Organization

The STANAG 4559 is managed by an organizational structure that includes the Joint Capability
Group for ISR (JCGISR) as the Functional Manager of the STANAG. Technical application of
the STANAG within the NIIA is managed by the All Source Intelligence Integration Sub-
Working Group (ASIISG), which nominates the Custodian who after appointment by the
JCGISR, will maintain and coordinate the technical content of the document. The JCGISR also
supports the Custodian Support Team by supplying National representatives and technical
experts.

The NAFAG JCGISR will:

� Appoint a custodian for STANAG 4559
� Resolve conflicts between Nations on the disposition of proposed changes to STANAG

4559 when conflicts cannot be jointly resolved by the Custodian and the National Points
of Contact (POCs); prepare a Decision Sheet; and provide notification to the Custodian.

� Assess all proposed amendments or new editions of STANAG 4559 to determine the
impact of included changes on other STANAGs for which JCGISR is responsible.

� Approve amendments or new editions to STANAG 4559 prior to forwarding them to the
nations for ratification or to the Chairman, NATO Standards Agency (NSA) for
promulgation.

The NAFAG JCGISR/All-Source Intelligence Integration Sub- Group (ASIISG) will:

� Nominate a Custodian for STANAG 4559 for appointment by the JCGISR.
� Resolve technical conflicts in implementations of STANAG 4559 and its relation to the

NIIA.
� Provide technical guidance to the Custodian based on the interests of the national POC’s

and the NIIA.
� Provide a forum for technical exchange of information relating to implementations of the

NIIA and interoperability of the STANAG for which the JCGISR is responsible.
� Provide recommendations to the JCGISR based on the best policies for the NIIA as

agreed by the ASIISG.
� Organize and conduct validation trials and experiments that validate the implementation

and interoperability of the STANAG’s for which the JCGISR is responsible e.g. the
NIIA.

The STANAG Custodian: The STANAG 4559 custodian is responsible to the JCGISR for all
STANAG 4559 activity. The Custodian is the only individual to receive tasking from and report
to the ASIISG for the JCGISR on STANAG 4559. This authority can be delegated to other
members of the STANAG 4559 community, but responsibility for the tasking and reporting
resides with the Custodian. Specific duties include, but are not limited to:

� Maintaining a list of the National POCs and provides the list to the JCGISR Secretary for

 D-3

publication on the NAFAG internet web site.
� Maintaining a list of POCs in organizations /agencies responsible for implementing

STANAG 4559 in national systems.
� Receiving proposed changes to STANAG 4559 from National POCs.
� Tracking proposed changes and maintains current status of each proposed change until

final disposition.
� Reviewing proposed changes to determine if the proposed changes are substantive or

editorial
� Determining if the circumstances of a proposed substantive change dictate the use of

“Fast Track” processing as described in “Proposal for the “Fast Track” Processing of the
Interoperability STANAGs.”

� Determining the disposition of proposed editorial changes.
� Forwarding a copy of each substantive proposed change to national POCs (and

implementation POCs when appropriate) for review and recommendations.
� Calling for and presiding over meetings of national POCs when required.
� Coordinating with the Custodians of other STANAGs sponsored by JCGISR.
� Providing STANAG amendments or new editions to JCGISR for approval through the

ASIISG.
� Reporting to the JCGISR/ASIISG on status of STANAG 4559 and proposed changes.
� Coordinating with the custodians of the USIGS Geospatial and Imagery Access Services

Specification (GIAS) and USIGS Common Object Specification (UCOS) referenced in
STANAG 4559 to assure that changes to those documents are reviewed for applicability
to STANAG 4559 and communicate JCGISR/ASIISG concerns to those custodians.

� Coordinating with liaison organizations that utilize and are impacted by, or identify
modifications to STANAG 4559, e.g. Multi-sensor Airborne/ground Joint ISR
Interoperability Coalition (MAJIIC) and the Digital Geospatial Information Working
Group (DGIWG).

The STANAG 4559 POC:

Each NATO member nation’s JCGISR Representative can appoint a National POC for STANAG
4559 by providing the name, organization, address, telephone and telefax numbers, and electronic
mail address of their 4559 POC to the STANAG 4559 Custodian. The National POC for
STANAG 4559 can be from government or industry as chosen by the JCGISR representative.
The national POC for STANAG 4559 is the official spokesman for all participants from that
nation. The authority of the national POC can be delegated to another individual from that nation
if the POC is temporarily unable to function. The delegation shall be in writing to the Custodian.
The substitute shall have all authority and responsibility of the regular national POC. Specific
duties of the National POCs include, but are not limited to:

� Review and evaluate proposed changes to STANAG 4559 or supporting documents
submitted by interested parties within their respective nations.

� Forward proposed changes and recommendations for “Fast Track” processing to the
Custodian for action.

� Establish procedures for developing their respective national position on proposed
changes to STANAG 4559. These procedures can use whatever process is appropriate to
that nation, but ultimately the national representative will voice the official national
position to the 4559 Custodian.

� When required, determine if implementing organizations/agencies within their respective
Nations will participate in “Fast Track” processing of substantive changes to STANAG
4559, and will identify implementation POCs to the Custodian.

 D-4

� Distribute proposed changes received from the custodian to interested persons or
organizations within their nation and report their Nation’s position on proposed changes
to the Custodian.

� Represent their Nation at meetings of the National POCs when such meetings are called
by the Custodian.

NATO JCGISR/ASIISG Secretary: The JCGISR Secretary is responsible for maintaining the
JCGISR content on the NATO web pages on which STANAG 4559 is posted and other NAFAG
controlled websites. The JCGISR Secretary supports STANAG 4559 configuration management
by:

� Posting approved revisions of STANAG 4559 to the internet pages within 45 days of the
JCGISR/ASIISG meeting, unless other arrangements are agreed during the meeting.

� Maintain a list of the national POCs for STANAG 4559 on the web page.
� Distribute amendments or new editions containing substantive changes to the Nations for

ratification in accordance with AAP-3.
� Submit ratified amendments or new editions of the STANAG or amendments or new

editions containing only editorial changes to the Chairman NSA for promulgation.

D.4. Change Management

Note: The management process for NATO documentation is undergoing change and some of the
processes described below may change in the future; however, this AEDP will be processed using
the below procedures. For current change management procedures that will apply to new
documentation, refer to the most current version of the AAP-03. Also, refer to Revision updates
to AAP-32 as appropriate.

Two processes are employed for management of changes to existing STANAGs such as
STANAG 4559. Both processes are illustrated in Figure 4. The first process deals with urgent
changes, which follow a faster process using simultaneous reviews at different coordination
levels; the process is illustrated in the left column of Figure 4. The second process deals with
routine changes, which are processed as illustrated in the right column of Figure 4.

Any interested individual or organization may submit a request to change the content or structure
of STANAG 4559 at any time. Individuals or organizations from nations that have identified a
National POC for STANAG 4559 will submit proposed changes to their National POC.
Individuals or organizations from NATO nations that have not identified a National POC for
STANAG 4559 will submit proposed changes to their nation’s JCGISR representative.

� National POCs will evaluate proposed changes. If the National POC endorses the
proposed change, the National POC forwards the proposed change to the Custodian using
the form illustrated in Figure 5 of this document. If the National POC does not endorse
the proposed change, the National POC returns the proposed change to the originator.

� Change requests shall contain the information reflected in Appendix A and may be
submitted to the Custodian via mail, electronic mail, or telefax. Changes submitted as a
result of ambiguities or problems discovered during implementation of STANAG 4559
must provide a proposed solution to the problem encountered and an assessment of the
urgency and impact to other implementations.

 D-5

� The Custodian logs the change into the configuration management system, acknowledges

receipt of the change, and reviews the proposed change to determine if the change is
substantive or editorial.

� If the proposed change is editorial, the Custodian will determine the appropriate

disposition of the change without input from the national POCs. Approved changes will
be incorporated into the next forthcoming amendment or edition of STANAG 4559.

� If the proposed change is substantive, the custodian disseminates the proposed change

simultaneously to the national POCs, implementation POCs, and to the Custodians of
associated STANAGs for their review and comment. When the Custodian disseminates a
change in this manner the Custodian will establish a suspense date for replies from the
POCs. POCs who do not submit replies by the suspense date will be deemed to
agree to the proposed change.

� If there is no disagreement on the proposed change, the custodian notifies the POCs that

the change will be adopted and incorporates the change into the ratification draft of the
next amendment or new edition of the STANAG. The change will be documented on the
Errata Sheet and the Errata Sheet will be posted on the internet with the promulgated
STANAG for the duration of the ratification process for the new amendment or edition.

� Normal procedures: If the custodian determines that there is no need to expedite

processing of a particular change proposal, the custodian will compile proposed changes
on an Errata Sheet, which will be updated and reposted on the internet with the
promulgated edition of the STANAG. The Errata Sheet will continue to be updated and
reposted with new changes until the Custodian and POC’s support submission of an
amendment or new edition of the STANAG. Compiled changes will be documented and
decisions recorded using the Change Matrix shown In Figure 6 of this Annex. National
POCs will be notified of an updated Errata Sheet through STANAG 4559 Custodial
Support Team meetings and through status reports to the ASIISG.

� National POCs disseminate proposed change(s) to interested individuals or organizations

within their respective nations. National POCs and other interested parties within their
nations assess the impact of the proposed changes and develop a national position on
each change using procedures established by the National POC. National POCs then
report their nation’s position to the Custodian.

� If there is no disagreement on the proposed change, the custodian incorporates the change

into a new version of the Errata Sheet and posts the Errata Sheet on the internet at the
same location as the promulgated STANAG. The change will then be incorporated into
the ratification draft of the next amendment or new edition of the STANAG.

� If National positions on a proposed change conflict, the Custodian will call a meeting of

the national POCs to discuss the proposed change and attempt to reach consensus.
Procedures for announcing and conducting meetings of the National POCs are described
in paragraph 5.

� When National POCs cannot reach agreement on a proposed change, the Custodian

forwards the proposed change, a memo for record outlining the various National

 D-6

positions on the change, and the Custodian’s recommendations to ASIISG where the
disposition of the change will be decided. ASIISG decisions will be documented via an
ASIISG Decision Sheet. The ASIISG will report its recommendations to the JCGISR for
coordination purposes; it is expected that recommendations made by the ASIISG will be
endorsed by the JCGISR.

� The Custodian will forward all proposed amendments or new editions of the STANAG to

the ASIISG for endorsement. The ASIISG will recommend the proposed amendments or
new editions to the JCGISR for ratification.

� The JCGISR will approve amendments or new editions of the STANAG that contain only

editorial changes based on the endorsement of the ASIISG. These approvals will be
conducted in JCGISR plenary to expedite submission to the NSA Chairman for
promulgation.

� The ASIISG will approve amendments or new editions containing substantive changes

prior to recommendation to the JCGISR for ratification.

� The JCGISR will approve amendments or new editions containing substantive changes,

based on the endorsement of the ASIISG prior to distribution to the Nations for
ratification.

Figure 4 (next page) diagrams the change management process.

 D-7

Figure 4 – Change Management Process

Figure 5 (next page) is the Change Proposal Form.

Nations
agree? Dissent

Received?

No
Yes

Custodian calls meeting of
National POCs

POCS review/discuss changes
POCs agree POCs disagree

Yes

No

Originator submits change
proposal to National POC

National POC reviews change proposal

National POC forwards
proposed change to Custodian

National POC returns change
proposal to originator

POC concurs POC non-concurs

Yes
No

Custodian distributes urgent
changes to National POCs and

Participating Implementation POCs

POCs review change proposal

POC supports
change No reply necessary

POC forwards dissenting opinion to
Custodian

Custodian compiles & distributes to
National POCs

POCs develop nation’s position
on proposed change

POCs forward their Nation’s position
to Custodian

POCs distribute within Nation

No Yes

No

Yes

Custodian logs-in
proposed change

Custodian determines
disposition

Significant
change?

Urgent
 change?

Custodian incorporates agreed changes

JCGISR Secretary distributes to
Nations for ratification Nations ratify amendment or

new edition

Custodian submits to
ASIISG for resolution

ASIISG/JCGISR approval

Custodian distributes
change for action

 D-8

CHANGE PROPOSAL FORM
STANDARDIZATION DOCUMENT CHANGE PROPOSAL

INSTRUCTIONS
1. Change proposals may be submitted on this form through either mail or telefax, or by electronic mail following the

same order and content as this form.
2. Originator completes sections 1-16.
3. Originator forwards to the respective national representative. National representative is official representative to the

representatives to the NATO Joint Capability Group for ISR (JCGISR). (See the NATO Defense Investment
Division Web Portal https://diweb.hq.nato.int.)

4. National representative approves or rejects proposal from their nation by completing sections 17-25.
- Approved proposals are forwarded to the Custodian for STANAG 4559 NATO Standard ISR Library
Interface and Allied Engineering Documentation Publication-5.
- Rejected proposals are annotated with the reason for disapproval and returned to the originator.

Note: This form may be used to submit changes to any document related to STANAG 4559 and AEDP-5. This form may

not be used to request copies of these documents. The documents are available on the NATO Standardization
Agency catalog nsa.nato.int or through national mission distribution channels for NATO documents.

Figure 5 – Change Proposal Form

RECOMMENDED CHANGE: (continue on additional sheets as necessary) page 1 of 1
1. Document Number:

Choose an item.
2. Document Version/Release Number:

Choose an item.

3. Document Date:

Choose an item.

4. Document Title: Choose an item.

5. Proposed Change to: (Section, Paragraph, Line, Page)

6. Change Class: I II

7. Current Wording:

See attached.

8. Proposed Wording:

9. Reason/Rationale:

10. Originator’s Name:

13. Originator’s Telephone Number:

11. Originator’s Organization:

14. Originator’s Telefax Number:

12. Originator’s Mailing Address:

15. Originator’s Email Address:

16. Date Submitted:

17. Nat’l Rep Name:

20. Nat’l Rep Telephone Number:
+

18. Nat’l Rep Organization:

21. Nat’l Rep Telefax Number:

19. Nat’l Rep Mailing Address:

22. Nat’l Rep Email Address:

23. Date of Approval/Rejection:

24. Change Proposal: Approved Rejected
25. Rejection Rationale:

Submit proposals to:
STANAG 4559 Custodian,
NGA OCIOCE L-66,
3838 VOGEL ROAD,
ARNOLD MO 63010-6238 USA
Telefax+1 314 676 3015
Email: Laura.A.Moore@NGA.Mil

26. Date Logged by STANAG 4559 and AEDP-5 Custodian/initials:

X
Laura Moore
Custodian, STANAG 4559 and AEDP-5

mailto:Laura.A.Moore@NGA.Mil

 D-9

The Consolidated Change Proposal report and log format is illustrated in figure 6 below:

SAMPLE CONSOLIDATED CHANGE PROPOSAL REPORT AND LOG
FORMAT

Proposed Changes to
NATO AEDP-5, Edition 2

 Date of Issue:XXXX _____

CR

Accept
or

Reject

Submitter Sub-
mission
Date or
Event

Change
Add

Delete

Type of
Change

Document
Location

Current Text Recommended
Text

Rationale Date
Complete

12-
01

 Mueller Feb 11 Delete S Pg. 8, Annex
A, Sec. 1.3,
Table A-X-
ORB

ORB Table Delete Table Not needed as
there is only 1
language
currently used in
developing new
systems

6 Feb 12

12-
02

 IOSB Jan 12 delete S Pg. 23,
Annex A,
Sec. 2.8.2.12

New model
does not
permit us of
spaces
between entity
names

Delete para 1 and 2
sub bullets under it
and renum next
para. Also added
explanatory note
about Oracle g11
(current ver.)

Updates to new
model rules

6 Feb 12

12-
03

 IOSB Jan 12 Delete S Pg. 28,
Annex A,
Sec. 2.8.4.1

Same as para
2.8.2.12 above.

Delete para 1 and 2
sub bullets under it
and renum next
para. Also added
explanatory note
about Oracle g11
(current ver.)

Updates to new
model rules

6 Feb 12

12-
04

 IOSB Jan 12 Delete
and add
new

S Apply to
whole
document

HTTPS
throughout

Change HTTPS to
HTTP(S)
throughout
document

Correctly
describes use of
either HTTP or
HTTPS

9 Jan 12

12-
05

 IOSB Jan 12 Delete S Pg.37,
Annex A,
Sec. 2.9.4.1

Para describes
CORE
attribute

Delete Para
beginning with
“CORE: request
all attributes….”

CORE is not a
supported
attribute in the
new model

12-
06

 Mueller Feb 11 Delete S Pg. 37,
Annex A,
Sec. 2.9.4.2

Includes
DARFI and
NSIL_CORE
in discussion
on ordering
related files

Delete ref to
DARFI change
NSIL_CORE to
NSIL_ALL_VIEW

Both terms are no
longer supported
in the STANAG

Jan 12

12-
07

 IOSB Jan 12 Delete
and add
new

S Pg. 37,
Annex A,
Sec. 2.9.4.2,
4th Sub Para.

Current
wording is
confusing and
may be
incorrect

Delete current 4th
Sub Para and
replace with, “, all
(related) file access
should be
performed by
accessing the
URLs that are
given in the
metadata.”

Simplifies the
related files
method.

Feb 12

Figure 6 – Consolidated Change Proposal Report and Log Format Example

D.5. Meeting Procedures

� All meetings will be announced with a minimum of 60 days notice.

 D-10

� All meetings will be conducted in English. Those nations requiring the materials in
different languages are responsible for translating the materials. Attendees to the
meetings should be proficient enough in English to contribute to the meeting in English.

� National POCs may invite other individuals from their nations to participate during the
meeting. These additional participants may be government or contractor personnel. The
intent of having additional personnel participate is to provide technical, operational, or
procedural expertise that may not be resident with the National POCs and to allow
participation by those who are developing systems using STANAG 4559.

� During the meeting, the custodian will direct discussion of each proposed change and will
attempt to resolve any areas of disagreement.

� If the National POCs are unable to resolve their disagreements the group will prepare a
memo for record outlining the proposed change and the various National positions. The
Custodian will provide this memo for record to ASIISG when referring the matter to
ASIISG for a decision.

� Every effort will be made to determine the disposition of all proposed changes during the
meeting. However, a decision may be deferred if the Custodian determines that
additional investigation/review is required. In such cases, the Custodian will assign
responsibility for additional study/review.

� Minutes of all meetings will be distributed within 14 days of the completion of the
meeting. The minutes will include a record to document approved and disapproved
changes, identify the status of all outstanding changes, and identify issues to be taken
forward to ASIISG.

 D-11

PAGE INTENTIONALLY LEFT BLANK

 E-1

ANNEX E: Data Models and Metadata

New data models will be required as NSILI implementations are adapted to the suite of
ISR data formats. The Metadata Harmonization TST will provide the attributes that are
required to describe a data type. As an implementation begins to provide for a particular
dataset, the model should be developed in coordination with the NSILI CST, the Custodian
of the dataset, the Metadata Harmonization TST, and finally the ASIISG. Data models will
provide an xml schema if appropriate. Upon approval by the NSILI CST and appropriate
development bodies, the Custodian will incorporate the model into the STANAG 4559
Errata Sheet where it will be posted with the STANAG on the NAFAG web pages. An
alternative plan under consideration is to post future data models separately on the web site
when it becomes available, and install a link/reference to the data model web location in
the Errata Sheet and/or document. Currently the web site: https://nc3a.nmrr.nato.int may
be reached once permissions have been obtained. To locate STANAG 4559 draft
documentation at the web site use the following steps:

� After login, in the menu, click “Browse > Documents”.
� Then, under “By Namespace” click on “NATO interim > NIIA > STANAG

4559”. (A small note: please, wait until the page is fully loaded before clicking
any of the links, otherwise the next page will display incorrectly).

� In the main window, you’ll see the list of registered documents. Click the one
you would like to review.

� At the bottom you’ll see the document’s registration details, including a link to
view and download the artifact respectively (i.e. “View artifact” and “Download
artifact”).

� Before you can view/download you may be asked to renew your log in
information.

https://nc3a.nmrr.nato.int/

 F-1

ANNEX F: Employment Guidance

F.1. Video and Streaming Data
The NSIL_STREAM entity is part of the minimum layer for 4559 Edition 3 and is a
metadata only entity, i.e. there are no physical products related to this entity stored within
the 4559 IPL. The NSIL_STREAM entity being a metadata only entity allows the source
provider to update the attributes, as necessary, to reflect the changing characteristic of the
stream. The NSIL_STREAM entity provides a 4559 client with sufficient information
for a client to discover and be able to acquire a product stream produced from an external
data source or to access a file server streaming a product file to the requesting client, as
for example a video clipping server streaming multiple video clips.

The NSIL_STREAM has been enumerated to deliver products formatted as STANAG
4609 (video), STANAG 4607 (GMTI), and STANAG 5516 (TDL) over IP networks. It
should be noted, for the current release of STANAG 4559, TDL is encoded with the
NATO AGS Capability Testbed (NACT) header, other TDL IP streams (JREAP) is not
currently supported in the NSIL_STREAM.standard enumeration. The NSIL_STREAM
metadata should provide sufficient information to provide the 4559 client the ability to
query and retrieve the stream. The metadata attribute information and time period for the
stream is the responsibility of the stream source provider. The NSIL_STREAM entity
information may be augmented by completing other entity attributes, as provided in the
STANAG, possible entities could include NSIL_Coverage, NSIL_PART/NSIL_VIDEO.

Clients should note that the NSIL_STREAM is an advertisement of available products
available as a network stream (UDP Broadcast, Multicast, etc) only. Access to any
NSIL_STREAM results by clients is dependent upon the system publishing the data and
the network having proper support for transmitting the content. Reasons clients cannot
access a given NSILI_STREAM entry are varied, but the most common include enclaves
not routing multicast, Network Address Translation (NAT) due to network devices and/or
cross domain devices requiring IP address mappings. Systems publishing
NSIL_STREAM entries need to work with the relevant network and systems personnel to
determine how the entry will be made available to possible clients.

F.2. Removing Data from a CSD
When an artifact in the library is no longer operationally required, it is usually marked as
"obsolete" by a client invoking the "delete()" operation on the UpdateMgr. This operation
does not cause the artifact to completely vanish from the library - instead the
"NSILCARD.status" field will change to "OBSOLETE". In addition, some library
implementations also make the product file and related files unavailable (removing URL

 F-2

from metadata, making the file inaccessible via an HTTP server). This additional
technique is optional and should not be relied upon.

Removing, in terms of the artifact completely vanishing from the library (both metadata
and files), is not supported via the STANAG4559 interface. Removing files/data must be
performed through an additional administrative interface that is not described by
STANAG 4559, either in terms of functionality or interface. When coordinating the
removal process, special attention needs to be given to the replication and
synchronization capability of the different library implementations, as a query based
replication mechanism is usually employed. Such a mechanism makes it impossible to
detect vanished artifacts in order to cascade the removal to other libraries.

When an artifact is operationally relevant, but is not required to be immediately available
online, an archiving process is usually performed (generally to save storage space for
large files). As for removal, it is not possible to perform the removal action using the
STANAG 4559 interface archiving process. Removal can only be done with additional
capabilities integrated into a library implementation. Also the rules on how archived
artifacts need to be stated in the metadata are not defined (though some fields exist that
could be used in such a process).

As the processes of archiving and removal are up to now not standardized, performing
such action requires previous coordination between all participants. This coordination
usually needs to take place prior to fielding as this coordination usually causes software
changes to be done for the various libraries.

F.3. United States Imagery and Geospatial Information Systems
(USIGS) Architecture Common Object Specification (UCOS) Interface
Definition Language (IDL)
To help developers incorporate the GIAS/UCOS IDL specification this appendix provides a high level
definitions and descriptions of the interfaces and structures. The reference details and IDL specifications
are maintained in the GIAS reference document and the accompanying UCOS Common Object
Specification. Both the GIAS and the UCOS documents can be found at:
http://www.nato.int/structur/AC/224/standard/4559/4559.htm

To ensure interoperability, all systems that must interoperate must make the same interpretations
concerning the specifications contained within the reference documents. The GIAS and UCOS reference
documents provide a general specification, and a profile specification for the intended area of use. They
are a critical supplement to these specifications and describes the specific interpretations, limits and
conventions to be used within an area of use. This STANAG is considered a profile of those specifications
and is specific to its use within the ISR arena.

All elements of the GIAS definition are contained in the GIAS module, which identifies and defines data
types, interfaces, operations, and exceptions. The interfaces defined in GIAS use the exception model
defined in USIGS Common Object Services (UCOS) Specification. That specification defines a general
purpose model which the GIAS specification extends by defining a set of error condition identifiers.

The GIAS interfaces are partitioned into four activity categories: library; request managers; request objects;
and callback/product objects. The general notion is that a GIAS client requires access to a Library, which

http://www.nato.int/structur/AC/224/standard/4559/4559.htm

 F-3

is accessible through the GIAS interfaces. The GIAS client interacts with the Library to select and request
access to a manager of a specific type. (“manager selection activity category”). Using the provided
Manager the client can submit requests for the Library to perform tasks (“request submittal activity
category”). Each request submittal returns a Request object. The GIAS client then uses the Request object
to monitor progress on the task and to retrieve the results. The Request object also provides a mechanism (a
Callback) to allow a client to be notified of the progress of the task. The GIAS client can also obtain
information (“ ancestor information activity category”) on a specific request or manager. This allows a
GIAS client to determine for any Request the Manager that is managing it, and for any Manager, determine
the Library(s) it services.

F.4. CSD Replication Mechanism
If the STANAG4559 only pertains to the interface to the client, the benefit of CSD servers being
able to provide data across the whole enterprise is lost. Metadata is replicated to achieve a
consistent state between the participating servers, in other words, the servers become
synchronized. If the mechanism by which the metadata and the files are replicated across the
servers is not described, then the individual vendors that use the CSD 4559 server interface will
develop their individual mechanisms, making synchronization problematic, if not impossible.
This is because each time the servers are connected together, it will be necessary for the vendors
to modify their source code result in order to be able to synchronize. Not addressing this issue
up front creates the potential for chaos to ensure when a CSD network is constructed in a
deployed environment.

There are cases where the STANAG4559 interface is used to provide a query interface for
sensors. If the idea is to make the data on the sensor available for a small subset of the enterprise
(e.g. the ground station), then many would agree that it is not necessary for them to provide a
replication mechanism for that instance. If, however, the idea is to make all the data available for
the whole enterprise, then even such sensor systems should be incorporated into a replication
infrastructure that could be set up for a read only capability where it would retrieve data from
other CSD servers.

	Glossary of Terms and Definitions
	Terms and Definitions
	Acronyms and Abbreviations

	FOREWORD
	1. Introduction
	2. Aim
	3. Background
	4. Goal
	5. Scope
	6. Reference Documents
	6.1 Technical References
	6.2 Policy and Planning Documents
	6.3 North Atlantic Treaty Organization Standardization Agreements (STANAGs) and Allied Engineering Documentation Publications (AEDPs)
	6.4 International Standards
	6.5 Federal Information Processing Publications
	6.6 NGA Specifications and Publications

	ANNEX A: Implementation Guidance
	A.1. The Development Environment
	A.1.1 Resources
	A.1.2 Use of GIAS and UCOS
	A.1.3 Object Request Brokers

	A.2. Login Process – Develop LibraryMgr
	A.2.1 Connecting to a Database
	A.2.2 NSILI Client/Server Connection
	A.2.3 Server Set-up and Generation of IOR-Files
	A.2.4 HTTP(S) servers and their configuration (to be addressed)
	A.2.5 Security issues for the Server (to be addressed)
	A.2.6 Download of IORs to NSILI clients
	A.2.7. Connecting to the NSILI server
	A.2.7.1 Connecting the Client
	A.2.7.2 Connections over the Internet
	A.2.7.3 Login Process

	A.2.8. Query Process – Develop CatalogMgr
	A.2.8.1 CatalogMgr - Client Side
	A.2.8.1.1 CatalogMgr Reference
	A.2.8.1.3 HitcountRequest
	A.2.8.1.4 HitcountRequest.complete()
	A.2.8.1.5 Searching Catalog with submit_query()
	A.2.8.1.6 SubmitQueryRequest
	A.2.8.1.7 Set_number_of_hits
	A.2.8.1.8 complete_DAG_results
	A.2.8.1.9 Complete_XML_results
	A.2.8.1.10 Building the BQS-Query
	A.2.8.1.11 Some Examples of the BQS-Query with NSIL_ALL_VIEW
	A.2.8.1.12 Converting Boolean Query Syntax (BQS) to Structured Query Language (SQL) Syntax

	A.2.8.2 CatalogMgr - Server Side
	A.2.8.2.1 hit_count() - Server side
	A.2.8.2.1.1 HitCountRequest
	If the Query reaches State.ABORTED or State.CANCELED......
	A.2.8.2.2 Submit_query() - Server side
	On server side the submit_query()-invocation has to create a SubmitQueryRequest, add it to the RequestManager and return it to the caller. SubmitQueryRequestImpl is the Implementation of the interface.
	A.2.8.2.3 SubmitqueryRequest
	A.2.8.2.4 Complete_XXX_results() (to be completed)
	A.2.8.2.5 Building the DAGList-Result

	A.2.8.3 Parsing the BQS-Query (refer to Annex F of STANAG 4559, Edition 3)
	A.2.8.4 Converting BQS-Query to Database –Query
	A.2.8.4.1 Converting BQS to SQL Syntax

	A.2.8.5 RequestManager

	A.2.9 Order Process – Develop Product/ OrderMgr
	A.2.9.1 Product retrieval
	A.2.9.1.1 Comparison of direct access versus ordering

	A.2.9.2 OrderMgr interface
	A.2.9.2.1 Image Chipping
	A.2.9.2.1.2 Overview related file
	A.2.9.2.1.3 Chipping multi-image products
	A.2.9.2.1.4 Side note on chipping multiple segments
	A.2.9.2.2. Sub-header fields in a chipped image
	A.2.9.2.3 Extended and user defined sub-headers in chipped images
	A.2.9.2.4 Naming of file(s) in the delivery package
	A.2.9.2.5 Reduced sized images

	A.2.9.3 OrderRequest interface
	A.2.9.3.1 OrderSize in request_details
	A.2.9.3.2 HTTP(S) Server for Order Manager

	A.2.9.4 ProductMgr
	A.2.9.4.1 GetParametersRequest
	A.2.9.4.2 GetRelatedFilesRequest

	A.2.9.5 AccessManager
	A.2.9.6 Order Attributes get_parameter_request

	A.2.10 Requests and Callbacks
	A.2.10.1 Requests
	A.2.10.1.1 Deleting a request
	A.2.10.1.2 Request.cancel versus RequestManager.delete_request
	A.2.10.1.3 SUSPENDED state

	A.2.10.2 Callback
	A.2.10.2.1 SubmitQueryRequest callback and state interpretation
	A.2.10.2.2 Callbacks are optional
	A.2.10.2.3 Preventing deadlocks when implementing callbacks

	Initialization of an Object Request Broker with appropriate arguments:
	Creation of a “child” POA for the top level Interface “Library” with appropriate policies by invoking the create_POA factory operation on a parent POA (here root POA):
	ANNEX B: NATO ISR Dissemination Architecture
	B.1. Overview
	B.2. Security
	B.2.1. Community of Interest Released Information
	B.2.2. Security adaptor layer

	B.3. STANAG 4559 and Web Services
	B.3.1. Augmenting STANAG 4559 CORBA Based Libraries with Web Services

	ANNEX C: Test and Certification
	C.1. NSILI Server Test Suite
	C.2. Test Venues:
	C.3. Test Preconditions:
	C.4. STANAG Compliance:
	ANNEX D: Configuration Management
	D.1. Purpose
	D.2. Scope
	D.3. STANAG Management Organization
	D.4. Change Management
	Any interested individual or organization may submit a request to change the content or structure of STANAG 4559 at any time. Individuals or organizations from nations that have identified a National POC for STANAG 4559 will submit proposed changes to...
	D.5. Meeting Procedures
	ANNEX E: Data Models and Metadata
	ANNEX F: Employment Guidance
	F.1. Video and Streaming Data
	F.2. Removing Data from a CSD
	F.3. United States Imagery and Geospatial Information Systems (USIGS) Architecture Common Object Specification (UCOS) Interface Definition Language (IDL)
	F.4. CSD Replication Mechanism

