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STABILITY REGIMES IN A ROTATING
QUADRUPOLE FOCUSING ACCELERATOR

I. INTRODUCTION

A number of recent high current accelerator configurations utilize strong focusing

fields. These fields, consisting of a stellarator field (or rotating quadrupole field) and an

axial guide field, increase considerably the energy mismatch tolerance of the device and

provide confining forces against the beam space charge forces." 2 Two such devices are

the modified betatron accelerator3 and the spiral line induction accelerator (SLIA). 4-

The recent addition of strong focusing to the modified betatron at the Naval Research

Laboratory has allowed that accelerator to successfully accelerate a 0.5 kA beam to 12

MeV for = 35,000 turns in a vacuum chamber with resistive walls.! The SLIA, to be

constructed by Pulse Sciences, Inc., will utilize the strong focusing for transport along the

curved sections of the beam line between the accelerating cavities.

The use of strong focusing fields has a potential difficulty in that they can lead to

various types of beam instabilities.,' 9 It has been suggested, for example, that the rotating

quadrupole field may act like a wiggler field as in the free electron laser.," Of interest in

this study, however, is the three-wave instability in which the externally imposed rotating

quadrupole field interacts with the transverse motion of the beam centroid to excite a

transverse-electric (TE) waveguide mode.9 Approximate stability conditions for such strong

focusing fields have recently been found."

The purpose of the present study is to obtain detailed analytical conditions for stabiliz-

ing the three-wave instability. Here we analyze the dynamics of electromagnetic waveguide

modes and the beam modes associattdr w, 'a a relativistic electron beam propqga4itig under

the influence of external strong focusing fields. The dispersion relation for such a system

is generated in Section II below. In Section III, we show that this dispersion relation, in

the limit of zero beam current, gives analytical conditions for the various stability regimes.

We find a) two physically distinct three-wave unstable regimes, b) two three-wave stable

regimes and c) a regime in which the particle orbits themselves are unstable, irrespec-

tive of the electromagnetic waves. The orbit unstable regime is a recovery of an earlier

result-' 2 In addition, we obtain algebraic expressions for the growth rates in each of the

three-wave unstable regimes. This is done with the simplified dispersion relation where

the right-hand (RH) and left-hand (LH) circularly polarized waves are decoupled in the

Mmimwpt rqWoved Omw 30, 1989.



low current regime. These are found to be in general agreement with the approximate

expressions given in Ref. 12. Numerical solutions of the dispersion relation are presented

in section IV. The analytic expressions of the growth rates and stability boundaries are in

good agreement with the numerical results of the dispersion relation.

II. MODEL

In our model the external fields consist of a periodic rotating quadrupole field and a

longitudinal magnetic field (see Fig. 1). The electron beam radius is assumed to be small

compared to the waveguide radius. In the equilibrium position, the beam is centered along

the axis of a circular waveguide and the beam electrons are assumed to be monoener-

getic with zero transverse velocity. Perturbing electromagnetic waveguide fields cause the

beam centroid to develop a transverse velocity and become displaced off the z-axis. This

displacement of the beam centroid amounts to a transverse macroscopic current which, tin-

der certain conditions, further excites the electromagnetic field. The displacement of the

beam centroid also induces image electric and magnetic fields on the wall of the waveguide.

The beam centroid motion, in our model, is governed by the following fields: i) rotating

quadrupole field, ii) longitudinal magnetic field, iii) electromagnetic fields, and iv) induced

image fields.

Wave eguation

Before developing the orbit equations for the beam centroid we first derive the wave

equation for the electromagnetic fields. The electromagnetic fields are represented by a

vector potential given by,

A = A+(z,y,z)e -iwt + A_(z,y, z)e - t + c.c., I)

where A+ and A- are complex amplitudes associated with the right-hand (RH) and left-

hand (LH) circularly polarized waves in a cylindrical waveguide. In Eq. (1), w is the radiani

frequency and c.c. denotes the complex conjugate.

The wave equation for A is given by

2 0 1 2 ) 4r
V2+o- 2 c ) A=- J, (2)
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where V2 is the transverse Laplacian, and J is the macroscopic transverse current asso-

ciated with the beam centroid. Substituting (1) into (2) and operating on the result with

(w/2r) jf/W dt exp(iwt), in order to select the correct frequency dependence, yields

L(A+ + A-)= 4 la e"w, (3)c- - 27r w

where L - 4- 0/,z 2 + W2/c 2 . To obtain the RH and LH polarized components of the

current, we equate the 6+ and i- components of both sides of (3), and find tile following

wave equation,

L(A+ + A-_). (2 6F) = -'" (J T ij,,)& (4)2ir/w(J . ie ) ' , ()

where 6± = (6 ± iZ,)/2 and , and i. denote unit vectors in the x- and y-directions.

The current density associated with the beam centroid motion is

J(z,y,z,t) - ejz , f 0) (&e, +r- t ) (

6(Z- Z (Zt))6(Y - yo(Zo,,t))6(z - .-(, t)),

where A, = n1 irr6, is the number of electrons per unit length, nrb is the beam density, rb

is the beam radius, x, and y, denote the transverse coordinates of the beam centroid,

zC denotes the axial position of a cross sectional slice of the beam and z, is the initial

position of the slice: zC(Zo, t = 0) = Zo. In the small-signal or linear regime xc and yc are

proportional to the electromagnetic fields and (5) can be written as

J, (z,y,z,t) - elAb(Z)6(y)

fc dz o, 4C( Z"'ot) =+ oeoy , 't) ,) (Z _ Z'(Z o '  (6)

where v0 is the axial beam velocity. Substituting (6) into (4), we obtain

=4ir 2i(y /w dt f00

L(A+ + A-) .(264:) = v(x)(y) 2 / dzo,
C fa 2rlw (7)

(txe(Zo, t) 1.9YC(zo, t)) _(z _ -

at Ot
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where v = (Ief/moc2 )s/Ao = I_[kA]/17 0, is Budker's parameter, 16 is the beam current

and 0. = vo/c. Upon carrying out the time integration in (7) we obtain,

47r

L(A+ + A.) .(26) =--v6(X)6(y)e(U/?V)z
c

fo 2 r v
.1W dz, . ()

J 27rvo/w 5i(xc 7: ' ,

where z,(z,,z) = xc(zo, t = (z - zo)/vo) and yc(zo, z) = yc(zo,t = (z - v,)/vo). Since

our model is spatially periodic with period w/21r, the limits on the z integral have been

changed to 0 to 21r/w.

Beam Centroid Orbit

The configuration of the rotating quadrupole and the axial magnetic fields are shown

in Fig. 1. The total external magnetic field, Be.t, consists of the rotating quadrupole field

and the uniform longitudinal field and is given by Bet = (Bqz, Bqy, B..) where

Bqz = - Bqkq (Z sin kqz - ycos kqz),

BqV = Bqkq(Xcoskqz + ysinkqz), (9a - c)

Bzo = Bo.

In Eqs. (9a-c), Bo is the axial magnetic field, Bq is the magnetic field of the quadrupole,

kq = 27r/A.q and Aq is the period of the quadrupole field. The representation for the

quadrupole field in Eqs. (9a,b) is valid near the z-axis, i.e., (z< + y,)/'. << )q/2,.

In addition to the electromagnetic fields given by (1) and external fields given by (9),

we have induced fields due to the displaced beam. These fields are produced by the image

charges and currents on the waveguide wall when the beam is displaced off the z-axis. For

a circular, perfectly conducting waveguide the induced electric and magnetic fields near

the z-axis are

2C
E =-2lel r= -2_) (10)

Bind -- 2a2 Xc Y(lbm +c uoV+ - +c+y), (lob)
lel r.
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where rg is the waveguide radius and we have assumed (x2 + y2)1/ 2 << r9 The motion

of the beam's centroid under the influence of the fields in Eqs. (1), (9) and (10) is in the

linear approximation governed by

dZx c dy c
d. + Qlo - vokq~lq(xc cos kqz + yc sin kqz) - vk, zc

le+ + -, A, (Ia)

d 2 yC. =- + Vo kq s(Y cos kqz - X, sink. z)- v2 k y
dt2  oq 0 Z

_ lei7rro a + V" a) Ay, (1ib)

where flo = JeJB 0/-fomoc is the relativistic cyclotron frequency associated with the axial

field, Qlq = ejBq/3"omoc is the relativistic cyclotron frequency associated with the rotating

quadrupole field, -yo = (1 - /32)- 1/2 is the relativistic mass factor, k, = (2v/(03.1,r 2 W)/.

z = z0 + Vot, and A., A. are the x and y components of the vector potential given in (1).

For the purpose here, we will approximate the exact expressions of (1) by the fields on

axis,

lei A.(x = 0, y = 0, z) = a±eik*: .,rr/oC
2

where k± are the axial wave numbers.

The orbit equations for the beam's centroid can be written in a more convenient form.

Setting = zc + tyc, Eqs. (11a,b) become

(0 2 _ iK o z  k2) _ Kqkqe ik . = F (12)

where K. = fl./v°, K. = ftq/vo, and

F =- [-i(k . - wl,v)a~.e-~/)~ e-

+i(k_ -w /vo)a-e i ( k - -W/VO)ziWZ/V" 13)

It is convenient at this point to introduce a transformation from the quantity to C

= e+ i z / 2 . (14)



Substituting (14) into (13) transforms the beam's controid equation into

[,92  a
5Z2 5iK,. + K2 -G(15

where K, = Ko - kq, K2 = (Ka - kq/ 2 )kq/ 2 
- k2, K2 = Kqkq and G = Fexp(-tkqz, 2).

Equation(15) can be written in the form

where

H 4 -+ iK a2 + KjJ G+K 2 G*ik, z]29 9(0
- t Z 2 -- + i(KI - kq)- + ((KI - kq/ 2 )kq/ 2 + K2) F (16b)

+ K2F*eik,,/ 2.

Substituting (13) into (16b) yields

H -- [----(K+ - kq/2)D . -
iKz - (K. + k,/2)K2a-_e - ' 

z e

o (K- k/2)D-ae iK - - (K+ + kq/2)K~a+e' +] ejW" I... (17)

where K± = ± - iv- kq/2 and D± = KI KK± - K2. The particular solutioi to

(16a) is
(cia~e[ • iK z- a'_e- t K * e- twV

= (a-a-eK- z + 13+ a+e r  ) e "
W ,?.

where
i

± = - -D±(k± - w v o )lR±,

3± = -K2a±/D±,

=(K 2 -(d 2 + d 2)) (K±2 -(d2 d2))

= K2 + K'12,

d2 = ((K2 + K2/2)2 - (K4 -K4))1
/ -

6



Subsituting Eqs. (18) together with (14) into Eq. (8), the right-hand side of the wave

equation becomes

_4r 2 r/ dt . , ,, ' = rv ,mo c  bxbye2 "

-c I 2ir/w 0(JC 2; L I lei

1(K _,_ k q/2 ) 3.O.2 ,te K ±  -k,/21 
9

+( K : :; kq 2 )/3=a:e' l K z=k J 2)Z1

Dispersion Relation

To obtain the dispersion relation the coupled differential equation must be solved.

subject to the boundary conditions on the waveguide. To this end, we assume that the

electron beam propagates within a perfectly conducting cylindrical waveguide of radius

rg. In general, the complex amplitude for the right- and left-hand circularly polarized TE

waves are written as,

( , = Zb(rm t, i(/rb±.). + J"+i(A,,r )e±, 2Gr
n, m

exp [(k,z ±-(n -1)0 - t)I. (20)

where J,. is the nth order Bessel function, b±,, are complex constants. g,,- are real

constants determined by the boundary conditions and n = 1,2, 3.... and m = 1, 3 ... are

waveguide mode indicies.

The boundary condition ;. such that the tangential component of the electric field

vanishes on the waveguide surface, r = r9. At r = r. we have E. 0O = 0, where E is

the total electric field and 6e = -iexp(-i9)Z+ + i exp(-i9)4i_ is the unit vector in the

azimuthal direction. Applying the boundary condition at r = rg, we find the condition

J,'(,,,rg) = 0, so that/ ,,rg equals the mth positive zero of J.

Since A is driven by an effective transverse line current, we expect TE,,, znode will

be excited. Substituting the TEI, mode representation into the left-hand side of Eq. f4 L,

we obtain two sets of coupled equations.

7



i
m - k2im - 2m) Jo(jsmr)b±im

C. jI [Al7 d

c mc 2  m2/i--- etwt (J' -iJV) 21

Operating on Eq. (21) by both f dO fo Jo(ptimr)rdr and

f2 dOe i2 fr' J 2 (Mimr)rdr and solving for b±,m, we find that

~ kr,, b e , 2 1 lei d,
-- 2 . -7 dO rdr jdti w t

C. C 'Im, mrc 2  2

[J.(IA~rnr)(J. 7- iJ,)l,=0 + J(Algr)( J g J),= e='261

(22)

where 1,, = f.'' [J;(MIr) + J2(,,,,r)] rdr = (tr 2 - (,4,nr.

The dispersion relation greatly simplifies when only one waveguide mode, say the

TE 1 , takes part in the interaction, i.e., n = 1, m = 1, a4- = b±1 1 . k± = k=ll.

Substituting (19) into the right-hand-side of (22), we obtain

[(~~2 2 ~ -~(k - D±] b4-11 e'31~
R C2 V, 231

-k.K.. (k ) k T- kq) b-=,le'k ' z

where k= 2L/-oll 2v- - /(o(,lr2 - 1)J'(Asllr,)). The RH and LH circularly po-

larized waves are simultaneously excited only when k, = k- - kq. Eliminating b~1 1 , the

dispersion relation coupling the RH and LH circularly polarized waves becomes

r k-2 -k k )2 - k2, (ki - t,,)2 D,
R - b R [ ]

W2/C( (k +/t'0 )2 _ (a~ 2k~/cok 2 - \l

~b3 2/O).2 2 2~ -(k2 k) 2  
__ 1 (24)

8



wherek = k+, k_ = k+k, K =k -w/vo + kq/ 2 , D, = K2 : K 1 K - K2 and

R = R= DD - K= K4 - (2K2 + K:)K 2 + K? - K. Equation (24) can be put into

the form

[D - ~ + q) [D _ k6( -1v - K4= 0, (23a)
UJ /2- k kq) 2 - IA2 2 2 22 c

and/or

R = 0. 25b

Equation (25a) agrees with the dispersion relation in Ref. 9 with the vertical field set

to zero. Equation(25b) is the dispersion relation of the hybrid cyclotron and quadrupole

modes with image fields in a waveguide in the absence of electromagnetic fields.

The dispersion relation possesses the following symmetry:

(k,kq,Bo) (k - kq, -kq, -B,).

Utilizing this symmetry condition, the discussions in Section III can also be applied to

rotating quadrupoles of the opposite helicity. The polarization of the waveguide mode

associated withe the wave number k that the three-wave is unstable is determined by the

polarization of the waveguide mode that intersects the unstable beam modes.

The modes taking part in the interaction can be conveniently classified by setting the

beam current equal to zero. The dispersion relation, for zero beam current, reduces to

[k" - W/c + 11] [(k + kq) 2 - w2 /c2 + A1

[(k- WIVo + kq/2)2 
-(d + dl)] [(k - w/, + k9/2)2 - (d2 - d')] =0, (26)

where

d1 -(A 0 (KA0  kq) +k2/2),
2

2 1 2 2)" 1/2

2- K - kq) 2 + 4K (AkO)" 2I

The first and second bracketed terms on the left-hand side of Eq. (26) represents the

LHI and R circularly polarized transverse electric waveguide modes, while the third and

fourth terms, R, are hybrid cyclotron and quadrupole modes.

9



A diagram of the dispersion relation in the zero beam current limit is shown in Fig.

2. The parameters for the plot are guide magnetic field B0 = -1 kG, k' = 0.5 CM-1,

quadrupole gradient Bqkq = 200 G/cm, f0 = 5 and drift-tube radius rg = 3 cm. The

curves are associated with the RH and LH polarized waveguide modes respectively. The

cut-off frequency of the waveguide TE 1I mode is u 11 c. The two straight solid (-) lines

correspond to the beam lines associated with the d' - d' expressions, and the two dashed

--- -) lines correspond to the beam lines associated with the d' + d' expression.

10



III. STABILITY REGIMES AND ANALYTICAL EXPRESSIONS FOR GROWT:H

RATES

The dispersion relation, Eq. (25a), contains i) a region of orbital instability (in the

absence of the electromagnetic waves), ii) regions of three-wave instability, and iii) regions

of stability. In this section, we will obtain the conditions delineating the various regimes

and find analytical expressions for the maximum growth rate in each of the three-wave

unstable regions. The stability diagrams are obtained in (kq, K) space for given values of

7o, rg and Bqkq in the limit of zero beam current.

Orbit Unstable Regime

The expression R = 0 is the dispersion relation for the particle dynamics in the pres-

ence of stellarator windings with an axial magnetic field. This expression is ill agreement.

with Eq. (10) of Ref. 2 in the limit of perfectly conducting walls. The electron beam in

this configuration can be unstable when (d' - d2) _< 0. The unstable values of K, are

Kc,i,2 2 Kq <_ Ko !_ Kc,it, + 2Kq, 27
2 2 (7

where K. = fl/tVo, £Zq = IeIBq/7ornc, K. = £2o/vo and f1 = eBo/yomoc. Equation (27)

is in agreement with the stability condition of Ref. 1 in the limit of straight cylindricl I

geometry and zero beam current. It is interesting to note that this condition is also in

agreement with the condition for beam envelope stability in the limit of zero space charge. 3

Three-Wave Unstable Regimes

The three-wave instability will occur when, for example, the RHCP waveguide mode

intersects, in the (w, k) plane, the appropriate beam mode given by

(k -w/vo + kq12) 2 - (d d)0, (2)

and (d2 - d 2) > 0. For kq > 0, the instability for the RHCP waveguide mode occurs for

w > 0. For K, < K,. ,2, the three-wave is unstable (Region I) when the RHCP waveguide

mode intersects the beam line w/vo = (k + kq/ 2 ) + /dT - dr. For K, > Kcrt, 3, the three-

wave is unstable (Region II) when the RHCP waveguide mode intersects the beami line

11



W/Vo = (k + kq/2) - V/-d .Identical three-wave instability growth rates occur for the

LHCP waveguide mode, for w/c with sign opposite to the unstable modes associated with

the RHCP waveguide mode.

Three-Wave Stable Regime for K. < K,,

Stability is achieved when the waveguide cut off frequency Atl1c is sufficiently large so

that intersection with either of the beam lines, defined by Eq. (28) cannot be achieved.

The condition in terms of the waveguide mode cutoff is

Sql#ii > kq + 2 (d 2-d 2)1/ 2  (29)

where

q= 30-

Based on Eq. (29), the region of

kq > qj/,j and K. < Kcit,2 (30)

is alway three-wave unstable. If the inequality in (29) can be satisfied, we can solve for

the explicit value of K. for the three-wave stable regime.

For k, < q/ lj and K. < Kcit,2 , condition for stability in terms of the variable Ao is

2f K,,(K,, - kq) + f 2 - 4 Kqkq < 0, 31)

where

f - ql~tl(kq - qM11/2). (32)

Defining

= k2(1 + 8Kf) - 2f. (1

we solve for K,, with kq < ql.ll, and find four situations:

i) for f > 0 and ( > 0, the stable range of K,, is given by

Kc.t1 kq _ 
/C"'-

= < K,, < Kcrit,2, .34a)
2 2

12



ii) for f < 0 and ( > 0, the stable values of Ko are

&, < Kit, =.smaller of 2  1 ,
2  (34b)

iii) for f > 0 and < 0, all values of

Ko < Kcit, (34c)

are unstable,

iv) for f < 0 and < 0, all values of

K. < K,,.it,2 (34d)

are stable.

Three-Wave Stable Regime for K,. > K .

The three-wave interaction is also stable when the RHCP waveguide mode intersects

only the top (the beam line with larger w for the same k) but not the bottom beam mode

assocated with Eq. (28), and Ko > Kc,.t,3. This occurs when

q, k, - 2(d d )" (35)

The three-wave interaction is stable for

kq < VAII and K > Kcrit,3. (36)

For kq > qA&I and K. > Kc,-t,3 , the values of Kt that are three-wave stable are

kq C'/2

K° > Kcit,4 = 2 +2 _ (37)

In this regime, one can show that f > 0 and C > 0. In the limit of small quadrupole

gradient, large -t. and K. > Kcit,3, the stability condition is approximately I

K. > k, - /Y1/. (38)

13



The various operating regimes are illustrated as functions of kq and Ko in Fig. 3, for

0= 5, rg = 3 cm and quadrupole gradient Bqkq = 200 G/cm. This plot assumes that

the quadrupole gradient is a constant, and (kq, K,o) are allowed to vary. The horizontal

separation of the boundaries for the orbital unstable region is 4 Kq. Since the stability

boundaries are obtained in the limit of zero beam current, the area of the actual stable

regions will shrink slightly as the value of the current is increased.

Analytical Expressions for the Growth Rates

In the three-wave unstable regimes, we can obtain analytical exp,'esions for the peak

growth rates. The dispersion relation (25a) for the coupled RH and LH polarized wave

can be rewritten as

(,2 - )(( - ,2) - - 2) - - ) = . (39)

where

kb .c [(-W - V- )D+ + (( - to(k + kq)) 2 - )D

W2 = x/i + i4c, W2 = V.(k + kq/2), W3 = v/(k + kq) 2 + 1 c, AW2 = v,(d2 + d .), and

2= v.2(d - d2). Based on the numerical results of the full dispersion relation in Eq.

(25a), instability occurs at the intersection of the RHCP waveguide mode and one of the

two modes of Eq. (28) for kq > 0 and w > 0. Defining w = wl + 6 w and , = = the

dispersion relation reduces to

(,02 _ W2)((W -w) 2 _ AW2 )((W - €) 2 --AW) = 0., (0

W2 I 2 2 (40)

where a = k VaC2 (w, - tvok) 2D+I ,=.A, , D+ =± 2 =

and the top and bottom signs in D+ refer to the three-wave unstable regions I and II

respectively. Equation (40) is the dispersion relation when the RHCP waveguide niode is

uncoupled to the LHCP waveguide mode.

The instability region I in Fig. 3 is the result of the waveguide mode intersecting the

upper mode (the beam line with larger w for the same k) given in Eq. (28). We will write

14



w = wl + 6w and wl = w2 + Aw2. We will assume Aw1 - Aw 2 >> bw. The dispersion

relation is given approximately by

= + -2A -2 (41)
C \cJc 2w1 (Aw2-w~

For simplicity, we will assume the temporal growth rate is much smaller than the separation

of the beam modes, i.e., 6w < < 2AW2. With this assumption, we obtain a simple expression

for the dispersion relation,

2/c 1 )(2(cf- 4 w AW 2 (Awl - Aw)" (42)

For values of K. in the unstable region I, i.e., K, < KIit,2, the values of o are positive,

and Eq. (42) gives the temporal growth rate.

When the RHCP waveguide mode intersects both modes given by Eq. (28) with

kq > 0, w > 0 and K, > K,,it,3, the instability occurs only at the intersection of the

RHCP wave mode and the lower beam mode. This gives the instability regime II in Fig.

3. We will define w, - w2 - Aw 2 . The dispersion relation becomes

_ _ Aw2 [w 2 /C 3  1 (43)
C2w, (Aw,2- aw2

Here again, we assume 2Aw2 >> 6w and the dispersion relation reduces to

(2 1/22)(4
" 4wAw, (Awl - A )"

For Kcit,3 <K& < kq, the quantity o is negative, and Eq. (44) gives the temporal growth

rate in region II of Fig. 3. The analytical expressions (42) and (44) show that the temporal

growth rate r = Im(6w) scales approximately as the square root of the beam current, i.e.,

r/c oc 1 /2



IV. NUMERICAL RESULTS

Tie full dispersion relation, Eq. (2.5a) is solved numerically to: i) obtain the grnwth

rates and group velocities, ii) verify the various operating regimes and the analytical expres-

sions for the temporal growth rates and iii) show the scaling of the growth rate with respect

to the various parameters. The numerical studies center around the parameters shown in

Table I. With the quadrupole wave number kq chosen to be 0.5 cm - 1 (Aq = 12.57 cm),

we may demonstrate each of the different operating regimes by varying the axial magnetic

field, B., except in one of the stable regimes, where we take kq = 0.1 cm - 1.

Figure 3 is a plot of the various operating regimes in the parameter space of kq as a

function of K, fory 0 = 5, Bqkq = 20 0 G/cm and r. = 3 cm as in Table 1.

Numerical Results from Full Dispersion Relation

The dispersion diagram with current 1b = 1 kA for the five different regimes are shown

in Fig. 4:

a) B. = -1.0 kG (K. = -0.24 cm - 1) and kq = 0.5 cm - 1 in the three-wave unstable

region I,

b) B 0 = 2.15 kG (K0 = 0.26 cm- ') and kq = 0.5 cm - ' in the orbit unstable regime,

c) B. = 3.5 lG (K. = 0.42 cr - 1) and kq = 0.5 cM- in the three-wave unstable region

II,

d) B, = 5.0 kG (K. = 0.60 cm - 1 ) and kq = 0.5 cm - ' in the three-wave stable regime,

e) B. = -5.0 kG (K. = -0.60 cm - ') and k. = 0.1 cm - ' in the three-wave stable

regime.

Plots of the temporal growth rate as a function of wave number k are given in Figs. 5-7

for each of the different regimes with current lb = 1 kA. Figure 5 plots the temporal growth

rates in region I, for B. = -1.0 kG (Ko = -0.12 cm-), B0 = 0, Bo- = 1.0 kG (K, =

0.12 cm-1), and B. = 1.3 kG (K0 = 0.156 cm-'). Only the growth rates associated

with Re(w) > 0 are plotted; these are associated with RHCP waves. The growth rates

associated with Re(w) < 0 are identical and are associated with LHCP waves. The growth

rate and the range of unstable values of k increase as Ko approaches the orbit unstable

value of Kcit,2 = 0.154 cm-i.
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Figure 6 shows temporal growth rates in the three-wave unstable region II, for B, =

2.95 kG (K, = 0.35 cm'), B_ - 3.0 kG (Ko = 0.36 cm- 1), B. = 3.25 kG (K, =

0.39 cm - 1) and B0 = 3.5 kG (Ko = 0.41 cm- 1 ). For some values of B,, the RHCP wave

intersects the beam line two times as indicated by temporal growth rates at two separate

regions of wave number k for a given axial magnetic field. The growth rate and the range of

unstable values of k increases as K0 approaches Kcit,3. The stability boundaries predict

that the three-wave instability is present for Kcrit,3 = 0.35 cm - 1 < Ko < Kcit,4 =

0.41 cm - 1 (2.95 kG < B, < 3.5 kG). Numerical results for Ib = 1 kA are in excellent

agreement with the theory.

Figure 7 plots the temporal growth rate versus k in the orbit unstable region for

BO = 2.15 kG (K0 = 0.26 cm-'). The region of instability covers both positive and

negative values of wave number k, even at regions where the beam lines are far from the

waveguide mode. Thus, the unstable growth rate is the result oi unstable beani orbits in

the stellarator and guide fields, irrespective of the electromagnetic waves.

As the beam current increases, the coupling of the RHCP and LHCP waves becomes

stronger and the actual stability boundaries deviate from the analytic expressions. Figures

8-10 are plots of temporal growth rate as a function of wave number k for 'b = 10 k-4.

Figure 8 plots the temporal growth rates in region 1, for Bo = -1.0 kG (Ko = -0.12 cm - 1 ),

B, = 0, B0, = 1.0 kG (K0 = 0.12 cm-'), and B, = 1.3 kG (K, = 0.156 cm-1).

Figure 9 plots temporal growth rates versus k in the three-wave unstable region II.

for B0 = 3.0 kG (KO = 0.36 cm-1), B0 = 3.25 kG (Ko = 0.39 cm-'), B0 = 3.5 kG (K, =

0.41 cm-1 ) and B0 = 3.85 kG (K = 0.45 cm-). The range of B, for the three-wave

unstable region II at zero beam current is 2.95 kG < B, < 3.5 kG. For current of

1p = 10 kG, the RHCP and LHCP waves become coupled for B. = 2.95 - 3.25 kG.

At the same time, the three-wave unstable regime is extended beyond B, = 3.5 kG to

B 0 = 3.85 kG. The RHCP and LHCP waves become coupled for B0 = 2.95 - 3.25 kG and

the three-wave unstable regime is extended into a region where K, > Kcit,4 = 0.41 Cr1- K

where the analytic (4b = 0) expressions predict stability.

Figure 10 plots the temporal growth rate versus k in the orlit unstablc region for

B 0 = 2.15 kG (K0 = 0.26 cm 1 ). Here the region of instability covers essentially all values

17



of wave number k.

A summary of peak temporal growth rates as a function of normalized guide field K,

for I& = 10 kA is shown in Fig. 11 for -y0 = 5, -y = 7.5 and -y = 10. The group of curves

on the left belong to unstable region I and the group of curves on the right belong to

unstable region II. The gap separating the two groups of curves corresponds to the orbit.

unstable region. Plots of the group velocity as a function of Ko are shown in Fig. 12.

Those values plotted are associated with the growth rates of Fig. 11. The group velocity

approaches the beam velocity in three-wave unstable region II.

We also examine the effect of the waveguide radius rg on the three-wave instability.

As the guide radius is increased, the waveguide cut-off frequency g#1 c decreases. For the

three-wave unstable region I, the intersection of the waveguide mode and one of the beam

lines in Eq. (28) can occur for negative values of wave number k. When this occurs, the

phaLe velocity is negative and group velocity is positive but reduced in value. Figure 13

plots the temporal growth rate and the group velocity as a function of K, for r9 = 5 cm

and lb = 10 kA, while keeping all the other parameters the same as in Table I.

Comparison of Analytic and Numerical Results

The analytical expressions for the temporal growth rates for the two regions of the

three-wave instability are given in Eq. (42) and (44). Figure 14 is a comparison of the

maximum temporal growth rate as a function of the normalized guide field K0 for the

values obtained from the numerically solved full dispersion relation (solid curves) and

from the analytical expressions (dashed curves) for current Ib = 1 kA. The agreement

between the analytical and numerical results of the temporal growth rates is good as

long,aAW2 /c > f/c (see Eqs. (39)-(44)). On the dispersion diagram, 2LA./c is the

difference in frequency/c of the beam lines (28) that could go unstable. To illustrate the

case Aw 2 /c > F/c, we take Ko = -0.36 cm - 1 (B0 = -3 kG). The numerical result of the

temporal growth rate is F/c = 4.3 x 10- 3 cm -1 , which is much smaller than Aw2 ,/ c = 0. 2!,.

The analytical result for the temporal growth rate is also f/c = 4.3 x 10- 3 cm 1. As AU., c

decreases and F/c increases, the analytical expiessions for the growth rate becomes less

accurate. At Ko = 0.12 cm - 1 (Bo = I kG), Aw2/c = 8.2 x 10, which is comparable to

18



1/c. The analytical expression for the growth rate, F/c = 2.50 x 10- 2 cm - 1, is 8% larger

than the numerical result of 1/c = 2.30 x 10- 2 cM- 1 .
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V. CONCLUSIONS

The addition of stellarator windings to an axial guide field was proposed as a method

of transporting a high current beam in a curved geometry with a high tolerance to energy

mismatch.' The stabilty properties of such configurations have been clarified in the present

study, which included the beam centroid motion, the electromagnetic waveguide modes,

expressed in terms of right-hand circularly polarized (RHCP)" and left-hand circularly

polarized (LHCP) waves, and the induced image forces on the conducting boundaries, in

addition to the external magnetic fields.

We find five operating regimes: i) two physically distinct three-wave unstable regimes,

ii) an orbit unstable regime, in which the beam centroid is unstable independent of the

electromagnetic waveguide modes and iii) two stable regimes. We have obtained analytical

expressions for the boundaries of the various stability regimes in parameter space and have

presented algebraic expressions for the growth rates in each of the two three-wave unstable

regimes. These analytical results are valid in the limit of low beam current, when the

RHCP and LHCP waves decouple, and are in good agreement with those obtained via

numerical solutions of the full dispersion relation.

The simplified dispersion relation for uncoupled RHCP and LHCP waves, given in

Eq. (40), has been shown to produce results that are in close agreement with those of the

full dispersion relation. The simplified dispersion relation is not valid, however, when the

coupling between the RHCP and LHCP waves is strong, as in the orbit unstable regime. In

three-wave unstable region II, the coupling is strong only at high current. The growth rates

in this regime, for example, from the full (coupled) dispersion relation are about 20 - 30%

larger than from the uncoupled dispersion relation for k. = 0.5 cm- 1 and I = 10 kA. In

three-wave unstable region I the RHCP and LHCP waves are essentially uncoupled.

These results suggest that the three-wave instability can be avoided by appropriately

choosing the various parameters. Results show that as the beam energy increases, the

stability conditions become more restrictive. In such cases, it may be necessary to decrease

the quadrupole gradient, Bqkq, quadrupole wave number kq and/or increase the value of

the guide field B. in order to remain in the stable regime.
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Table I: Parameters Used in Section IV

Quadrupole gradient, Bqkq 200 G/cm

Beam energy (-y) 5

Beam current, lb 1,10 kA

Drift-tube radius, r. 3 cm

Calculated parameters

TEl cut-off frequency/c, ti1 0.614 cm - 1

qsll 0.256 cm - 1

Kq kq 0.024 cm-

/3o = vo/c 0.9793

For rotating guadrupole wavelength, A. = 12.57 cm

Wave number, kq 0.5 cm - 1

Kq 0.048 cm - 1

Kc,,,2 (BO = 1.32 kG) 0.154 cm - 1

Kc,,,, (Bo = 2.95 kG) 0.346 crn- 1

Kc,it,4 (Bo = 3.52 kG) 0.413 cm 1
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Fig. 2 The dispersion diagram in the limit of zero beam current. The curves are the LII

and RH circularly polarized TE11 waveguide modes. The dashed (- )and solid(-

straight lines are the beam modes.
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BZ =-1.000(kG), I= 1.O00(kA)
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Fig. 4 Dispersion diagram for the right- hand-circularly polarized waves for parameters in

Table I with:

a) B,, = -1.0 kG (K0, -0.24 crn-') and k. = 0.5 cm.
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z- 3.500(kG), I = 1.000(kA)
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Wave Number k (cm-')
Fig. 4 (Continued) Dispersion diagram for the right-hand-circularly polarized

waves for parameters in Table I with:

c) B, = 3.5 kG (Ko = 0.42 cm - ) and kq z 0.5 mrn- 1,
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B = 5.000(kG), I = 1.000(kA)
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Wave Number k (cm- 1)

Fig. 4 (Continued) Dispersion diagram for the right-hand-circularly polarized
waves for parameters in Table I with:

d) B. = 5.0 kG (K0 , = 0.60 cn - 1 ) and kq = 0.5 cm - ', and
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Fig. 4 (Continued) Dispersion diagram f or the right-hand-circularly polarized
waves for parameters in Table I with:

e) B, = -5.0 kG (K0, = -0.60 cr') and kq = 0. 1 cf?.
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Fig. 5 Plots of the temporal growth rate versus k in three-wave unstable region 1. for curreut

rb = 1 kA and

a) B = -1.0 kG (K, = -0.12 cm - '),

b) Bo=O,

c) BO = 1.0 kG (K0 = 0.12 cm - ') and

d) B0 = 1.3 kG (K0 = 0.156 cm - 1).
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Fig. 6 Plots of the temporal growth rate versus k in the three-wave unstable region I, l'or

current rb = 1 k A and

a) Bo = 2.95 kG (K,, = 0.35 cmn- ),

b) B, = 3.0 kG (K0 = 0.36 cm - '),

c) BO = 3.25 kG (K0 = 0.39 cm - ') and

d) Bo = 3.5 kG (K0 = 0.41 cm - ').
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Fig. 7 A plot of the temporal growth rate versuis k in tile orbit unstablIe region, for currenit

lb = I kA and B.0 2.15 kG (K,, 0.26 crn-').
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Fig. 8 Plots of the temporal growth rate versus k in three-wave unstable region 1, for current

lb = 10 kA and

a) B, = -1.0 kG (K 0 = -0.12 cm-1),

b) B. =0,

c) B0 = 1.0 kG (K, = 0.12 cm - 1) and

d) BO = 1.3 kG (K0 = 0.156 cm - ).
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Fig. 9 Plots of the temporal growth rate versus k in the three-wave unstable region 1I. for

current lb = 10 kA and

a) B0 = 3.0 PG (Ko = 0.36 cm- 1),

b) B0 = 3.25 kG (K0 = 0.39 cm - 1 ),

c) B, = 3.5 kG (Ko = 0.41 cm - 1) and

d) Bo = 3.85 kG (K0 = 0.45 cm - ').
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for = 5, 7.5 and 10 with current Ib = 10 kA.
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