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Abstract
Microscopic epidemic models are powerful tools
for government policy makers to predict and sim-
ulate epidemic outbreaks, which can capture the
impact of individual behaviors on the macroscopic
phenomenon. However, existing models only con-
sider simple rule-based individual behaviors, lim-
iting their applicability. This paper proposes a
deep-reinforcement-learning-powered microscopic
model named Microscopic Pandemic Simulator
(MPS). By replacing rule-based agents with ratio-
nal agents whose behaviors are driven to maximize
rewards, the MPS provides a better approximation
of real world dynamics. To efficiently simulate
with massive amounts of agents in MPS, we pro-
pose Scalable Million-Agent DQN (SMADQN).
The MPS allows us to efficiently evaluate the im-
pact of different government strategies. This paper
first calibrates the MPS against real-world data in
Allegheny, US, then demonstratively evaluates two
government strategies: information disclosure and
quarantine. The results validate the effectiveness
of the proposed method. As a broad impact, this
paper provides novel insights for the application of
DRL in large scale agent-based networks such as
economic and social networks.

1 Introduction
A good epidemic prediction model is indispensable to miti-
gate pandemics such as COVID-19, which could help gov-
ernments derive optimal policies that balance public health
and economic resiliency. Various epidemic models have
been proposed in literature, among which microscopic mod-
els [Aleta et al., 2020] are particularly useful since they are
fine-grained enough to encode individual behaviors and local
contact traces. However, in the existing works, individuals
are either modeled with fixed behaviors [Eilersen and Snep-
pen, 2020] or are adhere to a given script or rule [Meloni
et al., 2011]. These rules may be too simple to fully capture
people’s diverse behaviors under environmental changes. On
the other hand, reinforcement learning (RL) has been proved

∗Equal contribution for the first two authors.

empirically good at generating complex behaviors, where the
agent aims to optimize a relatively simple reward function
without being guided by handcrafted scripts. RL models are
more explainable and natural, because real-world individuals
are driven by different motivations, which is coherent with the
reward optimization process. Many recent works apply deep
RL on microscopic epidemic models [Kompella et al., 2020].
However, these works mainly focus on policy optimization
for governments to balance public health and economy with-
out detailed modeling of individual behaviors.

To address the individual behavior modeling problem in
pandemic modelling, this paper proposes Microscopic Pan-
demic Simulator (MPS), a novel microscopic epidemic model
where individuals are controlled by multi-agent (MA) RL
policies and thus able to change their behaviours according
to information gained from their surroundings and the gov-
ernment, as inspired by and expanded upon Liu’s previous
work[Liu, 2020]. Since most practical epidemic models con-
tain millions of agents [Hoertel et al., 2020], the main chal-
lenge of applying MARL is its scalability. Without special
design, it is impossible to make standard RL algorithms ap-
plicable to such a massive model. While there are previous
works on MARL with million-level number of agents [Zheng
et al., 2017], the pandemic environment imposes a much
harder challenge for two reasons: 1) rewards of actions are
significantly delayed up to several days due to the presence
of incubation period, causing 1-step TD learning improper; 2)
Our problem is non-ergodic: agents’ joint-state significantly
changes as the epidemic spreads, aggravating oscillation dur-
ing training. To solve these problems with such a large scale,
we proposed Scalable Million-Agent DQN (SMADQN), a
novel DQN-based algorithm with specially designed replay-
buffer and processes for calculating TD(λ), which solves the
difficulties above well with such scalability.

To validate authenticity and adaptability of our model, we
apply our model on a large scale COVID-19 simulation. Un-
like existing works that consider simple contact networks
with limited numbers of facilities or complex networks within
a city [Aleta et al., 2020], this paper provides a large-scale
county-level simulation with all population in the Allegheny
county. It includes more than 106 residents and a compre-
hensive contact network including 14 types of facilities. By
building a novel demographic dataset of Allegheny County
with contact network, we show that the model fit real-world
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data well. We further tested the performance of two progres-
sive government strategies on our model, namely, Informa-
tion Disclosure (ID) and Quarantine (QT). ID means that
the government will disclose information of the pandemic
to residents, such as the number of infections in each facil-
ity. QT refers to the extra government mitigation strategy
that requires symptomatic individuals and part of close con-
tacts of them to be quarantined. We conclude that ID can
help mitigate the epidemic and reduce people’s activity levels.
However, it is not strong enough to completely control the
epidemic. Meanwhile, QT, although posting higher require-
ments for governments’ administrative capability, can control
the epidemic with minimum negative impacts on economic
and social activities.

Our contributions are two-fold. The contributions to epi-
demic modeling are the following. 1) We proposed the Mi-
croscopic Pandemic Simulator (MPS) where individuals as
modeled as rational agents instead of following simple rules.
2) We built a comprehensive demographic dataset with a
contact network of Allegheny County. To the authors’ best
knowledge, this is the first work in such details in this area.
3) With the MPS and the dataset, we have provided a flexi-
ble tool to test the impacts of different governmental strate-
gies. The contribution to MARL is the novel soft-DQN al-
gorithm, i.e., SMADQN. It improves the efficiency of learn-
ing by utilizing λ-return for million-level multi-agent prob-
lem with delayed reward signal and ever-changing joint-state.

2 Related Work
Microscopic Epidemic models. Microscopic epidemic mod-
els contain three parts [Hoertel et al., 2020]: personal status,
contact network between individuals and a reasonable syn-
thetic population. Generally, personal status includes health
status, vulnerability data (e.g., age, basic medical condi-
tion [Chang et al., 2020]) and social contacts; contact net-
work is usually divided into different layers, each of which
consists of a graph with clusters, representing different places
(e.g., workplace and household); synthetic population is re-
trieved by either mobility data such as GPS [Aleta et al.,
2020] or generated from a certain distribution [Eilersen and
Sneppen, 2020; Silva et al., 2020] coherent to census data. To
balance the granularity and accuracy against computational
resources and data available, our work adopts basic personal
status settings, fine contact network modeling with 14 layers,
and generated synthetic population merged from ArcGIS [Ar-
cGIS, 2020] and US synthetic population dataset [Wheaton,
2012].

Large-Scale Multi-Agent RL. Our problem is framed as
a large-scale MA problem. Qu and Li [Qu and Li, 2019] [Qu
et al., 2020] considered cooperative games and exploited
problem-specific structures, such as a tree or a network. In
our work, agents also interact in a network. Instead of fo-
cusing on policy optimization, we exploit the explicitness
of reward parameters and inherent ability of adaption of RL
to produce a more explainable and flexible model in a non-
cooperative setting. The work that proposed the most closely
related algorithm to ours is [Yang et al., 2018], where they
simulated a million-level prey-predator world and proposed
a DQN algorithm with redesigned replay buffers. However,

their environment has an infinite horizon, and is ergodic: all
agent’s joint-states in different steps are similar, which makes
the RL algorithm easier to converge. Furthermore, their re-
ward signals have no delay, while our SMADQN algorithm
is designed to solve the non-ergodic environment with long
episodic length and delayed reward signal.

3 Problem Formulation
In this work, we model epidemics using Multi-Agent
Partial Observation Markov Decision Process (MA-
POMDP) where every susceptible individual is viewed
as one agent. We are interested in systems that contain
more than n>106 agents. The MA-POMDP is defined
by (S,O,A, R, P ). S represents the joint-state space,
and O = ⊗i∈{1,2,···,n}Oi is the union of all n agents’
observation spaces. A is the action space for each agent.
Agent i’s action is denoted ai. R(s, a1, a2, ..., an; i) is
the reward function for agent i. P (s′|s, a1, a2, ..., an) is
transition probability from state s to state s′ when agent
i takes action ai for all i. Agent i has a stochastic policy
πi(oi, ai; θi) parameterized by θi which outputs the prob-
ability to take action ai when observing oi. Every agent
i optimizes its expected accumulative reward Ui(θi) =
Ea1∼π1,a2∼π2,...,an∼πn, [

∑
t γ

tR(st, at1, a
t
2, ..., a

t
n; i)] with

the discounted factor γ, where t indicates discrete time steps.
Actions: Agent i’s action is modeled into three parts: the

activity level, whether to wear a mask, and shopping decision,
i.e., ai = ai,act × ai,mask × ai,shop. To avoid being infected,
the most effective way is staying away from risky (with high
probability of infection) and non-compulsory facilities. How-
ever, it is cumbersome and requires a large action space to
allow the agent to choose which facility to visit. So, we as-
sign each facility with a risk level: MinAct, and only enable
the agent to decide a discrete activity level, then let it visit fa-
cilities whose risk level, MinAct, are under this level. Note
that MinAct of workplaces, schools and households are all
set to 0 as they are compulsory although visiting these facil-
ities may also be risky. That’s how we model ai,act and it’s
still consistent with reality since it’s natural for individual to
stop visiting the riskiest facility first for health. Besides activ-
ity level, wearing reduces infection probability during contact
while also brings with a little inconvenience, and we build its
decision as ai,mask. Furthermore, we separate the decision of
shopping ai,shop, which indicates whether to go shopping in
retail stores, or shopping online, or not shopping at all, from
aact because ai,shop is influenced by both the epidemic and
supply level of home.

Observations: Agent i’s default observation is
oi,no info = oi,hea × oi,hou × oi,sup × ocity × ot. Like
any real-life individual, an agent gathers information from
both its surroundings and the government. For the former
part, we assume that they always know the current health
condition of itself (oi,hea) and other people living in the
same household (oi,hou), as well as the amount of necessary
stocks for living (oi,sup), such as food; for the latter, we
choose the total number of infection (ocity) and the number
of days since the first cases are discovered locally (ot), which
are accessible from almost every government in real life.
With information disclosure, the observation space will be



increased by one dimension, i.e., oi,sur, which indicates the
severity of infections in each facility that agent i may visit
calculated by the government.

States: Similar to the observation, S = {Si, i ∈
{1, 2, · · ·, n}} × st and Si = si,hea × si,sup. The only dif-
ference between state and observation is health condition, as
people cannot tell whether they are infected under the pres-
ence of incubation period.

Rewards: Reward of an agent reflects the incentive of bal-
ancing the two goals: “avoiding infection” and “maintaining
normal life”. The former incentive results in a huge one-
time negative reward Rill when getting infected (smoothed
in practice; see appendix for details) and a Rshop = −1
for offline shopping. The latter leads to 3 components of re-
ward: a positive reward Ract(ai) increased with higher activ-
ity level ai,act; a negative reward Rmask for wearing masks,
as many people are reluctant to wear masks; and a negative
reward Rsup as the stocked supplies (e.g., food) decreased
with lower supply level oi,sup. To further adapt to real-world
situation, we impose a more negative rewardReth, the ethical
penalty, for higher activity levels or not wearing mask when
having symptoms. This is because real-world individuals are
not fully selfish: they will avoid infecting others and comply
with the restrictions once fallen ill.

More details of the observation space, action space, reward
and other RL parameters can be found in the appendix. With
these definitions, we will derive the transition function of the
simulator in the following sections.

4 Microscopic Pandemic Simulator
This section introduces the basic settings of Microscopic Pan-
demic Simulator (MPS). MPS takes one day as a discrete
round, which is the finest practical grain of time since hour-
level simulation requires prohibitively expensive computa-
tional resources and GPS data for commute patterns are ab-
sent. We show in our experiment that this grain of time is
fine enough for authentic simulation. Figure 1 provides an
overview of the pipeline of the simulator and its interaction
with the SMADQN-controlled agents. The pipeline is orga-
nized in a logical order: At the beginning of each day, the
government implements some mitigation strategy (e.g., adjust
maximum capacity ratio for restaurants); then, agents will ob-
serve the current situation and decide whether to visit differ-
ent facilities, to wear masks and to shop for this day. With
determined visit list for each facility, the disease will spread
from the infected agents to healthy ones within each facility.
Finally, modified by the spread, the properties of each agent,
including health states shea and supply level ssup will be up-
dated. This section explains the three major steps of the simu-
lator above in detail; the rest of our MPS model are explained
in RL-related parts (for computing reward) and experiment
(for government policy).

4.1 Distribution of Individuals to Facilities
Every day after agents make their decisions, they will be dis-
tributed into different facilities for calculation of contact.

Deciding the agent affiliation to facilities. We collect fa-
cility data from ArcGIS [ArcGIS, 2020], and we use synthe-
sized US population dataset [Wheaton, 2012] for individual
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Figure 1: The flow chart of MPS and its interactions with
SMADQN-controlled agents. The dotted lines are logical processes
and solid lines are data flows.

agent data. Similar to the reality that individuals prefer to
visit near facilities, we attach each available agent to the near-
est facility of each type on the map within a distance upper
bound. For simplicity, one individual is only attached to one
building for each facility type. Another important thing we
should mention is that age is crucial for modeling agents in
epidemic outbreak since it is related with the type of facilities
where one is active. In our model, the population is divided
into four age groups, which are preschool children (0-9 years
old), students (10-18), adults (19-64) and seniors (65+). We
don’t consider preschool children and students’ after-school
activities so they do not have aact while adults and seniors
have. Students are affiliated with schools and adults with
workplaces while preschool children and seniors with neither.

Facility Attributions. How to distribute agents to facili-
ties depends on agents’ actions and attributions of facilities.
The two most important attributions about a facility are its
capacity and type. For places other than hospitals, if there
are more people going to a facility than its capacity, extra in-
dividuals will be uniformly randomly picked and kicked out
from the facility that day. The type of facility decides the
basic infection coefficient: IF , which represents the relative
infection probability in this type of facilities, and the mini-
mum daily aact for agents to join: MinAct. An agent will
visit a facility with MinAct = x when its aact ≥ x. For all
non-compulsory facilities, MinAct is assigned based on IF :
The higher IF is, the higher the MinAct is.

4.2 Intra-Facility Infection
The contact pattern of people inside a facility could be very
complicated. In reality, some people may wander around
while others may stay isolated. However, with the absence
of GPS data, it would be too arbitrary to make any assump-
tion on agents’ behavior patterns inside a facility. Even such
assumptions can be made, the computational cost would be
too high to keep track of agents’ trajectories. Therefore, we



simply assume that all infection happen in facilities and each
person makes a constant number of contacts in a particular
facility irrelevant of its capacity, and the contacts between
agents are independently uniformly drawn. The probabil-
ity p of an individual x infected in facility F with n peo-
ple this day is: p = min(βIF fF px

∑
y∈F py/CF , 1) where

px = g(agex, ax) and py = h(sy,hea, ay). In this formula,
β is the overall hyper-parameter for infection rate. px is the
factor related to the victim x, and py is the factor related to
the contagious patient y. IF is the basic coefficient of in-
fection in facility F , fF is the normal frequency of people
going to facility F and CF is the maximum capacity of facil-
ity F . px and py are calculated respectively by function g and
h which are determined by the agent’s specific health state,
action and age. For example, young and mask-worn peo-
ple have less probability to get infected and asymptomatic,
presymptomatic or mask-worn patients are less infectious.

There are two issues worth noting about this formula. First,
it smooths out the infection probability by multiplying the
frequency in normal life fF onto the infectious probabil-
ity. In another word, when an agent decides aact = x, it
will visit all facilities with MinAct ≤ x on that day be-
ing less infectious and susceptible to infection, and the re-
duction is inversely proportional to fF , as if it will visit
each facility with probability equal to 1/fF . Second, the
formula above is an approximation to the real probability
p = βIF fF px(1−

∏
y(1− py))/CF . This simplification ac-

celerates the calculation process.
Detailed values of parameters, settings of functions and the

algorithm deciding the agents’ affiliation are listed in the ap-
pendix. Moreover, community has a slightly different for-
mula for infection, which is also stated in the appendix.

4.3 Update of Individual Properties
After the intra-facility disease spread, the two major proper-
ties of each agent i will be updated: supply level si,sup and
health state shea.

Supply Level. Supply level models the amount of stock
one remains. It resembles a balance between sheltering-at-
home and going out less and going shopping for essential
goods to survive. Supply level drops monotonically from 1 to
0 with decreasing speed as people get more thrift with scarce
supplies, and can only be reset to 1 when one of the agents
in the household selects ashop ∈ {offline, online} and suc-
ceeds in shopping. Shopping offline is risky but will always
succeed. Shopping online avoids infection, but the number
of people it successfully serves every day is very limited, and
failed online shopping brings nothing. Agents will receive
increasing negative reward with decreasing supply level.

Health State. Each individual’s health state shea is up-
dated at every simulation step, and the observation ohea is
decided by shea; the transitions and correspondence are il-
lustrated in fig. 2. Agents cannot directly access their health
state shea, but can observe the observations ohea instead.

We model the natural history of disease as a variant of the
SEIR model [Dietz, 1976] with some changes: (1) presymp-
tomatic, asymptomatic and immune states are added to better
adapt to the real-world situation; (2) incubation and immune
states adjacent to the symptomatic and asymptomatic state
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Inc+asy 
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Figure 2: The natural history of disease based on the SEIR model.
Each rectangle represents a health state (shea) and they are 4 boxes
representing health observations (ohea). The numbers on the edges
are the expectation time of transition. The transition is also signifi-
cantly infected by age; older people have much higher probability of
being severe (from “sym” to “ssy”) or dead (from “ssy” to “dea”).

are separated to two states respectively for their infectivity
and length differs; (3) the patients are divided into two sets:
“mild” and “severe” to better model the hospitalization pro-
cess. The mild patients do not need to be treated at hospital,
and will recover automatically; the severe patients must be
treated at hospital, otherwise it will die soon. Due to the lack
of effective cure, treatment in hospital will not accelerate re-
covery of mild patients in our model.

5 SMADQN
In our settings, although sufficient data are generated after
each episode, the value-policy iterations are very slow for
simulating a whole episode costs long time. So, we choose
a value-based algorithm like DQN as our base algorithm
rather than other policy-based algorithms, whose policy only
changes a little in the local area after each training step. But
vanilla DQN is still problematic for such a massive MARL
problem. First, for the property of partial observation, the
consequence of actions may only be observed after several
steps, so one-step TD learning is not sufficient. Second, it re-
quires parameter sharing in policies to keep computation ef-
ficient with millions of agents. However, under deterministic
policy, although the behaviour change for a single agent is in-
cremental in training, the multi-agent system may experience
dramatic change due to parameter sharing, which may lead to
severe oscillation during training. Third, “Off-policy” meth-
ods may store some expired transitions in the replay buffer
and disturb the training process while “on-policy” method
may cause huge oscillation.

To alleviate these problems, we make changes below to
form our algorithm. First, we use TD(λ) to train the Q-
network. Like a standard DQN, we also have two Q-
networks: the source network Q and the target network Q′,
while Q is trained using MSE-loss to fit λ-returns. But to
reduce computational cost, λ-returns are calculated using Q′
only after an episode finished and before trainingQ, andQ′ is
only updated after training Q. So λ-returns do not have to be
re-updated whenQ is being trained. Second, like [Haarnoja et
al., 2017], we also use Soft Q-learning where the probability
of the individual i choosing ai when observing oi: P (ai|oi)
is directly proportional toQ(ai|oi)/α, where α is the soft rate
of Q-learning. Besides exploration provided by “Softness”, ε-
greedy method is added to encourage extra exploration. And
ε is set to decrease gradually. Third, we keep a balance be-
tween fully “off-policy” and fully “on-policy”: We build 2
types of replay buffers: the temporary one stores trajectories
generated from the current episode, and the permanent one



stores trajectories used for DQN’s training. When an episode
finished, β (in our implementation, β = 1/3) of trajectories
in the permanent buffer are randomly chosen and replaced by
random β of trajectories in the temporal buffer, and the other
trajectories in the temporal buffer are thrown away.

In our epidemic model, individuals in the same age stage
share parameters with each other. We use nt = 4 sets of DQN
network to model all individuals, one for each age group.
More details of hyperparameters and pseudocodes are in the
appendix.

6 Experiments
This section aims to validate that the MPS is detailed, authen-
tic, explainable and adaptive to external changes, hence can
be used for decision makers to derive public strategies upon.
We first show that our model has the ability to present com-
prehensive microscopic details in section 6. Then, we show
that our model can describe and predict the real-world dy-
namics by fitting the real world data on the spread of covid.
Furthermore, in order to exploit our model and provide new
candidate strategies for decision makers, we evaluate infor-
mation disclosure, a novel mitigation strategy which gives
agents information on the infection status of each facility ex-
cept household with a 2-day delay to account for the time for
information collection. Finally, we further explore our model
by running quarantine (QT), a widely-used government miti-
gation strategy, to show that our model is compatible with the
main toolbox of real-world government and provide detailed
information of the pandemic when executing this mitigation
strategy for the decision makers.

Basic Settings of Dataset. We chose to evaluate and ex-
plore our model and SMADQN based on real-world data
at Allegheny county in US, Pittsburgh. For simplicity, our
model is closed in the sense that there is no incoming or
outgoing agent (e.g., tourists). Based on ArcGIS [ArcGIS,
2020] and US population synthetic dataset [Wheaton, 2012],
there are N = 1188112 residents (agents), among whom are
130451 preschool children (0-9 years old), 114867 students
(10-18), 739183 adults (19-64) and 200011 seniors (65+).
For the beginning of each episode, 2 agents are chosen to
be symptomatic (health state is “sym”) and 8 agents to be
exposed (health state is “inc”) near West Penn hospital, ac-
cording to news [Doyle, 2020]. For all scenarios, the action
of first 10 days is locked to be a fixed risky behaviour due
to the latency of both the government and people; we chose
10 days because it is the interval between the first discovered
cases in Allegheny and the day when stay-at-home order is
put into effect (and this is why there is a sudden infectivity
drop in most experiments). To generate a model that catches
the local epidemic contact structure better and is prepared
for fine-grained government strategy, we modeled 14 types
of different facility and divided them into 4 categories by the
amount of infection risk. Their distributions are illustrated in
the last subfigure of section 6.

Calibration. The first and most important requirement for
any model applied in real-world decision making is authentic-
ity to ground truth. Thus, before testing different government
strategies with our model, we first calibrated our model to fit
the real-world data in Allegheny between March 14th, 2020

(when the first two cases in Allegheny are discovered) and
the end of May, after which mass unpredictable protest took
place. If not specified, all experiments in this section run for
80 days. And just as the real-world situation, the government
only discloses the number of infected people on each day.
There are three major criteria for our calibration: infected
cases, hospitality and fatality. However, infected cases might
be under-reported at the beginning of an outbreak due to in-
sufficient testing. Therefore, we did not fit official reported
cases, but infected cases inducted by hospitalized cases in-
stead. The induction is based on data collected from US na-
tionwide [Silva et al., 2020] [NCIRD, 2020].

Most hyper-parameters about Covid-19 can be obtained by
previous works on the disease. But for the lack of data about
individuals’ behaviours, reward parameters are hard to sum-
marize, and we could only hypothesize them. We left vali-
dation of reward parameters as future work. Among all re-
ward parameters, Rill is the most important factor for agent
behavior control, which is the immediate penalty of agents
fallen ill: Higher Rill leads to more discreet agent behavior,
such as wearing masks more often, stricter social distancing
practice and less shopping frequency. Therefore, we mainly
tuned Rill in the calibration. We also sampled different Rill
in some experiments while fixing other reward parameters.
Other hyper-parameters are left for sensitivity analysis in the
appendix. Figure 3 show our calibration result. All curves in
our paper are averaged from 3 × last 10 episodes of 3 ran-
dom seeds after training for 100 episodes if not stated other-
wise. For total infected cases and total hospitalization cases,
our model yields a result with the error between predicted
summed infected cases and the actual one being 2.72% and
the error for summed severe cases being 3.41%. The error is
calculated and averaged only using 20th to 80th days because
data were not accurate enough at the very beginning of the
epidemic. The death cases are less coherent but still reason-
able. This result proves that our model is authentic and can
be explored for more government policies.

We modeled Rill as 4500( 80−d80 )4 + 21000( d80 )
4 where

d is the day that first infection occurs. The reason is two-
fold: first, it is clearly shown from the real-world news and
data that people are (monotonically) increasingly aware of the
virus, otherwise the number of infections will not drop; sec-
ond, we tried to fit the data using Rill functions with the rela-
tively simple form of power function for better explainability
and generalizability. Another thing worth noting is that there
is a steep drop of infectivity from day 10, which resembles the
effect of stay-at-home order. See appendix for details about
the timeline of government strategy in our model.

Information Disclosure. Transparency is crucial for epi-
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Figure 3: The result of calibration. The 4 sub-figures present total
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The real daily cases curve is smoothed for better readability.



a) 10d from center

d) 10d from corner

b) 25d from center

e) 25d from corner

c) 40d from center

f) 40d from corner g) city overview
Figure 4: An illustration of how our microscopic model captures the
local structure of the spread of disease and some other details. a) to
c) are the global infection status of day 10, 25 and 40 starting from
downtown, while d) to f) are the status of day 10, 25 and 40 starting
from the edge of the map. The point is red if the household has at
least 1 victim, and black otherwise. g) is an illustration of facility
distribution in downtown area. The black points are households, and
the red, yellow, green and blue points are the facilities with MinAct
as 3, 2, 1 and 0.

demic outbreak handling; not only will timely information
about the infected cases alleviate panic, but ideally, when in-
formation is clear enough, agents will avoid infection sources
for themselves and return to normal when the source disap-
pears, thus minimizing the impact to economy and govern-
ment costs. This proposes a new candidate strategy, informa-
tion disclosure, to test the effect of pandemic control under
ideal information coverage without any mandatory measures.
In information disclosure, governments will keep monitoring
new cases, and announce the probability of being infected in
every non-household facility 2 days ago on a daily basis (we
assumed that the government needs 2 days to collect infor-
mation). Figure 5 shows the result of our experiments; the
higher the Rill is, which indicates that people are more se-
rious about the disease, the lower the total number of cases
is. The first row of fig. 5 clearly indicates that information
disclosure is an effective strategy since it results in less cases
than that without information disclosure in all four scenarios.
It indeed reduces the number of daily cases, but the strategy
may not be strong enough when individuals are less discreet
since it still cannot flatten the curve whenRill ≤ 3k. The next
rows illustrate how our RL model learns an adaptive response
to different levels of risks. Higher observed risk leads to a
drop in choosing Aact = 3 and offline shopping, as well as
a rise in mask rate. Agents generally learned to avoid danger
when the risk of infection increases, without explicitly set-
ting a script for exact policy. More importantly, the learned
policy has a higher average probability of taking risk with
better control of epidemic, which illustrates that the behavior
learned by RL is non-trivial in the sense that agents adopts a
better policy to mitigate the pandemic while keeping a more
normal life, which is possible because people in more dan-
gerous areas are much more discreet. This effect slows down
the spread dramatically.

Quarantine. In this scenario, besides information disclo-
sure, the government will isolate every agent having been
symptomatic for above 2 days (we assumed that it’s inevitable
for governments to have delay). We tested two strategies with
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Figure 5: The experiment result of the information disclosure strat-
egy. Every column is a different setting of Rill.

different strength: The weaker strategy can only discover
and quarantine a 3-day-infected people with probability = 1/3
each day. While The stronger one can discover it with prob-
ability = 1, and the strategy can also quarantine 40% agents
that has directly infected by it as well, which needs contact
tracing in reality. The isolated agent is excluded from the con-
tact network. It cannot infect anybody upon isolation, includ-
ing those in the same household, and will be released 9 days
after recovery (in “ima” or “ims” state). Figure 6 shows the
result of the three scenarios: no measure, weak quarantine,
and strong quarantine. The first row shows that quarantine
is very effective with most patients isolated from the contact
network; even the weak quarantine can effectively control the
pandemic (flatten the curve), and the strong quarantine elimi-
nates pandemic within 80 days in half scenarios. The follow-
ing two rows respectively shows the number of people iso-
lated versus current number of cases under weak and strong
quarantine strategy.

7 Conclusion
This paper introduced a microscopic epidemic simulator and
the SMADQN algorithm to deal with millions of agents. We
synthesized a comprehensive dataset for Allegheny county,
US for evaluation, and explored two possible government
policy candidates on our model: information disclosure and
quarantine. Both proved useful for epidemic control.

A The Dataset based on Demographic Data of
Pittsburgh

A.1 Data Source
Our dataset of Pittsburgh includes the following two types of
information:

• Agents’ characteristics including their ages and trajecto-
ries/positions.



0 20 40 60 80

0
45

0
90

0

D
ai

ly
ca

se
s

0 20 40 60 80

0
15

03
00

0 20 40 60 80

0
12

0
24

0

0 20 40 60 80

0
12

0
24

0 None
weak QT
strong QT

0 20 40 60 80

0
2.

4k
4.

8k

W
ea

k
Q

T

0 20 40 60 80

0
1k

2k

0 20 40 60 80

0
50

0
1k

0 20 40 60 80

0
50

0
1k

current cases
isolated

0 20 40 60 80

0
1k

2k
3k

Days

St
ro

ng
Q

T

0 20 40 60 80

0
80

0
1.

6k

Days
0 20 40 60 80

0
40

0
80

0

Days
0 20 40 60 80

0
40

0
80

0

Days

Rill=1k Rill=3k Rill=10k Rill=25k
Figure 6: The experiment result of the quarantine (QT) strategy.
Every column is a different setting of Rill. The first row is the total
cases of infection under three cases (red for no measure, blue for
weak quarantine, and purple for strong quarantine. The second and
third rows are the number of people isolated (blue) versus current
number of cases (red) in weak QT and strong QT.

• Facility characteristics including locations, capacities
and members of different facilities. For households,
workplace and schools, we adopted the data from
[Wheaton, 2012]. For recreational places, we utilized
the data from [ArcGIS, 2020]. Regarding hospitals
in Allegheny county, data from [of Health, 2019] was
adopted.

A.2 Age Characteristics

Figure 7 shows the distribution of residents’ ages in our
dataset. The distribution is synthesized based on the US pop-
ulation dataset [Bureau, 2020].

Figure 7: The distribution of residents’ ages in the US synthetic
population dataset; the total population is 1, 188, 112. Blue, green,
orange and red data stands for “chd” (children, 0-9 years old),“sch”
(school students, 10-17 years old),“adu” (adults, 18-64 years old)
and “rtr” (retired people, 65+ years old) respectively.

A.3 Facility Characteristics
Table 1 lists the numbers of different types of facilities and
their corresponding capacities (on average and maximally) in
our synthesized dataset. In total, we have 14 types of facili-
ties.

Facility Number Capacity (Av-
erage)

Capacity
(Max)

Hospital 14 1577.43+384 8613+1542
Household 533919 2.22527 13
Workplace 38333 13.5461 7741
School 338 517.583 2239
Retail 601 247.977 1533
Supermarket 87 1900.97 5380
Community 358 3318.75 15889
Library 88 302.17 3069
Museum 78 77.8333 2347
Gym 193 110.782 1797
Restaurant 2691 201.458 3462
Stadium 3 3963.33 3976
Theatre 59 159.576 758
Cinema 36 367.917 3811

Table 1: The number, average capacity and maximum capacity of
each type of facility (for hospitals, the capacity is in the “doc-
tor + beds” format). We only model general hospitals in our
dataset; specialized medical facilities such as rehabilitation centers
and women’s hospitals are excluded.

A.4 Construction of the Contact Network
We followed the paradigm in [Aleta et al., 2020] and [Kom-
pella et al., 2020] to construct the contact network among
agents. The principles are: 1) all agents are affiliated with
certain facilities; 2) at each simulation step, agents will be as-
signed into the affiliated facilities as long as they are not dead
or hospitalized; 3) within the same facility, each pair of agents
have equal probability to meet each other, i.e., equal proba-
bility to spread virus potentially; and 4) once an agent enters
a facility, a minimum level of activity is required (see table 1
in the main manuscript for details about the requirements).

Following such principles, we first assigned each agent to
a household based on the dataset in [Wheaton, 2012]. Simi-
larly, agents above a certain age are also attached to schools
and work places. However, the work in [Wheaton, 2012]
didn’t provide other types of facilities as in our dataset (Ta-
ble 1). To solve such a problem, we proposed to assign agents
to facilities based on their distances to the facilities. The pro-
cess is as follows:

• Step I: extract facility characteristics such as locations
and capacities from [ArcGIS, 2020];

• Step II: determine the connection between agents and fa-
cilities based on their characteristics. For instance, chil-
dren go to schools, adults go to workplaces, but the re-
tired people go neither.

• Step III: establish the distribution of agents for each con-
nected agent-facility group. We obtained such distribu-
tions by approximating the ratios of people visiting facil-
ities in data from [Jones and Saad, 2019], [Hamm, 2020]



and [Statista, 2016]. Two major factors are considered
here: capacities of the facilities and distances between
agents and facilities. We prioritized agents closer to fa-
cilities, and facilities with larger capacities. For exam-
ple, the priority radii for each facility type are 2km for
conventional or retail stores, 5km for restaurants, gyms
and supermarkets, 10km for theaters/cinemas, libraries
and museums, and 35km for stadiums. Appendix A.4,
appendix A.4, appendix A.4 and appendix A.4 illustrate
agent allocation for different types of facilities. Note
that hospitals are treated differently. We assume agents
will go to the nearest hospital with remaining capacity
> 0 considering the fact that life threaten is of highest
priority.

B Parameters for the Agent Model
B.1 Hospitality and Fatality Rates
The death rate and hospitality rate used in our work are esti-
mated based on the US population data [Bureau, 2020], and
the CDC report on fatality cases and age-wise hospitaliza-
tion rate per 100k people [for Disease Control and Prevention,
2020] (table 2 and table 3).

Age proportion in infection proportion in fatality

0-17 8.5% 0.06%
18-64 76.3% 20.71%
65+ 15.2% 79.23%

Table 2: The proportion of each age group in overall infected and
death cases[for Disease Control and Prevention, 2020] as of Septem-
ber 19th, 2020.

Age Cumulative Hospi-
talization per 100k

Estimated US popula-
tion in 2019

0-4 17.9 19756683
5-17 10.3 53462467
18-49 119.2 138216422
50-64 261.5 62925688
65+ 472.3 54058263

Table 3: The estimated population, hospitalization rate and hospital-
ization cases for each age group.

B.2 Other Parameters
Table 5 shows the list of other parameters about the individual
epidemiology.

C Details of Intra-Facility Infection
C.1 The calculation of px and py
As we mentioned in the main manuscript, px = g(sx, ax) for
a victim x and py = h(sy, ay) for an infectious agent y are
determined by multiple factors, such as whether the agent is
wearing mask and the agent’s current health state. We con-
sidered the fact that people in different phases of the disease
have different power of virus spreading.

More specifically, for all facilities except communities,
px = g(sx, ax) can be written as

px = page,xpmask,x,

and py = h(sy, ay) as

py = phs,ypmask,y.

In the formulae above, page,x is the age factor of the victim
x; older people are more vulnerable to the infection and have
bigger page,x. phs,y is the factor for current health state of
y; people in pre-symptomatic phase and asymptomatic pa-
tients have limited power to spread virus. For any agent z,
pmask,z = 0.4 if the agent is wearing a mask (az,mask =
mask), and 1 otherwise. For example, if both x and y are
wearing masks, then the probability of infection is reduced
to 16% compared to that without masks on both sides. For
page,x and phs,y , we have

page,x =


0.4 x is “chd”
0.38 x is “sch”
0.8175 x is “adu”
0.81 x is “rtr”

and

phs,y =


0.12 Health state is pre-symptomatic
0.31 Health state is asymptomatic
1 Health state is in {“sym”,“msy” and “ssy”}
0 otherwise

As for other facility-related parameters for intra-facility in-
fection, table 6 shows the frequency and basic coefficient of
each type of facilities as well as their MinAct.

C.2 Special Rules for Community in Intra-Facility
Infection

In our model, community infection stands for the probability
of getting infected by walking by or chatting with the infected
agents in open space. Infections on public transportation and
other places are not considered here. The reason for us to
distinguish community infection from other facilities is that
the risk of community infection and agents’ activity levels
are co-related. It is not accurate enough to model the risk of
community infection by a single threshold as in other facili-
ties.

Therefore, we let the activity level Aact as a factor of the
spreading power in community infection. For example, if the
infected individual chooses Aact = 2 and the victim chooses
Aact = 3, then the probability of infection calculated from
the formula in the paper should multiply 2

2 ∗
3
2 = 1.5. A

cautious person will avoid community infection if and only if
he/she chooses Aact = 0, which stands for staying at home
as much as possible.

C.3 The Calculation of Contact Trace
Strong quarantine in our experiment requires contact tracing,
namely, if a case is discovered by the government, “other peo-
ple he/she has physically contacted” must be quarantined as



restaurants (red) gyms (yellow) convenient stores (blue) museums (yellow)
Figure 8: Agent allocation of some specific facilities.

Age Estimated Infection Estimated Cumulative
Hospitalization Cases

Estimated
Fatality

Severity
Rate

Unrevised
Death Rate

0-17 574796 9043 120 1.57% 0.021%
18-64 5159636 329304 41256 6.38% 0.8%
65+ 1027869 255317 157831 24.84% 15.36%

Table 4: The calculated death rate and hospitalization rate for each age group in the US by Sept. 19th, 2020. We timed 1.25 to the final
fatality rate for there exists on-going cases that will be dead in the future.

well. To calculate the contact trace in the intra-facility in-
fection process, we assume the patient-victim pair (i.e. con-
tact trace) is distributed proportionally to the virus-spreading
power of all patients in the same facility every day. For exam-
ple, if two patients A and B infect 3 victims in a workplace
on a particular day, and A’s virus-spreading power is twice
of B’s, then 2 people (randomly drawn) will be modeled as
infected by A.

D Reinforcement Learning Agent Setup
D.1 detailed settings of the MA-POMDP
Observations: in experiments without information disclo-
sure, an agent i’s observation is oi,noinfo = oi,hea × oi,rel ×
oi,sup×ocity . oi,hea indicates the agent’s health states, which
is a one-hot vector with a dimension of 51. In our experiment,
for simplicity, we assumed that all people without medical
checks will believe themselves as infected by COVID-19 only
when they have symptoms, and before that, people do not take
medical tests. oi,rel indicates agent i’s relatives’ health states
(a relative is defined as another person in the same house-
hold), which is a real number and equals to the probability of
agent i being infected by the relatives. oi,sup ∈ [0, 1] repre-
sents agent i’s supply level2. Finally, ocity is the number of
infected cases in the city, normalized by dividing 1000.

In experiments with information disclosure3 the observa-
tion of agent i is oi,info = oi,noinfo× oi,sur. We separate all

1Note that although there are 11 types of health states, the agent
cannot distinguish them all before medical check. For a comprehen-
sive relationship between oi,hea and the health states, one can refer
to figure 2 in our main manuscript.

2If the supply is not replenished, we let the supply level oi,sup
drop at a decreasing rate. More specifically, denote the supply level
as L, then L = max(0, 1 − ( d

21
)2), where d is the number of days

since last replenishment of supply.
3We assumed that the government can only know and disclose

types of facilities into 4 groups and each group of facilities
has the same level MinAct ∈ {0, 1, 2, 3}. The component of
each group can be seen in table 6 in the appendix. oi,sur ∈ R4

indicates severity of infections in all four groups of facilities
that agent i may visit. We assumed that severity approxi-
mately equals to the probability of agent i being infected in
those facilities.

All observations are concatenated together and feed into
the Q-network. We use different sets of hyper-parameters to
learn different policies.

Actions: Agent i’s action space is discrete, rep-
resented by ai = ai,mask × ai,act × ai,shop.
ai,mask = {mask, no mask} indicates wearing a
mask or not. ai,act = {0, 1, 2, 3} indicates the activ-
ity level for other public facilities except retail stores.
ai,shop = {no shopping, shopping online, shopping offline}
indicates the ways for shopping to replenish an agent’s sup-
ply. In each simulation step (a day), there will be only 17, 000
people, or roughly 1

70 of the total population randomly cho-
sen from the pool of agents with ai,act = “shopping online”.
The number 1

70 is estimated from [Bishop, 2020].
Rewards: An agent rewards include rewards on activity

levels, rewards on health states, rewards for wearing masks,
rewards for offline shopping, and rewards related to the sup-
ply level.

We let the activity rewards Ract(ai) be positively pro-
portional to the activity level if no symptom shows, i.e.,
Ract(ai) = αactai. Once infected, an one-time negatively
high reward Rill will be posted on the agent. Rmask =
rmask < 0 is assigned for wearing a mask,Rshop = −1 is as-
signed for selecting offline shopping, andReth = −(αactai+
rmask) (the ethical penalty) is given for high activity level or
not wearing mask with symptoms. Also, an agent gets penalty
for low supply level. More specifically, it gets a negative re-

information of people infected 2 days ago.



Notation Meaning Value Source

p sev2cri nhos The daily probability of death for severe patients out of hospital(0-18 yrs
old/18-65/65+)

0.6,0.8,1 estimated

p sev2rec The daily probability of recovery for severe patients in hospital 1/10 [Aleta et al., 2020]
p inc2pre The daily probability of developing from ”inc” state to ”pre” or ”ina” state 1/3 [Aleta et al., 2020]
p rec sym The daily probability of recovery from mild symptom 1/8.8 [Tambri Housen

and Sheel, 2020]
p hos The daily probability of developing from ”sym” state to ”msy”/”ssy” state 1/1.2 [Lauer et al., 2020]
p deimm asy The daily probability of losing immunity after being asymptomatic 0.009 [Long et al., 2020]
p deimm sym The daily probability of losing immunity after being symptomatic 0.0025 [Long et al., 2020]
asy infect rate The infectivity of asymptomatic patients (symptomatic is 1) 0.31 [Aleta et al., 2020]
pre infect rate The infectivity of pre-symptomatic patients 0.12 [Aleta et al., 2020]
asy pop rate The proportion of patients that turn out to be asymptomatic. 0.25 calibrated

Table 5: The individual epidemiology parameter list. All daily probabilities are geometrical distribution and independent for each day.

Facility IF fF MinAct

Hospital 0 N/A 0
Household 0.23 1 0
Workplace 0.14 5/7 0
School 0.21 5/7 0
Retail 0.09 1 0
Supermarket 0.09 1 0
Community 0.0075 1 1
Library 0.12 10.5/365 2
Museum 0.12 2.5/365 * 1/0.54 2
Gym 0.15 0.47 2
Restaurant 0.21 4.2 / 7 3
Stadium 0.42 4.7/365 * 1/0.17 3
Theatre 0.42 3.8/365 * 1/0.35 3
Cinema 0.42 5.3/365 * 1/0.59 3

Table 6: The basic coefficient(IF ), normal frequency(fF ) and min-
imal aact(MinAct) for joining the calculation of each facility(Fac).
Some data (fractions) are corrected by the proportion of active per-
son in our model of Allegheny. Data are based on [Aleta et al.,
2020][Hamm, 2020][Jones and Saad, 2019][Statista, 2016]

ward of rsup = − 1
0.58 (1−L) with L as the supply level. The

constant 1
0.58 is calculated to make a rational agent’s shopping

frequency at around 7−8 days, beyond which the incentive to
avoid infection in offline shopping by Rshop is overwhelmed.

In our settings, we assumed αact = 1 and rmask = 0.1.
We tried different values forRill to generate different settings
where people care about their health in different degrees. We
left finding a realistic set of more hyper-parameters such as
αact and rmask via inverse RL as future work.

Note that by the one-time penalty Rill, the RL training in
our work is naturally smoothing. The smoothing process is
two-fold: 1) one-time penalty is smoothed into each simu-
lation step; for example, if a healthy person goes to places
where the probability of infection is 10%, then he would re-
ceive 0.1Rill; 2) people don’t go to every facility at each step,
but we smoothed it by correcting the factor with frequency.
For example, if people goes to workplaces 5 times per week
and libraries 10 times per year, we will assume that they go to
such places every day, with the virus-spreading power multi-
plied by 5

7 and 11
365 .

D.2 details of SMADQN

Algorithm 1 and table 7 are, respectively, the pseudocode and
hyper-parameters of the SMADQN algorithm.

Hyper-parameters Value

minimum of ε (εm) 0.9
maximum of ε (εM ) 1.2
step-size of ε (εs) 0.1
Soft rate (α) 1 / 3
training optimizer Adam
Learning rate 0.01x + 0.001(1 − x),

x = nepisode/20 − 1
clipped to [0, 1]

# mini-batch (nb) 100
Adam step-size 1e-5
Discount rate (γ) 0.9
GAE parameter (λ) 0.9
episode length (T ) 80

Table 7: The hyper-parameters in the SMADQN algorithm

E Major Covid-Related Events of Allegheny
County and Corresponding Government
Policies

To better simulate the real-world infection, we collected ma-
jor news related to the spread of Covid-19 in Allegheny
County, US. Table 8 listed the major events since Covid-19
began to spread in Allegheny. The collected events helped
us calibrate the hyper-parameters of our model from two ma-
jor aspects: 1) we fixed all actions of individuals and imple-
mented no government policy for the first 10 days in all ex-
periments to simulate the delay of the government and regular
people; 2) we chose 80 days as the length of one episode to
match the fact that Covid-19 fighting in Allegheny achieved
a stage of success in the first 80 days since the first case was
discovered. Table 8 shows the major events and the corre-
sponding government policies in our model.



Algorithm 1 SMADQN

1: Randomly initialize source Q network for each agent type
t: Qt(o, a|θt) with weights θt.

2: Initialize target Q network for each agent type t: Q′t with
weights µt ← θt

3: Initialize permanent buffer for each agent type t:
Rperm,t.

4: Initialize a standard normal distribution generator G
5: Initialize the greedy threshold ε = εm
6: for episode i = 1, 2, ...,+∞ do
7: Initialize temporal buffer for each agent type t:

Rtemp,t
8: Receive initial observation for each individual i of

each type t at step 1: ot,i,1
9: for j = 1, ..., T do

10: for each individual i of each type t do
11: Select action of this individual accord-

ing to its source Q network: at,i,j ∝
Qt,i(at,i,j , ot,i,j |θt)/α

12: use G to generate a random number g
13: if g ≥ ε then
14: Resample at,i,j uniformly
15: end if
16: end for
17: Execute actions and observe reward rt,i,j nad ob-

serve new observation ot,i,j+1

18: end for
19: for each type t do
20: if episode = 1 then
21: Store all individuals’ trajectories:

(ot,i,1, at,i,1, rt,i,1, ot,i,2, at,i,2, rt,i,2, ..., ot,i,T ,
at,i,T , rt,i,T ) in Rtemp,t

22: else
23: Replace β of trajectories in Rperm,t with trajec-

tories in Rtemp,t
24: end if
25: Update Q′t: µt ← θt
26: Use Q′t to update GAE values for each ot,i,j in

Rperm,t as yt,i,j
27: Separate data in Rperm,t to nb mini-batches, and

train Qt with MSE using y as target.
28: end for
29: ε← min(ε+ εs, εM )
30: end for

F Computational Feasibility
Our experiment code was developed with multi-threaded C++
for simulation and Python for MARL training and data pro-
cessing. We connected the two parts with Cython. We run our
experiments on a server with a CPU: Intel(R) Core(TM) i9-
9940X CPU @ 3.30GHz (14 cores) and a GPU: RTX 2080 Ti.
A typical step usually took around 15-20 seconds in our ex-
periments, and about half an hour for a complete epoch. The
whole program needs 40G RAM and 3G VRAM. The whole
algorithm has O(n) time complexity and O(n) space com-
plexity, where n is the number of agents. We use multi-thread
to reduce the constant of O(n). Most experiments were

Day Event Government Policy (Capacity
Restraint)

0 First two cases
are discovered in
Allegheny

N/A

10 The stay-at-home
order is in effect

workplace 25%, supermarket,
community & retail 100%,
others 0% (capacity)

62 Allegheny move
to ”yellow”
phase for reopen-
ing

workplace 50% community
100% supermarket & retail
100% restaurant 25%

80-
100

Massive protest N/A

82 Allegheny move
to ”green” phase
for reopening

workplace 75% community
100% supermarket & retail
100% school 0% others 50%

110 Temporal ban on
restaurants

workplace 75% community
100% supermarket & retail
100% restaurant 0% others
50%

116 Soften reg-
ulations for
restaurants

workplace 75% community
100% supermarket & retail
100% restaurant 10% others
50%

123 Soften reg-
ulations for
restaurants

workplace 75% community
100% supermarket & retail
100% restaurant 35% others
50%

Table 8: Major events related to Covid-19 outbreak in Allegheny
County [All, 2020] and the corresponding government policies. Day
0 is March 14th, 2020. Although we did not simulate the situation
after 80 days, we still assigned government policies for them.

trained for 100 episodes to guarantee convergence, which
usually has much redundancy in practice. Hence, the training
process of our experiments could be even much faster with
less episodes.

G Boosting Training with Policy Transfer
A useful property of SMADQN is that it does not need to be
trained from scratch for each experiment. Instead, we show
in this section that the policy can be transferred between dif-
ferent experiments to boost training: 1) train a policy on the
settings without any government control, and 2) transfer the
policy on a setting with much strong control and fine-tune it
for a few episodes.

Figure 9 illustrates the performance of SMADQN with dif-
ferent settings under strong government control, i.e., the real-
life government strategy used in calibration. Via the results,
we can see that the policy transfer worked well. We use the
similarity of average daily cases as the performance metric.

We can see that with policy transfer (“None+finetune”),
SMADQN quickly yielded a policy which behaved very sim-



ilarly to the policy trained under strong control from scratch
for 100 episodes (“Strong”). The outcome is more similar
than the policy trained from scratch for 20 episodes (“Strong
20 episode”). Such observation indicates that policy transfer
with SMADQN is more efficient than training from scratch.
Direct application of policy trained on non-control settings
yielded a very different outcome (“None”), which shows the
necessity of policy transfer. Moreover, the difference is co-
herent with the common knowledge that being less serious
about the virus will lead to much poorer control effect of the
pandemic.
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Figure 9: The averaged number of summed cases with strong
government control (the same with the calibration). “Strong”
stands for training with strong control for 100 episodes”; “None”
stands for training with no governmental control for 100 episodes;
“None+finetune” stands for training with no control for 80 episodes
and with strong control for 20 episodes; “Strong 20 episode” stands
for training with strong control for 20 episodes from scratch.

H Sensitivity Analysis
We show that our MPS model and the SMADQN algorithm
behave reasonably in the sensitivity analysis by varying two
hyper-parameters: the infection rate β and the penalty of
wearing mask Rmask. The results are shown in fig. 10 and
fig. 11. All data in the sensitivity analysis was the average of
last 10 episodes.

Figure 10 shows the daily number of cases under differ-
ent settings of β. β0 = 15.8 is the default beta in our ex-
periments. All RL agents were trained without government
control strategies. We can see that the daily cases increased
monotonically with β, which shows that the MPS is stable
and can produce reasonable results for different β. Further-
more, for all three βs, the epidemic was controlled to some
extent instead of growing exponentially, which means that our
SMADQN can handle a wide range of hyper-parameters re-
lated to the real-world environment.

Figure 11 depicts the daily number of cases under differ-
ent settings of Rmask (Rmask = −0.1 in a default exper-
iment setting). RL agents were all trained without govern-
ment control strategies. The daily cases increased monoton-
ically with more harsh Rmask’s penalties, which shows that
our SMADQN can handle a wide range of reward parame-
ters and yield reasonable policies in coherent with common
knowledge. Hence, it indicates that our reward parameters
can successfully capture the influence of individual values to-
wards the macroscopic development of pandemic. Moreover,

the SMADQN algorithm can also be utilized as a feasible tool
for real-world decision makers.
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Figure 10: Daily cases with different β and no government control
strategy.
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Figure 11: Daily cases with different penalty Rmask ∈
{−0.1,−0.3,−0.5} for wearing masks.

I Code and Data Availability
All codes and data are accessible in https://github.com/
recordmp3/Microscopic-epidemic-model/settings, and the
format of the data can be seen in the code.
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