
NATO UNCLASSIFIED

NATO UNCLASSIFIED

NATO STANDARD

AComP-4724

VLF/LF MSK MULTI CHANNEL
BROADCAST

Edition B Version 1

SEPTEMBER 2021

NORTH ATLANTIC TREATY ORGANIZATION

ALLIED COMMUNICATION PUBLICATION

Published by the

NATO STANDARDIZATION OFFICE (NSO)

© NATO/OTAN

NATO UNCLASSIFIED

NATO UNCLASSIFIED

INTENTIONALLY BLANK

https://nso.nato.int/nso/

NATO UNCLASSIFED

NATO UNCLASSIFED

INTENTIONALLY BLANK

NATO UNCLASSIFED
 AComP-4724

 I Edition B Version 1

NATO UNCLASSIFIED

RESERVED FOR NATIONAL LETTER OF PROMULGATION

NATO UNCLASSIFED
 AComP-4724

 II Edition B Version 1

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFED
 AComP-4724

 III Edition B Version 1

NATO UNCLASSIFIED

RECORD OF RESERVATIONS

CHAPTER RECORD OF RESERVATION BY NATIONS

Note: The reservations listed on this page include only those that were recorded at time of
promulgation and may not be complete. Refer to the NATO Standardization Document
Database for the complete list of existing reservations.

NATO UNCLASSIFED
 AComP-4724

 IV Edition B Version 1

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFED
 AComP-4724

 V Edition B Version 1

NATO UNCLASSIFIED

RECORD OF SPECIFIC RESERVATIONS

[nation] [detail of reservation]

FRA As far as the modes N9 and N10 are concerned, the requirement in terms of
performance and costs has yet to be confirmed.

POL The document will be implemented in specific combat platforms during their
medernisation and in newly produced platforms.

TUR The infrastructure of modernized VLF Bafa Station will support STANAG 4724.
STANAG 4724 is planned to beimplemented in the manner of ensuring satisfactory
technologic development.

Note: The reservations listed on this page include only those that were recorded at time of
promulgation and may not be complete. Refer to the NATO Standardization Document
Database for the complete list of existing reservations.

NATO UNCLASSIFED
 AComP-4724

 VI Edition B Version 1

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED
 AComP-4724

 VII Edition B Version 1

NATO UNCLASSIFIED

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1-1

1.1. SCOPE 1-1

1.2. AIM 1-1

1.3. GENERAL 1-1

1.3.1. NATO VLF/LF TRANSMITTERS 1-1

1.3.2. SHARED CHANNEL OF A NATIONAL FOUR CHANNEL BROADCAST 1-2

1.3.3. SHARED USE OF NATO MULTICHANNEL TRANSMISSION FACILITY 1-2

1.4. RELATED DOCUMENTS 1-2

1.5. DEFINITIONS 1-2

CHAPTER 2 REQUIREMENTS 2-4

2.1. GENERAL REQUIREMENTS 2-4

2.1.1. NETWORK DEFINITION 2-4

2.1.1.1. GENERAL DESCRIPTION 2-5

 ON-OFF-KEYED CARRIER SINGLE CHANNEL 2-6

 FREQUENCY-SHIFT-KEYING SINGLE CHANNEL 2-6

 NATO MULTICHANNEL 2-6

 SHARED NATO TRANSMISSION 2-7

2.1.2. CHARACTERISTICS 2-7

2.1.2.1. INTERSITE LINKS 2-7

 DATA LINKS 2-7

 ORDER WIRE 2-7

2.1.2.2. VLF/LF TRANSMITTER 2-7

 RADIO CARRIER FREQUENCY 2-7

 FREQUENCY TOLERANCE 2-7

 PHASE 2-8

2.1.2.2.3.1. PHASE STABILITY 2-8

2.1.2.2.3.2. PHASE LINEARITY 2-8

 BANDWIDTH 2-8

2.1.2.3. RECEIVER 2-8

 FREQUENCY SELECTION 2-8

NATO UNCLASSIFIED
 AComP-4724

 VIII Edition B Version 1

NATO UNCLASSIFIED

 MESSAGE FIDELITY 2-8

2.2. DETAILED REQUIREMENTS 2-8

2.2.1. ON-OFF-KEYED CARRIER MODE 2-9

2.2.2. FSK SINGLE CHANNEL 2-9

2.2.2.1. FUNCTIONAL ALLOCATION 2-9

 BROADCAST COORDINATION AUTHORITY (BCOA) 2-9

 BROADCAST CONTROL STATION 2-9

 VLF/LF TRANSMITTER COMPLEX 2-9

 RECEIVE PLATFORM 2-9

2.2.2.2. CHARACTERISTICS 2-9

 DATA FORMAT 2-9

 SECURITY PROVISIONS 2-10

2.2.2.2.2.1. CRYPTOGRAPHIC EQUIPMENT 2-10

2.2.2.2.2.2. MESSAGE FLOW SECURITY 2-10

 INTERSITE LINKS 2-11

 VLF/LF TRANSMITTER COMPLEX PROCESSING 2-11

2.2.2.2.4.1. INTERSITE LINK PHASE DRIFT 2-11

2.2.2.2.4.2. FREQUENCY-SHIFT-KEYING MODULATION 2-11

2.2.2.2.4.3. TRANSMITTER SUBSYSTEM BANDWIDTH 2-11

2.2.2.2.4.4. RADIO FREQUENCY 2-11

2.2.2.2.4.5. PHASE 2-11

2.2.2.2.4.6. RECEIVE SYSTEM 2-11

2.2.3. NATO MULTICHANNEL MODES N3, N4, N5 AND N6 2-11

2.2.3.1. NATO MULTICHANNEL NETWORK DIAGRAM 2-11

2.2.3.2. FUNCTIONAL ALLOCATION 2-12

 BROADCAST COORDINATION AUTHORITY (BCOA) 2-12

 BROADCAST CONTROL STATIONS (BCS) 2-12

 VLF/LF TRANSMITTER COMPLEX 2-12

 RECEIVE PLATFORM 2-12

2.2.3.3. CHARACTERISTICS 2-13

 DATA FORMATS 2-13

 INTERSITE LINK MESSAGE DATA FORMATS 2-14

NATO UNCLASSIFIED
 AComP-4724

 IX Edition B Version 1

NATO UNCLASSIFIED

 SECURITY PROVISIONS 2-16

2.2.3.3.3.1. CRYPTOGRAPHIC EQUIPMENT 2-16

2.2.3.3.3.2. MESSAGE FLOW SECURITY 2-16

 INTERSITE LINKS 2-16

 VLF/LF TRANSMITTER COMPLEX PROCESSING 2-16

2.2.3.3.5.1. INTERSITE LINK PHASE DRIFT 2-16

2.2.3.3.5.2. INPUT DATA CONTROL 2-16

2.2.3.3.5.3. MODE CAPACITY INTEGRITY 2-16

2.2.3.3.5.4. CHANNEL MULTIPLEXING 2-17

2.2.3.3.5.5. MINIMUM SHIFT-KEYING MODULATION 2-18

2.2.3.3.5.6. VLF/LF TRANSMITTER SUBSYSTEM BANDWIDTH 2-19

2.2.3.3.5.7. RADIO FREQUENCY 2-19

2.2.3.3.5.8. PHASE STABILITY 2-19

 RECEIVER SYSTEM 2-19

2.2.3.3.6.1. SYNCHRONIZATION 2-19

2.2.3.3.6.2. CHANNEL SELECTION 2-19

2.2.3.3.6.3. ALTERNATE-LEF ENCRYPTED SIGNAL PROCESSING 2-19

2.2.3.3.6.4. VALLOR ENCRYPTED SIGNAL PROCESSING 2-19

CHAPTER 3 NATO Rate/Range Extension (REM) 3-20

3.1. NATO RATE/RANGE EXTENSION MODES 3-20

3.1.1. NATO MULTICHANNEL REM MODES 3-20

3.1.1.1. NATO MULTICHANNEL MODE N7 3-20

3.1.1.2. NATO MULTICHANNEL MODE N8 3-20

3.1.1.3. NATO MULTICHANNEL MODE N9 3-21

3.1.1.4. NATO MULTICHANNEL MODE N10 3-21

3.1.1.5. AUTO-DETECTION OF REM MODE 3-21

3.1.2. REM PACKET STRUCTURE 3-21

3.1.2.1. RED/BLACK REM PACKET STRUCTURES 3-22

 RED/BLACK REM ALPHA PACKET STRUCTURE 3-22

 RED/BLACK BRAVO PACKET STRUCTURE 3-22

3.1.2.2. RED REM PACKET STRUCTURES 3-23

 RED REM ALPHA PACKET STRUCTURE 3-23

NATO UNCLASSIFIED
 AComP-4724

 X Edition B Version 1

NATO UNCLASSIFIED

 RED REM BRAVO PACKET STRUCTURE 3-23

 AUTO-DETECTION OF REM PACKET STRUCTURE 3-23

3.1.3. NATO RED/BLACK REM 3-23

3.1.4. NATO RED REM 3-24

3.1.5. PERFORMANCE ADVANTAGE OF REM 3-25

3.1.6. RECEIVER PERFORMANCE 3-26

3.2. PROCESSING FOR NATO RED/BLACK REM 3-26

3.2.1. NATO RED/BLACK REM 3-26

3.2.1.1. FRAME AND TIME SYNCHRONIZATION 3-26

 TIME OF DAY ACCURACY 3-27

3.2.1.2. RED/BLACK REM FUNCTIONAL ALLOCATIONS 3-27

 BROADCAST COORDINATION AUTHORITY (BCA) 3-27

 BROADCAST CONTROL STATION (BCS) 3-27

 VLF/LF TRANSMITTER COMPLEX 3-27

 RECEIVE PLATFORM 3-28

3.2.2. RED/BLACK REM PROCESSING DEFINITIONS 3-28

3.2.2.1. FIXED PACKET STRUCTURE 3-28

3.2.2.2. COMPRESSION ALGORITHM 3-29

 PREDICTION BY PARTIAL MATCH ALGORITHMS 3-29

 PRE-LOADED STATISTICAL MODEL 3-30

 STATISTICAL MODEL FORMAT 3-30

 ALTERNATE STATISTICAL MODELS 3-30

3.2.2.3. PACKETISATION OF COMPRESSED DATA STREAM 3-30

3.2.2.4. RED/BLACK REM BLACK CODING 3-30

 BLACK CHANNEL DATA FRAME STRUCTURE 3-30

 LDPC FEC CODING 3-30

 LDPC FEC DECODING 3-30

3.2.2.5. FRAME DATA INTERLEAVING 3-31

3.2.2.6. RED/BLACK REM FRAME HEADER 3-34

3.2.2.7. CHANNEL MULTIPLEXING 3-34

 RED/BLACK REM CHANNEL IN NATO MULTICHANNEL MODES N7 AND N8
 3-34

NATO UNCLASSIFIED
 AComP-4724

 XI Edition B Version 1

NATO UNCLASSIFIED

 RED/BLACK REM CHANNEL IN NATO MULTICHANNEL MODES N9 AND
N10 3-34

3.2.2.8. MODE CAPACITY INTEGRITY WITH RED/BLACK REM 3-34

3.2.3. RED/BLACK REM ALPHA PACKET STRUCTURE 3-34

3.2.3.1. RED/BLACK REM ALPHA PACKET STRUCTURE DETAIL 3-35

3.2.3.2. RED/BLACK REM ALPHA PPM ALGORITHMS 3-36

 RED/BLACK REM ALPHA PPM COMPRESSION 3-36

 RED/BLACK REM ALPHA PPM EXPANSION 3-36

 RED/BLACK REM ALPHA STATISTICAL MODEL 3-37

3.2.3.3. RED/BLACK REM ALPHA RED SIDE PACKETISATION 3-37

3.2.3.4. RED/BLACK REM ALPHA BLACK PROCESSING 3-37

 RED/BLACK REM ALPHA BLACK DATA FRAME 3-37

 RED/BLACK REM ALPHA FIBONACCI BIT COMPRESSION 3-37

 RED/BLACK REM ALPHA FILLER BITS 3-38

 RED/BLACK REM ALPHA LDPC FEC 3-38

3.2.3.4.4.1. RED/BLACK REM ALPHA LDPC FEC CODING 3-38

3.2.3.4.4.2. RED/BLACK REM ALPHA LDPC FEC DECODING 3-38

 RED/BLACK REM ALPHA CHANNEL DATA FRAME RECEPTION 3-38

3.2.3.5. RED/BLACK REM ALPHA FRAME DATA INTERLEAVING 3-39

3.2.3.6. RED/BLACK REM ALPHA RED/BLACK FRAME HEADER 3-39

3.2.4. RED/BLACK REM BRAVO PACKET STRUCTURE 3-40

3.2.4.1. RED/BLACK REM BRAVO PACKET STRUCTURE DETAIL 3-40

3.2.4.2. RED/BLACK REM BRAVO PPM ALGORITHMS 3-41

 RED/BLACK REM BRAVO PPM COMPRESSION 3-41

 RED/BLACK REM BRAVO PPM EXPANSION 3-41

 RED/BLACK REM BRAVO STATISTICAL MODEL 3-41

3.2.4.3. RED/BLACK REM BRAVO RED SIDE PACKETISATION 3-42

3.2.4.4. RED/BLACK REM BRAVO BLACK PROCESSING 3-42

 RED/BLACK REM BRAVO CODING BLACK DATA FRAME 3-42

 RED/BLACK REM BRAVO FIBONACCI BIT COMPRESSION 3-42

 RED/BLACK REM BRAVO FILLER BITS 3-43

 RED/BLACK REM BRAVO LDPC FEC 3-43

3.2.4.4.4.1. RED/BLACK REM BRAVO LDPC FEC CODING 3-43

NATO UNCLASSIFIED
 AComP-4724

 XII Edition B Version 1

NATO UNCLASSIFIED

3.2.4.4.4.2. RED/BLACK REM BRAVO LDPC FEC DECODING 3-43

 RED/BLACK REM BRAVO CHANNEL DATA FRAME RECEPTION 3-43

3.2.4.5. RED/BLACK REM BRAVO FRAME DATA INTERLEAVING 3-43

3.2.4.6. RED/BLACK REM BRAVO RED/BLACK FRAME HEADER 3-44

3.3. BASEBAND PROCESSING RED ONLY NATO REM 3-44

3.3.1. NATO RED REM MULTICHANNEL MODES 3-45

3.3.1.1. ADDITIONAL RED REM FUNCTIONAL ALLOCATION. 3-45

 BROADCAST COORDINATION AUTHORITY (BCA) 3-45

 BROADCAST CONTROL STATION (BCS) 3-45

 VLF/LF TRANSMITTER COMPLEX 3-45

 RECEIVE PLATFORM 3-45

3.3.2. RED ONLY REM PROCESSING DEFINITIONS 3-45

3.3.2.1. FIXED PACKET STRUCTURE 3-45

3.3.2.2. COMPRESSION ALGORITHM 3-46

3.3.2.3. FORWARD ERROR CORRECTION CODING 3-46

3.3.2.4. PACKETISATION OF COMPRESSED DATA STREAM 3-46

 RED DATA FRAME HEADER 3-46

 FRAME DATA INTERLEAVING 3-47

 RED PACKAGED FRAME 3-50

3.3.2.5. CHANNEL MULTIPLEXING 3-50

 RED ONLY REM CHANNEL IN NATO MULTICHANNEL MODES N7 AND N8
 3-50

3.3.3. RED ONLY REM ALPHA PACKET STRUCTURE 3-50

3.3.3.1. RED ONLY REM ALPHA PACKET STRUCTURE DETAIL 3-50

3.3.3.2. RED ONLY REM ALPHA RED DATA FRAME STRUCTURE 3-51

3.3.3.3. RED ONLY REM ALPHA PPM ALGORITHMS 3-51

 RED ONLY REM ALPHA PPM COMPRESSION 3-51

 RED ONLY REM ALPHA PPM EXPANSION 3-51

 RED ONLY REM ALPHA STATISTICAL MODEL 3-52

3.3.3.4. RED ONLY REM ALPHA LDPC FEC 3-52

 RED ONLY REM ALPHA LDPC FEC CODING 3-52

 RED ONLY REM ALPHA LDPC FEC DECODING 3-52

3.3.3.5. RED ONLY REM ALPHA RED DATA FRAME HEADER 3-52

NATO UNCLASSIFIED
 AComP-4724

 XIII Edition B Version 1

NATO UNCLASSIFIED

3.3.4. RED ONLY REM BRAVO PACKET STRUCTURE 3-53

3.3.4.1. RED ONLY REM BRAVO CODING PACKET STRUCTURE DETAIL 3-53

3.3.4.2. RED ONLY REM BRAVO RED DATA FRAME STRUCTURE 3-54

3.3.4.3. RED ONLY REM BRAVO PPM ALGORITHMS 3-54

 RED ONLY REM BRAVO PPM COMPRESSION 3-54

 RED ONLY REM BRAVO PPM EXPANSION 3-54

 RED ONLY REM BRAVO STATISTICAL MODEL 3-54

3.3.4.4. RED ONLY REM BRAVO LDPC FEC 3-54

 RED ONLY REM BRAVO CODING LDPC FEC CODING 3-54

 RED ONLY REM BRAVO LDPC FEC DECODING 3-55

3.3.4.5. RED ONLY REM BRAVO RED DATA FRAME HEADER 3-55

CHAPTER 4 NATO REM performance requirements 4-56

4.1. NON-REM RECEIVER PERFORMANCE 4-56

4.1.1. NON-REM RECEIVER PERFORMANCE TESTING 4-56

4.2. NON-REM TEST SIGNALS 4-56

4.2.1.1. STANAG 4724 STANDARD TEST MESSAGE 4-57

4.2.1.2. NON-REM RECEIVER PERFORMANCE TEST REQUIREMENTS 4-57

 N6 GAUSSIAN NOISE PERFORMANCE 4-58

 N6 ATMOSPHERIC NOISE PERFORMANCE 4-58

 N6 ADJACENT CHANNEL PERFORMANCE 4-58

4.2.2. REM PERFORMANCE TESTING 4-58

4.2.2.1. RED ONLY REM PERFORMANCE TESTING 4-58

4.2.2.2. RED ONLY REM TEST DATA STREAM 4-58

 RED ONLY TEST FILE FORMAT 4-59

4.2.2.3. RED ONLY REM TESTING 4-59

4.2.2.4. RED/BLACK REM TESTING 4-59

 Statistical model 4-60

A.1. STATISTICAL MODEL FORMAT 4-60

A.2. STATISTICAL MODEL FILE 4-60

 LDPC FEC DECODING 4-61

NATO UNCLASSIFIED
 AComP-4724

 XIV Edition B Version 1

NATO UNCLASSIFIED

B.1. LDPC DECODER OPERATION 4-61

B.2. LDPC FEC DECODER EXAMPLE 4-62

B.3. LDPC DECODER MATRICES 4-65

 PPM COMPRESSION CODING 4-67

C.1. PPM COMPRESSION CODE 4-67

 PPM Expansion Coding 4-109

D.1. PPM EXPANSION CODE 4-109

 LDPC FEC Generation Matrices 4-150

E.1. LDPC FEC GENERATOR MATRIX FORMAT 4-150

E.2. FIBONACCI BIT PARITY FEC GENERATOR MATRIX 4-150

NATO UNCLASSIFIED
 AComP-4724

 1 - 1 EDITION B VERSION 1
NATO UNCLASSIFIED

CHAPTER 1 INTRODUCTION

1.1. SCOPE

Communications with submerged submarines is essential for safety reasons and to ensure
Command and Control of those submarines. Once submarines are submerged, and no
communications means are deployed through floating buoys (SATCOM LOS/BLOS Radios),
submarines depend on VLF and/or LF communications to enable communications.
Standardization of the VLF/LF Communications was established through the development of
STANAG 5030. The operational user community revisited the requirements for the VLF/LF
Communications and requested that the STANAG be modified to provide more flexibility and
range whilst maintaining the capability to increase data rates. In addition the updated or new
STANAG should also support non-VALLOR cryptographic algorithms as the VALLOR
algorithm will be phased out.

1.2. AIM

This Standard expands the North Atlantic Treaty Organization (NATO) VLF/LF capability from
single channel operations with frequency-shift-keying (FSK) and a multichannel capability
which also includes the use of channels of a four channel VLF/LF National transmission to
incorporate a co-existent range/rate extension mode with options for increased data rate
and/or reduced transmitter radiated power.

This Edition of the Standard re-introduces support for non-VALLOR cryptographic systems into
the NATO VLF/LF broadcast. A technical approach for future transition to total compatibility
with the multichannel requirement and non-VALLOR crypto systems has been found.

To allow for interoperability with existing VLF systems based on STANAG 5030, this standard
should is backwards interoperable with STANAG 5030 based systems, albeit on a limited
basis.

1.3. GENERAL

This Standard contains sufficient detail to the extent that Nations can undertake development
or procurement of receiver systems and that transmitter and headquarters conversions can be
engineered.

This standard introduces performance enhancing Rate/Range Enhancement Mode (REM)
capability, based on lossless text compression and Forward Error Correction coding of
broadcast data streams.

The technical approach in this document is compatible with ITA No. 2 coding. ITA5 Conversion
to 10.0 ITA No. 5 coding in accordance with STANAG 5036 will be considered at a future date.
System performance, data throughput and signal processing requirements will be impacted by
a change in the coding.

This standard specifies the minimum technical requirements that must be complied with to
assure compatibility among components of a broadcast network for relay of messages over
the frequency range of 14.0 through 60.00 kHz. The network includes all communication links
from the point at which the messages are injected into the network through delivery of the
message to the addressee. It also includes the administrative management of the network.

1.3.1. NATO VLF/LF TRANSMITTERS

NATO UNCLASSIFIED
 AComP-4724

 1 - 2 EDITION B VERSION 1
NATO UNCLASSIFIED

This standard provides for the operation of the North Atlantic Treaty Organization (NATO)
VLF/LF transmitters in the following modes:

a. Single channel with frequency-shift-keying modulation;

b. Two channel with minimum-shift-keying modulation;

c. Four channel with minimum-shift-keying modulation;

d. Flexible multi-channel Rate/Range Enhanced Modes (REM) with minimum-shift-keying
modulation.

1.3.2. SHARED CHANNEL OF A NATIONAL FOUR CHANNEL BROADCAST

This standard describes technical characteristics for the utilisation of one or more channels of
a National four channel VLF/LF multichannel broadcast for transmission of NATO broadcasts.

1.3.3. SHARED USE OF NATO MULTICHANNEL TRANSMISSION FACILITY

This standard describes technical characteristics for the utilisation of NATO multichannel
VLF/LF transmission facilities for transmission of National broadcasts.

1.4. RELATED DOCUMENTS

STANAG 5030 - VLF/LF MSK MULTI CHANNEL BROADCAST.

1.5. DEFINITIONS

ALTERNATE-LEF:

Link Encryption Family; not based upon the TSEC/KW-46 broadcast security equipment,
including any suitable NATO or National non-VALLOR link encryption device.

BROADCAST:

A method of transmitting messages on pre-determined schedules wherein no
acknowledgment for the message is required.

CHANNEL:

A single signal path, or one which is independent of others sharing a common frequency;
e.g., one channel of a Time Division Multiplexed System.

FILLER:

Data transmitted for the purpose of keeping a communications channel active when there are
no messages available.

FIBONACCI BITS:

Deterministic unencrypted bits sent in the VALLOR cryptographic system which are the basis
for frame synchronization of broadcast data.

MARK:

A condition of the modulated signal corresponding to a binary 1 (condition Z).

NATO MULTICHANNEL:

A broadcast of two or four time division multiplexed channels transmitted over any NATO
VLF/LF facility.

ORDERWIRE:

NATO UNCLASSIFIED
 AComP-4724

 1 - 3 EDITION B VERSION 1
NATO UNCLASSIFIED

A channel over which information pertaining to signal quality and technical control information
is passed.

REM:

Rate/Range Enhancement Mode capability increasing performance by lossless text
compression and Forward Error Correction coding of broadcast data streams

SHARED NATO TRANSMISSION FACILITIES:

Use of one or more channels of a NATO multichannel VLF/LF transmission for national
broadcast.

SHARED NATIONAL TRANSMISSION FACILITIES:

Use of one or more channels of a national multichannel VLF/LF transmission for NATO
broadcast.

SPACE:

A condition of the modulated signal corresponding to a binary 0 (Condition A).

VALLOR:

A cryptographic system based on the TSEC/KW-46 broadcast security equipment.

Vd:

Ratio of RMS to mean absolute value of atmospheric noise in dB.

VLF/LF:

As used herein it is a band of RF frequencies covering from 14kHz to 60kHz.

WAGNER CODE:

An error coding scheme that utilises a single parity bit per block of N information bits and a
"soft decision" demodulation process. If a received codeword does not pass the parity check,
the least reliable bit is inverted. The Wagner code is designated by an (N+1,N) prefix.

NATO UNCLASSIFIED
 AComP-4724

 2 - 4 EDITION B VERSION 1
NATO UNCLASSIFIED

CHAPTER 2 REQUIREMENTS

2.1. GENERAL REQUIREMENTS

2.1.1. NETWORK DEFINITION

The network block diagram is shown in Figure 1. The network shall be defined to include the
following:

BROADCAST COORDINATION AUTHORITY (BCOA):
Generally responsible for the management of the network to insure that all components of the
network are coordinated such as to be interoperable.

BROADCAST CONTROL STATION (BCS):
This is the point at which messages are entered into the network. If the messages are to be
encrypted they are encrypted at these sites. Data generation beyond operational messages
may be required to meet traffic flow security requirements.

INTERSITE LINKS:
Intersite links include data transfer links and order wire communication channels. Intersite
data links shall interconnect the BCS and the VLF/LF Transmitter Complex for transfer of data
to be relayed over the VLF/LF radio frequency. Order wire links shall be those
communications channels used for management and coordination of network modes.

VLF/LF TRANSMITTER COMPLEX:
The facility where data for the final relay link (VLF/LF link) is processed and transmitted at the
assigned VLF/LF frequency.

RECEIVE PLATFORM:
The platform where the injected message is demodulated, decrypted and otherwise
processed to deliver the message to the addressee.

FIGURE 1: NATO VLF/LF NETWORK DIAGRAM.

NATIONAL
BROADCAST

COORDINATION
AUTHORITY

NATO
BROADCAST

COORDINATION
AUTHORITY

BROADCAST
CONTROL
STATION

NATIONAL VLF/LF
TRANSMITTER

COMPLEX

NATO
VLF/LF

TRANSMITTER
COMPLEX

NATO
RECEIVE

PLATFORM

ANT

ANT

COORDINATION

COORDINATION CONTROL

INTERSITE
LINK

INTERSITE
LINK

COORDINATION
CONTROL

Coordination Control (Orderwire)
Communications link

KEY

NATO UNCLASSIFIED
 AComP-4724

 2 - 5 EDITION B VERSION 1
NATO UNCLASSIFIED

2.1.1.1. GENERAL DESCRIPTION

The basic requirement of the network is to relay messages from the BCS to the Receiver
Platform. A block diagram of the NATO multichannel VLF/LF network is shown in Figure 2.
Note that the BCS sites are remote from the final link in the network which is a transmission
complex for VLF/LF. Figure 2 shows the addition of RED REM coding processes, but does
not show the full RED/BLACK REM capability. This REM functionality is fully detailed in
CHAPTER 3.

FIGURE 2: NATO MULTICHANNEL VLF/LF SYSTEM.

The VLF/LF transmission facility shall be capable of operating in any of the following modes
when specified in operational doctrine:

BROADCAST

CONTROL STATION

VLF/LF TRANSMITTER COMPLEX

1. ALIGN FRAMES
2. GENERATE FILLER FOR
 IDLE CHANNELS
3. INVERT EVERY OTHER
 FIB BIT FOR CHANNEL 1
4. WAGNER ENCODE
 VALLOR CHANNELS
5. MULTIPLEX CHANNELS

MSK

MODULATOR
VLF

P.A.

ANT

BLACK DATA SERIAL
DATA

INTERSITE
LINK

1. MSK DEMODULATOR
2. DETECT CHANNELS
3. DEMULTIPLEX
4. EDAC DECODE
 VALLOR CHANNELS
5. RECONST FIB BITS
6. OUTPUT SELECTED
 CHANNELS TO CRYPTO
7. RECONSTITUTE
 DECRYPTED DATA
8. OPTIONAL REM
 PROCESSING
9. OUTPUT PROCESS

RECEIVER

RED DATA
UP TO 4
50 BAUD

CHAN'LS

RECEIVE
CRYPTO
DEVICES

RED

BLACK

DATA

RECEIVE PLATFORM

BROADCAST
CONTROL AUTHORITY

INTERSITE

LINK

Optional REM

Coding

RED

DATA

BLACK

DATA

MSG
INJECTION

TRANSMIT
CRYPTO
DEVICE

OTHER NATO

REGIONS

NATO UNCLASSIFIED
 AComP-4724

 2 - 6 EDITION B VERSION 1
NATO UNCLASSIFIED

MODE TDM BAUD KEYING COMSEC

N1 Not required

N2 1 50 FSK VALLOR/ALTERNATE-LEF

N3 2 100 MSK VALLOR/ALTERNATE-LEF

N4 4 200 MSK VALLOR/ALTERNATE-LEF

N5 1 of 4 200 MSK VALLOR in designated NATO channel/national COMSEC on remaining channels

N6 1 of 2 100 MSK VALLOR in designated NATO channel/national COMSEC on remaining channel

N7 4 200 MSK VALLOR/ALTERNATE-LEF One or more channels containing REM

N8 2 100 MSK VALLOR/ALTERNATE-LEF One or more channels containing REM

N9 4 200 MSK ALTERNATE-LEF REM channels

N10 2 100 MSK ALTERNATE-LEF REM channels

NOTE 1: In mode N2 the VALLOR channel shall not invert the Fibonacci bit and shall not contain WAGNER
parity bits.

NOTE 2: REM modes N7, N8, N9 and N10 are defined in CHAPTER 3.

TABLE 1: VLF/LF TRANSMISSION MODES.

 ON-OFF-KEYED CARRIER SINGLE CHANNEL

The single channel mode using on-off-keyed carrier modulation with data encoded in
international Morse code is no longer a requirement of this standard.

 FREQUENCY-SHIFT-KEYING SINGLE CHANNEL

There shall be a single channel mode using Frequency-shift-keying (FSK) modulation with 7.0-
unit START-STOP International Telegraph Alphabet (ITA) No.2 coded characters at 50 baud.
The system shall operate with crypto covered text from either the ALTERNATE-LEF or
VALLOR crypto systems. Advance agreement between the cooperating BCS and Receive
Platform shall be required as to which crypto system is to be used. In mode N2, the VALLOR
channel shall not invert the Fibonacci bit and shall not contain WAGNER parity bits.

 NATO MULTICHANNEL

The NATO VLF/LF network shall operate in Minimum-Shift-Keying (MSK) multichannel modes
which shall be of two forms:

a. Two channel operation;

b. Four channel operation.

Each channel shall operate at 50 baud. Each channel carrying data shall be covered with a
separate cryptographic unit, using unique crypto keying material. Security among channels
shall be maintained from the BCS through to the Receiver Platforms which are subscribers to
a particular channel of the VLF/LF transmission. A serial data stream comprised of the
channels shall be formed by time division multiplexing at the VLF/LF Transmitter Complex.
This stream shall be 100 baud for two channels and 200 baud for four channels. MSK
modulation shall be used. Filler data shall be placed on channels for which there are no
operational messages to be relayed.

For modes N3, N4, N5 and N6, channel 1 shall be operated as a VALLOR covered channel;
Channels 2, 3 and 4 shall operate with VALLOR or ALTERNATE-LEF covered data mixed in
any combination. Advanced agreement shall be required between the Broadcast Control
Station and the subscriber Receive Platform as to the channel on which the messages are to
be placed and the type (VALLOR or ALTERNATE-LEF) of crypto equipment which is to be
used. Coding of information with the ALTERNATE-LEF shall be 7.0 unit START-STOP ITA

NATO UNCLASSIFIED
 AComP-4724

 2 - 7 EDITION B VERSION 1
NATO UNCLASSIFIED

No.2. Coding of information with the VALLOR shall be 7.0 unit 64-ary ITA No. 2. Inverted
FIBONACCI bits, of a VALLOR covered channel are necessary to identify the reference
channel of a STANAG 4724 multi-channel MSK transmission. They must only appear in
channel one. Other channels must not contain sequences which resemble inverted
FIBONACCI bit sequences.

NATO modes N7, N8, N9 and N10 shall operate as defined in CHAPTER 3.

 SHARED NATO TRANSMISSION

The network shall provide for the use of a NATO multichannel facility for the transmission of
National broadcasts. The National broadcast shall comply with the transmission
characteristics specified herein for a NATO transmission.

2.1.2. CHARACTERISTICS

2.1.2.1. INTERSITE LINKS

This standard introduces no new requirements or functionality to the intersite links, allowing
any mode to be implemented within the performance requirements of previous editions.

 DATA LINKS

Intersite links shall be provided between each BCS and the VLF/LF Transmitter Complex.
Intersite link communications shall include a primary data channel for transmission of the data
for relay over the VLF/LF transmitter and a secondary data channel to replace the primary
channel in event of circuit outage. The secondary channel may be dedicated or switched
service. The general performance requirements shall be as shown in Table 2 assuming an
errorless input at the message injection site.

VLF/LF Mode Characteristics

FSK Shall exhibit a character error rate 10-5 for a 50 baud data channel

MSK Shall be as for FSK or for a voice frequency channel or higher data rate channel with error detection and

correction to meet the character error rate of 10-5

TABLE 2: INTERSITE LINK GENERAL CHARACTERISTICS.

 ORDER WIRE

An order wire shall be provided to connect the Broadcast Co-ordination Authority, the BCS
and the VLF/LF Transmitter Complex The order wire may be voice or telegraphic and may be
either dedicated or switched (dial up).

2.1.2.2. VLF/LF TRANSMITTER

 RADIO CARRIER FREQUENCY

The VLF/LF Transmitter shall be operated on a radio carrier frequency within the VLF/LF band
in 10 Hz increments; e.g. shall be operated only on frequencies compatible with a receiver
tuneable in 10 Hz steps.

 FREQUENCY TOLERANCE

For FSK and MSK modes of operation the radio frequency carrier shall have a stability of ≤ 10-

8 and an absolute accuracy of ≤ 10-7. Stability shall be measured over a one day period and
accuracy shall be measured over a one month period.





NATO UNCLASSIFIED
 AComP-4724

 2 - 8 EDITION B VERSION 1
NATO UNCLASSIFIED

 PHASE

The following sub-paragraphs shall be applicable to FSK and MSK modes of operation.

2.1.2.2.3.1. PHASE STABILITY

The short term stability of all radio frequencies shall require the phase jitter be not greater than
± 1.0 degree in a 50 Hz bandwidth when averaged over one hundred 20 ms sample periods.

2.1.2.2.3.2. PHASE LINEARITY

Deviation in phase response in the complete VLF/LF transmitter complex (including the
antenna) shall not exceed 130 from the linear over the radio frequency band about the selected
instantaneous transmission frequency as given in the following list:

Condition Radio Frequency Bandwidth

4-channel MSK 120 Hz

2-channel MSK 60 Hz

FSK 35 Hz

 BANDWIDTH

The minimum transmission bandwidth provided at the 3db points shall be 60 Hz for the FSK
or the 2 channel MSK modes and 120 Hz for the 4 channel MSK mode.

2.1.2.3. RECEIVER

The receiver shall process signals in the modes N2, N3, N4, N5, N6, N7 and N8 as specified
in paragraph 2.1.1.1. and additionally may process signals in the modes N9 and N10 (as
defined in CHAPTER 3). (No additional receiver functionality is required to process modes N7
and N8; additional BLACK REM processing is required in the receiver for modes N9 and N10
as described in CHAPTER 3).

 FREQUENCY SELECTION

The carrier frequency of the receiver shall be tuneable to any 10 Hz step in the VLF/LF range.

 MESSAGE FIDELITY

The minimum signal-to-noise ratio performance of the receiver system for NATO modes N2,
N3, N4, N5 and N6 shall be as specified in TABLE 3 Performance requirements for REM
operation (modes N7, N8, N9 and N10) are defined in CHAPTER 4.

MODE Required Signal-to-noise ratio (dB)*

FSK Non-coherent +2.0

Coherent -4.0

MSK 2 Channel -12.7

4 Channel -9.0

Shared Transmissions -9.0

*Character error rate = 10-3 for FSK and MSK, SNR measured in 1000 Hz bandwidth.
Noise is atmospheric with Vd= 10 dB measured in 1000 Hz bandwidth

TABLE 3: RECEIVER SYSTEM PERFORMANCE IN ATMOSPHERIC NOISE.

2.2. DETAILED REQUIREMENTS

NATO UNCLASSIFIED
 AComP-4724

 2 - 9 EDITION B VERSION 1
NATO UNCLASSIFIED

2.2.1. ON-OFF-KEYED CARRIER MODE

On-off-keyed carrier mode is no longer a requirement of this standard.

2.2.2. FSK SINGLE CHANNEL

There shall be a single channel mode which uses FSK modulation of the VLF/LF radio
frequency carrier. The channel shall operate at 50 baud.

2.2.2.1. FUNCTIONAL ALLOCATION

 BROADCAST COORDINATION AUTHORITY (BCOA)

The BCOA shall ensure that the Broadcast Control Station, VLF/LF Transmitter Complex and
Receive Platform are advised when FSK single channel mode is to be used and whether the
VALLOR or ALTERNATE-LEF crypto equipment is to be used.

 BROADCAST CONTROL STATION

The BCS shall perform the following functions:

a. Inject encrypted messages into the network.

b. Provide for an interface with an intersite link.

 VLF/LF TRANSMITTER COMPLEX

The VLF/LF Transmitter Complex shall perform the following functions:

a. Interface and accept data from an intersite link;

b. Modulate a VLF/LF carrier with the FSK signal;

c. Amplify and transmit the modulated radio frequency.

 RECEIVE PLATFORM

The Receive Platform shall perform the following functions:

a. Receive the VLF/LF signal on a suitable antenna subsystem;

b. Provide a receive terminal capable of receiving and demodulating the VLF/LF signal;

c. Output the demodulated data at 50 baud to either a VALLOR or ALTERNATE-LEF crypto
equipment as designated by the Broadcast Coordinating Authority;

d. Process the decrypted data and output the data to a printer or other peripheral unit.

2.2.2.2. CHARACTERISTICS

 DATA FORMAT

Characters in the message shall be coded in 7.0-Unit START-STOP ITA No. 2 code as shown
in TABLE 4.

NATO UNCLASSIFIED
 AComP-4724

 2 - 10 EDITION B VERSION 1
NATO UNCLASSIFIED

Bit numbers
7 6 5 4 3 2 1

Letters Case Figures Case

1 0 0 0 0 0 0
1 0 0 0 0 1 0
1 0 0 0 1 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 0
1 0 0 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 1 1 0
1 0 1 0 0 0 0
1 0 1 0 0 1 0
1 0 1 0 1 0 0
1 0 1 0 1 1 0
1 0 1 1 0 0 0
1 0 1 1 0 1 0
1 0 1 1 1 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 0 0 1 0
1 1 0 0 1 0 0
1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 0 1 0 1 0
1 1 0 1 1 0 0
1 1 0 1 1 1 0
1 1 1 0 0 0 0
1 1 1 0 0 1 0
1 1 1 0 1 0 0
1 1 1 0 1 1 0
1 1 1 1 0 0 0
1 1 1 1 0 1 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0

No Action
E

Line Feed
A

Space
S
I
U

Car. Ret
D
R
J
N
F
C
K
T
Z
L
W
H
Y
P
Q
O
B
G

Figures
M
X
V

Letters

No Action
3

Line Feed
 -

Space
(Apos)'

8
7

Car. Ret
WRU

4
Aud Sig

(Comma),
Unassigned

:
(
5
+
)
2

Unassigned
6
0
1
9
?

Unassigned
Figures

.
/
;

Letters

Notes: 1. Transmission order is Bit 1 - Bit 7
 2. Bit 1 is a START bit and shall be a 0 (space)
 3. Bit 7 is a STOP bit and shall be a 1 (Mark)

TABLE 4: 7.0 UNIT START-STOP ITA NO.

 SECURITY PROVISIONS

Message security shall be provided by on-line encryption of messages at the Broadcast Control
Station (BCS) and on-line decryption at the Receive Platform. Security for National originators
shall be achieved through distribution control procedures of the on-line crypto keying materials
or through prior off-line encryption.

2.2.2.2.2.1. CRYPTOGRAPHIC EQUIPMENT

The FSK single channel mode shall be compatible with both the VALLOR and ALTERNATE-
LEF cryptographic equipment. The VALLOR shall be operated in the 6.0 Stepped Digital mode.
The ALTERNATE-LEF shall be operated in the clock start mode where applicable.

2.2.2.2.2.2. MESSAGE FLOW SECURITY

Message flow security shall be provided by maintaining a continuous cryptographic covered
VLF/LF transmission. It shall be a broadcast management function of the Broadcast

NATO UNCLASSIFIED
 AComP-4724

 2 - 11 EDITION B VERSION 1
NATO UNCLASSIFIED

Coordination Authority to place, or cause to be placed from a BCS, symbols encrypted with
either VALLOR or ALTERNATE-LEF at all times.

 INTERSITE LINKS

Intersite links shall be in accordance with paragraph 2.1.2.1.

 VLF/LF TRANSMITTER COMPLEX PROCESSING

2.2.2.2.4.1. INTERSITE LINK PHASE DRIFT

The intersite link shall be provided with not less than a ± 8 bit buffer which shall compensate
for the phase difference which can be accumulated between the crypto equipment and the
transmitter standard during a 24 hour period. The input data shall be retimed at the transmitter
complex to cause the transmitted signal to comply with this standard (see 2.1.2.2.). The data
shall otherwise be transmitted as received over the intersite link.

2.2.2.2.4.2. FREQUENCY-SHIFT-KEYING MODULATION

Frequency-shift-keying modulation shall use two sinusoids of different frequencies to
distinguish between a MARK and a SPACE. The frequency shifts shall be phase continuous
and be ± 25 Hertz centred about the carrier frequency. The upper frequency shift shall
represent a SPACE.

2.2.2.2.4.3. TRANSMITTER SUBSYSTEM BANDWIDTH

The VLF/LF transmitter subsystem bandwidth shall be in accordance with paragraph 2.1.2.2.4.

2.2.2.2.4.4. RADIO FREQUENCY

The carrier frequency characteristic of the transmitted signal shall be in accordance with
paragraph 2.1.2.2.1.

2.2.2.2.4.5. PHASE

The phase stability and linearity of all transmitted radio frequencies shall be in accordance with
paragraph 2.1.2.2.3.

2.2.2.2.4.6. RECEIVE SYSTEM

The receiver system shall demodulate the FSK modulated radio frequency and output a signal
whose characteristics are compatible with the VALLOR and ALTERNATE-LEF crypto
equipment. The receiver shall be in accordance with paragraph 2.1.2.3.

2.2.3. NATO MULTICHANNEL MODES N3, N4, N5 AND N6

There shall be two NATO multichannel modes; a two channel and a four channel mode. Each
channel shall operate at 50 baud. The two channel mode shall operate at a VLF/LF
transmission rate of 100 baud and the four channel mode shall operate at 200 baud. MSK shall
be used on the VLF/LF transmission.

2.2.3.1. NATO MULTICHANNEL NETWORK DIAGRAM

The network operating in the NATO multichannel modes shall be as shown in Figure 2.

NATO UNCLASSIFIED
 AComP-4724

 2 - 12 EDITION B VERSION 1
NATO UNCLASSIFIED

2.2.3.2. FUNCTIONAL ALLOCATION

 BROADCAST COORDINATION AUTHORITY (BCOA)

The BCOA shall perform the following functions:

a. Control the allocation of channels to the Broadcast Control Stations;

b. Control the assignment of mode characteristics to assure interoperability among the
network nodes.

c. Provide for encrypted filler to be transmitted over all channels which are not allocated to
a Broadcast Control station for operations;

d. Present the clear text message to the assigned crypto system;

e. Encrypt the message using the VALLOR or ALTERNATE-LEF crypto system as
assigned;

f. Provide encrypted filler when no messages are available for injection or when tasked by
the Broadcast Coordination Authority.

 BROADCAST CONTROL STATIONS (BCS)

The BCS shall perform the following functions:

a. Provide for an interface with an intersite link.

 VLF/LF TRANSMITTER COMPLEX

The VLF/LF Transmitter Complex shall perform the following functions:

a. Interface with and accept data from the intersite links;

b. Place the data received from the BCS's on the VLF/LF transmitter in accordance with
the channel allocation specified by the VLF/LF Broadcast Coordination Authority;

c. Encode VALLOR encrypted data into a (13, 12) Wagner code;

d. Maintained unchanged the signal structure of ALTERNATE-LEF encrypted data received
over the intersite link;

e. Multiplex the channels into a serial stream;

f. Operate on (invert sense of) the Fibonacci bits on the data to be transmitted over channel
one;

g. Generate an MSK signal;

h. Modulate a VLF/LF carrier with the MSK signal and amplify and transmit this modulated
radio frequency;

i. Generate a signal which is in accordance with paragraph 2.2.3.3.5.3 and place this clear
text signal on the appropriate channel whenever there is no signal for that channel
available from a Broadcast Control Station.

 RECEIVE PLATFORM

The Receive Platform shall perform the following functions:

a. Receive the VLF/LF signal on a suitable antenna subsystem;

b. Provide a receive terminal capable of receiving, demodulating one channel, two and four
channel MSK transmissions, in addition, demultiplexing two and four channel
transmissions;

NATO UNCLASSIFIED
 AComP-4724

 2 - 13 EDITION B VERSION 1
NATO UNCLASSIFIED

c. Automatically identify channels and output these channels corresponding to operator
request;

d. Perform error correction on the VALLOR encrypted, WAGNER encoded, channels;

e. Reconstitute the Wagner parity bits to Fibonacci bits prior to outputting the signal to the
VALLOR equipment for decryption;

f. Pass ALTERNATE/LEF encrypted channels for decryption;

g. Process the decrypted data and output the data to a printer or other peripheral unit.

2.2.3.3. CHARACTERISTICS

 DATA FORMATS

Characters in the message shall be encoded into the 7.0 unit 64-ary ITA No 2 code as shown
in TABLE 5.

Bit numbers Letters Case Bit numbers Figures Case

7 6 5 4 3 2 1 7 6 5 4 3 2 1

1 0 0 0 0 0 0 No Action 1 0 0 0 0 0 1 No Action

1 0 0 0 0 1 0 E 1 0 0 0 0 1 1 3

1 0 0 0 1 0 0 Line Feed 1 0 0 0 1 0 1 Line Feed

1 0 0 0 1 1 0 A 1 0 0 0 1 1 1 -

1 0 0 1 0 0 0 Space 1 0 0 1 0 0 1 Space

1 0 0 1 0 1 0 S 1 0 0 1 0 1 1 (Apos)'

1 0 0 1 1 0 0 I 1 0 0 1 1 0 1 8

1 0 0 1 1 1 0 U 1 0 0 1 1 1 1 7

1 0 1 0 0 0 0 Car. Ret 1 0 1 0 0 0 1 Car. Ret

1 0 1 0 0 1 0 D 1 0 1 0 0 1 1 WRU

1 0 1 0 1 0 0 R 1 0 1 0 1 0 1 4

1 0 1 0 1 1 0 J 1 0 1 0 1 1 1 Aud Sig

1 0 1 1 0 0 0 N 1 0 1 1 0 0 1 (Comma),

1 0 1 1 0 1 0 F 1 0 1 1 0 1 1 Unassigned

1 0 1 1 1 0 0 C 1 0 1 1 1 0 1 :

1 0 1 1 1 1 0 K 1 0 1 1 1 1 1 (

1 1 0 0 0 0 0 T 1 1 0 0 0 0 1 5

1 1 0 0 0 1 0 Z 1 1 0 0 0 1 1 +

1 1 0 0 1 0 0 L 1 1 0 0 1 0 1)

1 1 0 0 1 1 0 W 1 1 0 0 1 1 1 2

1 1 0 1 0 0 0 H 1 1 0 1 0 0 1 Unassigned

1 1 0 1 0 1 0 Y 1 1 0 1 0 1 1 6

1 1 0 1 1 0 0 P 1 1 0 1 1 0 1 0

1 1 0 1 1 1 0 Q 1 1 0 1 1 1 1 1

1 1 1 0 0 0 0 O 1 1 1 0 0 0 1 9

1 1 1 0 0 1 0 B 1 1 1 0 0 1 1 ?

1 1 1 0 1 0 0 G 1 1 1 0 1 0 1 Unassigned

1 1 1 0 1 1 0 Figures Filler 1 1 1 0 1 1 1 Unassigned

1 1 1 1 0 0 0 M 1 1 1 1 0 0 1 .

1 1 1 1 0 1 0 X 1 1 1 1 0 1 1 /

1 1 1 1 1 0 0 V 1 1 1 1 1 0 1 ;

1 1 1 1 1 1 0 Unassigned 1 1 1 1 1 1 1 Letters Filler

NATO UNCLASSIFIED
 AComP-4724

 2 - 14 EDITION B VERSION 1
NATO UNCLASSIFIED

Notes: 1. Transmission order is Bit 1 - Bit 7.
2. Bit 7 is a STOP bit and shall be a 1 (Mark).
3. Bit 1 is a START bit and shall be a 0 (space) for the 64-ary letters

alphabet and shall be a 1 (Mark) for the 64-ary figures alphabet.
4. The "Figures Filler" and "Letters Filler" characters correspond to the

open "Figure Shift" and "Letters Shift" characters of the 7.0 unit 32-
ary ITA no. 2 alphabet, respectively.

TABLE 5: 7.0 UNIT 64-ARY ITA NO. 2.

 INTERSITE LINK MESSAGE DATA FORMATS

There are a number of methods to obtain the general performance requirements of paragraph
2.1.2.1. to give for MSK Channels an intersite CER of 10-5. An example of one method is given
in FIGURE 3 showing the Format of Message Data at Network nodal points.

B

6
 1

B
6
 2

B
6
 3

B
6
 4

F 1
F 2
F 3
F 4
B

1
 1

B
1
 2

B
1
 3

B 4

B

6
 3

B
6
 4

W 1
W 2
W 3
W 4
B

1
 1

B
1
 2

B
1
 3

B
1
 4

B
2
 1

B 2

 BIT CHAN

Legend

 st = Start Bit
 sp = Stop Bit
 C = Encrypted
 F = Fibonacci Bit
 F = inverted Fibonacci Bit
B

1,2,3
= Vallor Encrypted Bit

 1,2,3 within a channel

s
p

0 1 1 1 0 st

C

s
p

1 1 1 1 1 st

Letters

s
p

1 0 1 1 1 st

1

s
p

1 1 0 1 1 st

Figures

s
p

1 1 0 0 1 st

B

s
p

0 1 1 1 0 0

C

s
p

1 1 1 1 1 1

LTRS Filler

s
p

1 0 1 1 1 1

1

s
p

1 1 0 1 1 0

Fig Filler

1 1 0 0 1 0

B

F

C

F
p

LTRS Filler

F

1

F

Fig Filler B

s
p

F

a

b

c

F

C

W
p

LTRS Filler

F

1

W

Fig Filler B

F
e

F

C

W
p

LTRS Filler

F

1

W

Fig Filler B

F
f

13,12 Wagner Block

Frame Code Copy #1 Copy #2 Copy #3

Copy #5

111110 100101 110011 ECPARITY CHAR 2 CHAR 1
30 Bits

18 Bits 150 Character Bits (= 250 milliseconds @ 600bps)

d

C LTRS Filler 1 Fig Filler B
g

Channel 2 (Vallor)(Same as Channel 1)

Code
Conversion

Encrypt
(VALLOR)

ISL
Encod

e

ISL
Decode

VLF,LF
Encod

e

Channel 3 (Vallor)(Same as Channel 1)

Channel 4 (Non Vallor)

VLF,LF
Encod

e

M
u
l
t
i
p
l
e
x

Decrypt
(VALLOR)

Convert Code
Reconstitute

Pre-Decryption
Process

14.
13.

12. 11.

7.

VLF
/LF

6. 5. 4. 2. 1.

MSG
in

MSG
out

Broadcast Control Station VLF/LF Transmitter Complex Receiver Platform

– e e

h

NATO UNCLASSIFIED
 AComP-4724

 2 - 15 EDITION B VERSION 1
NATO UNCLASSIFIED

1. The coding of the input message may be in any code but shall be restricted to the symbols available in ITA
No. 2. FIGURE 3 a shows the form assuming that a 7.0 unit START-STOP ITA No. 2 code is used (see
TABLE 4).

2. The coding of message input into the VALLOR equipment shall be in the 7.0 unit 64-ary ITA no. 2 alphabet
(see TABLE 5). The Figures Filler and Letters Filler characters correspond to the 7.0 unit 32-ary ITA no. 2
Figures Shift and Letters Shift characters, respectively. An example of the 64-ary coding with filler characters
is shown in FIGURE 3 b.

3. Encryption by the VALLOR equipment operating in the 6.0 Stepped Digital mode will result in bits 1 through
6 being encrypted and bit 7 (STOP) being substituted with an unencrypted and deterministic Fibonacci bit.
This form, with filler characters present, is shown in FIGURE 3 c.

4. An example of coding over the intersite link is shown in FIGURE.d. Other schemes which provides a CER
equal or better than 10 minus 5 may be used. The requirements of 2.2.3.3.4. apply.

5. The signal received over the intersite link at the VLF/LF Transmitter Complex shall be restored to the form
output by the VALLOR equipment (see FIGURE 3 c).

6. The encoding of a channel for VLF/LF transmission shall include blocking the information into two character
groups, substituting a parity bit for every second Fibonacci bit to form a (13,12) Wagner odd parity code
block (odd number of 1's) over the information bits (Fibonacci bit excluded), and Inverting the sense of the
remaining Fibonacci bits. The resulting form with filler characters present is shown in FIGURE 3 e.

7. The encoding of the other VALLOR covered channels (in this example channel 2 and 3) is the same as for
channel 1, except that the Fibonacci bits are not inverted. The resulting form with filler characters present is
shown in FIGURE 3 f.

8. The coding of messages input into the ALTERNATE-LEF equipment shall be 7.0 unit START-STOP ITA No.
2 (see TABLE 4 and FIGURE 3 a).

9. Processing by the ALTERNATE-LEF equipment will result in all bits being encrypted as shown in FIGURE
3 g.

10. The signal restored to the form output from the ALTERNATE-LEF equipment (see FIGURE 3 g) is left
unchanged.

11. Bits from the channels shall be sequentially time division multiplexed in accordance with paragraph
2.2.3.3.5.4. The form and relationship, for this example, is shown in FIGURE 3 h.

12. Pre-decryption processing of the received signal includes demultiplexing (including proper channel
numbering and resolution of signal sense ambiguity). For VALLOR covered channels it shall also include
performing error correction (using the Wagner code) and restoring the Fibonacci bits such that the outputted
signal is in the same form as that generated by the transmit VALLOR equipment as shown in FIGURE 3 c.
For ALTERNATE-LEF covered channels there is no code conversion and the form is shown in FIGURE 3 g.

13. Decryption by the VALLOR equipment results in the clear text message in 7.0 unit 64-ary ITA NO. 2 code
as shown in FIGURE 3 b.

14. The 7.0 unit 64-ary ITA No. 2 code shall be converted to 7.0 unit START-STOP ITA NO. 2, or other coding
compatible with the output peripheral.

15. Following decryption by the ALTERNATE-LEF equipment, the messages will be in clear text 7.0 unit START-
STOP ITA NO. 2.

FIGURE 3: NETWORK DATA FORMAT DESCRIPTION.

NATO UNCLASSIFIED
 AComP-4724

 2 - 16 EDITION B VERSION 1
NATO UNCLASSIFIED

 SECURITY PROVISIONS

Message security shall be provided on a per channel basis. This message security shall be
provided by encryption of messages at the BCS and decryption at the subscriber Receiver
Platform. Each channel shall utilise a separate crypto unit and each crypto unit shall have a
unique crypto variable. Inter-channel security shall be achieved through distribution control
procedures of the crypto keying materials.

2.2.3.3.3.1. CRYPTOGRAPHIC EQUIPMENT

Channel one of two or four shall be compatible with the VALLOR equipment. Channels 2, 3
and 4 shall be compatible with both the VALLOR and the ALTERNATE-LEF cryptographic
equipment. The system shall operate with any combination of VALLOR and ALTERNATE-
LEF equipment on channels 2, 3 and 4. The VALLOR equipment shall be operated in the 6.0
Stepped Digital mode, the ALTERNATE-LEF equipment shall be operated in the Clock Start
mode where applicable.

2.2.3.3.3.2. MESSAGE FLOW SECURITY

Message flow security shall be provided by maintaining a continuous cryptographic covered
transmission over all channels normally used for passing operational messages. It shall be a
broadcast management function of the Broadcast Coordination Authority to assure that BCSs
are tasked at all times to provide crypto covered data to the VLF/LF transmitter complex. The
Broadcast Co-ordination Authority shall place, or cause to be placed from BCSs, symbols
encrypted with either the VALLOR or ALTERNATE-LEF. A BCS shall provide a continuous
flow of encrypted symbols during the entire duration of channel allocation time. In the event
there is no operational message for transmission, the channel shall be made continuous with
filler symbols encrypted with the same equipment used for operational messages.

 INTERSITE LINKS

Intersite links shall be provided between each BCS and VLF/LF Transmitter site. Intersite link
communications shall include a primary data channel for transmission of the data for relay over
the VLF/LF transmitter, a secondary channel to replace the primary channel in event of circuit
outage, and an order wire for coordination. The secondary data channel may be dedicated or
switched service (dial up). The quality of the intersite links shall be such as to exhibit a
character error rate less than or equal to 10-5 assuming an errorless input at the BCS.
Transmitter Complex shall be equipped to receive and process the intersite link.

 VLF/LF TRANSMITTER COMPLEX PROCESSING

2.2.3.3.5.1. INTERSITE LINK PHASE DRIFT

Each intersite link termination shall be provided with not less than an 8 bit buffer which shall
compensate for the phase difference which can be accumulated during a 24 hour period
among input signals.

2.2.3.3.5.2. INPUT DATA CONTROL

Input data processing shall provide for channel user switching without causing an interruption
or incongruity in the multiplexing scheme which would upset the continuity of data transmission
or cause loss of data at the receiver.

2.2.3.3.5.3. MODE CAPACITY INTEGRITY

There shall be no interruption of data flow over the VLF/LF multiplexed transmission. If for any
reason the transmit site should not receive encrypted data for one or more channels, a signal
shall be generated locally. The locally generated signal shall mimic the normal data format with

NATO UNCLASSIFIED
 AComP-4724

 2 - 17 EDITION B VERSION 1
NATO UNCLASSIFIED

respect to Fibonacci and parity bits but shall not be encrypted. When a channel is not intended
to contain Fibonacci bits, for example RED/BLACK REM, an alternate signal shall be used.
This shall be as defined in section 3.2 for RED/BLACK REM.

The Information to be placed on an idle MSK channel shall be a constant 64-ary ITA no. 2
Letter Filler, RY, Figure Filler, Channel Number (e.g. 1, 2, 3, 4). The channel number shall
represent the channel on which the signal is placed. The idle channel signal shall contain the
64-ary filler characters. The Fibonacci sequence for channel one shall be a string of constant
high data states (one’s) and for channels 2, 3 and 4 shall be a string of constant low data states
(zero's). Note that the channel one stream represents the Fibonacci sequence in the already
inverted state.

2.2.3.3.5.4. CHANNEL MULTIPLEXING

Following processing of the signals received from the Broadcast Control Stations to obtain the
code forms specified in FIGURE 3 a and FIGURE 3 f they shall be time division multiplexed
into a serial 100 baud stream for a two channel operation and into a 200 baud serial stream
for four channel operation. The time division multiplexing shall be on a bit sequential basis and
shall follow channel numbering. Data on VALLOR covered channels shall be framed and
sequentially aligned in the multiplexing as shown in Figure 4. Signals which are ALTERNATE-
LEF encrypted may be multiplexed into the stream without regard to character bit sequencing
with respect to channel one. Figure 4 shows the multiplexing with all channels VALLOR
covered and Figure 5 where channel 3 is ALTERNATE-LEF covered.

FIGURE 4: ALL CHANNELS VALLOR COVERED.

KWT-46
Keystream 1

KWT-46
Keystream 2

KWT-46
Keystream 3

KWT-46
Keystream 4

1 x 200
baud

1 1 1 1 1 1 F 1 1 1 1 1 1 F

2 2 2 2 2 2 F 2 2 2 2 2 2 F

3 3 3 3 3 3 F 3 3 3 3 3 3 F

4 4 4 4 4 4 F 4 4 4 4 4 4 F

1 2 3 4 F F F F 1 2 3 4 1 2 3 4 1 2 3 4 W W W W 1 2 3 4

Bit 0 Bit 13

1 1 1 1 1 1 F

2 2 2 2 2 2 F

3 3 3 3 3 3 F

4 4 4 4 4 4 F

Bit 6

1 2 3 4 F F F F

Sequential
keystream

Multiplexing

4 x 50 baud

4 4 4 4 4 4 F 4 4 4 4 4 4 F

W
Alternate Fibonacci bits replaced by Wagner
parity bits

Wagner bit = (13, 12) parity code

Invert Fib bits on Ch1

Fibonacci bit

NATO UNCLASSIFIED
 AComP-4724

 2 - 18 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 5: MULTIPLEXING OF BROADCAST DATA STREAM – ALTERNATE-LEF ON
CHANNEL 3.

2.2.3.3.5.5. MINIMUM SHIFT-KEYING MODULATION

MSK is a form of phase shift keying. This modulation technique will allow transmissions of 1.6
bits per Hz of radio frequency bandwidth as defined at the 3dB points. The transmitted signal
shall appear as a phase-continuous frequency-shift-keyed signal of constant amplitude. The
frequency shift shall be ± ¼ of the modulation rate and shall occur at the modulation rate. This
corresponds to a modulation index (m) of ½. The intelligence (mark or space) is contained in
the phase shifts and is not consistent with the frequency shifts. The intelligence shall be related
to the phase shifts in the following manner. Two sub channels of binary data shall modulate
the phase of two sinusoidally weighted components of the reference signal in accordance with
the following expression:

Where:

 A is the constant amplitude MSK signal;
 ω0 is the frequency of the reference signal (carrier frequency);
 ωf is the frequency of the sinusoidal weighting functions and is equal to π/2T
 θx shall equal 0 degrees for x sub channel MARKS and 180 degrees for x channel

SPACES. These values shall be constant during each ½ cycle of the y sub channel
weighting function and equivalent to binary data stream samples at zero crossover
instants of sin(ωft)

 θy shall equal 90 degrees for y sub channel MARKS and 270 degrees for y channel
SPACES. These values shall be constant during each ½ cycle of the y sub channel
weighting function and equivalent to binary data stream samples at zero crossover
instants of cos(ωft)

 T is equal to the time period of the binary data rate.

           

























  



  



componenty

functionweighting
subchannely

f
y

componentx

functionweighting
subchannelx

fx
ttttA  cossinsinsin

00

1 1 1 1 1 1 F 1 1 1 1 1 1 F

2 2 2 2 2 2 F 2 2 2 2 2 2 F

3 3 3 3 3 3 3
F

3 3 3 3 3 3 3

4 4 4 4 4 4 F 4 4 4 4 4 4 F

1 2 3 4 F F 3 F 1 2 3 4 1 2 3 4 1 2 3 4 W W 3 W 1 2 3 4

Bit 0 Bit 13

1 1 1 1 1 1 F

2 2 2 2 2 2 F

3 3 3 3 3 3 3

4 4 4 4 4 4 F

Bit 6

1 2 3 4 F F 3 F

Sequential
keystream
Multiplexing

4 x 50
baud

1 x 200 baud
No parity bits on Alternate-LEF Channel 3 No Fib bits on Alternate-LEF channel

All bits covered on Alternate-LEF Channel 3

KWT-46
Keystream 1

KWT-46
Keystream 2

Alternate LEF
Keystream 3

KWT-46
Keystream 4

NATO UNCLASSIFIED
 AComP-4724

 2 - 19 EDITION B VERSION 1
NATO UNCLASSIFIED

2.2.3.3.5.6. VLF/LF TRANSMITTER SUBSYSTEM BANDWIDTH

The VLF/LF transmitter subsystem bandwidth shall be in accordance with paragraph 2.1.2.2.4.

2.2.3.3.5.7. RADIO FREQUENCY

The carrier frequency shall be in accordance with paragraph 2.1.2.2.1 and paragraph 2.1.2.2.2.

2.2.3.3.5.8. PHASE STABILITY

The phase stability and linearity of all radio frequencies shall be in accordance with paragraph
2.1.2.2.3.

 RECEIVER SYSTEM

The receiver system shall operate in accordance with paragraph 2.1.2.3.

2.2.3.3.6.1. SYNCHRONIZATION

In the multichannel modes, the receiver shall synchronize to the incoming signal in not more
than 60 seconds with not less than 0.995 probability. This specification shall be exclusive of
crypto unit synchronization and shall be at a signal-to-noise ratio of 8dB below the values
specified in TABLE.

2.2.3.3.6.2. CHANNEL SELECTION

The receiver system shall provide for operator selection of preferably not less than two
channels to be output processed. The processing of these selected channels shall be
automatic except that provisions shall be provided for manual reset of the system in the case
of false receiver processing. False receiver processing shall occur no more than one time in
100 trials under the conditions specified in TABLE 2.

2.2.3.3.6.3. ALTERNATE-LEF ENCRYPTED SIGNAL PROCESSING

Channels which are received and encrypted with the ALTERNATE-LEF system shall be output
to an ALTERNATE-LEF equipment for decryption.

2.2.3.3.6.4. VALLOR ENCRYPTED SIGNAL PROCESSING

Channels which are VALLOR encrypted shall be processed for error correction and
reconstitution of the Fibonacci bits prior to routing to the VALLOR equipment for decryption.

Following decryption they shall be further processed for conversion to 7.0 unit START-STOP
ITA No. 2 code or other coding which is compatible with output peripheral terminals.

NATO UNCLASSIFIED
 AComP-4724

 3 - 20 EDITION B VERSION 1
NATO UNCLASSIFIED

CHAPTER 3 NATO RATE/RANGE EXTENSION (REM)

3.1. NATO Rate/Range Extension Modes

This part defines NATO Rate/Range Extension Modes (REM) for use with VLF broadcasts.
REM functionality is incorporated by compressing, protecting, forward error correction coding,
interleaving and packetising VLF broadcast streams before multiplexing and transmitting over
the air. The objective of REM is to improve broadcast performance over non-REM channels.
Different coding schemes are used to optimise how the performance benefit is gained. REM
may be used to increase data throughput within a 50 bits per second ‘over the air’ channel by
increasing the effective data rate through compression. Alternatively, REM may be used to
increase the broadcast range and coverage area, or to enable a reduction in required
transmitter power, without a corresponding change in average throughput. NATO REM will
enable VLF reception beyond the traditional NATO Area of Responsibility for existing NATO
VLF transmitters.

Two types of REM are available. RED/BLACK REM, offering the greatest performance
enhancements but requiring additional RED and BLACK side processing, and RED only REM,
which offers some of the enhancements of REM technology whilst retaining full backward
compatibility with existing VLF broadcast equipment. RED only REM may be introduced to
existing VLF systems by the introduction of RED side processor between the link encryption
device and the messaging system. Different packet structures and coding may be used within
each of these REM types to balance the performance gain towards data throughput increase
or towards range extension.

In this annex RED data and RED processing refers to data and processing on the plain
language side of the link encryption device. BLACK data and BLACK processing refers to data
and processing on the cipher text side of the link encryption equipment. RED/BLACK
processing requires processing on both the plain language and cipher text side of the link
encryption device.

3.1.1. NATO MULTICHANNEL REM MODES

NATO VLF multichannel broadcasts containing REM channels shall use modes N7, N8, N9 or
N10 as tabulated in paragraph 2.1.1.1. The modes are further defined below.

3.1.1.1. NATO MULTICHANNEL MODE N7

Multichannel mode N7 allows one or more channels of REM to be used in a four channel VLF
broadcast. The multi-channel mode N7 shall operate as the NATO multi-channel modes N4
and N5, as defined in paragraph 2.2.3, with the following exceptions: Channel one shall be a
VALLOR encrypted channel; this may be either a non REM VALLOR channel or a RED only
REM channel. The remaining channels shall comprise of VALLOR or ALTERNATE-LEF
channels that may be non-REM, RED REM or RED/BLACK REM encoded. One or more
channels may be designated as a NATO channel. A receive platform that is not REM enabled
will still be able to decode the non-REM components of a NATO multichannel broadcast
containing REM (RED or RED/BLACK) channels. A receive platform that is enabled for RED
only REM, shall be able to decode the non-REM and RED REM components of a NATO
multichannel broadcast containing RED REM or RED/BLACK REM channels.

3.1.1.2. NATO MULTICHANNEL MODE N8

Multi-channel mode N8 allows one or two channels of REM to be used in a two channel VLF
broadcast. The multi-channel mode N8 shall operate as the NATO multi-channel modes N3

NATO UNCLASSIFIED
 AComP-4724

 3 - 21 EDITION B VERSION 1
NATO UNCLASSIFIED

and N6, as defined in paragraph 2.2.3, with the following exceptions: Channel one shall be a
VALLOR encrypted channel; this may be either a non REM VALLOR channel or a RED only
REM channel. The second channel shall be VALLOR or ALTERNATE-LEF, and may be non-
REM, RED REM or RED/BLACK REM encoded. Either or both channels may be designated
as a NATO channel. A receive platform that is not REM enabled will still be able to decode the
non-REM component of a NATO multichannel broadcast containing a REM (RED or
RED/BLACK) channel. A receive platform that is enabled for RED only REM, shall be able to
decode the non-REM or RED REM component of a NATO multichannel broadcast containing
RED REM or a RED/BLACK REM channel.

3.1.1.3. NATO MULTICHANNEL MODE N9

Multichannel mode N9 allows for four channels of full RED/BLACK REM to be used in a four
channel VLF broadcast. The multi-channel mode N9 is an optional mode that removes reliance
of the multichannel broadcast on the VALLOR encryption equipment. The N9 mode shall
operate as the NATO multi-channel modes N4 and N5, as defined in paragraph 2.2.3, but all
four channels shall be RED/BLACK REM encoded. Header bits on the channel packets shall
be used for channel synchronization in the absence of a VALLOR channel. One or more
channels may be designated as a NATO channel.

3.1.1.4. NATO MULTICHANNEL MODE N10

Multichannel mode N10 allows for two channels of full RED/BLACK REM to be used in a two
channel VLF broadcast. The multi-channel mode N10 is an optional mode that removes
reliance of the multi-channel broadcast on the VALLOR encryption equipment. The N10 mode
shall operate as the NATO multi-channel modes N3 and N6, as defined in paragraph 2.2.3,
but both channels shall be RED/BLACK REM encoded. Header bits on the channel packets
shall be used for channel synchronization in the absence of a VALLOR channel. Either or both
channels may be designated as a NATO channel.

3.1.1.5. AUTO-DETECTION OF REM MODE

REM processors shall automatically detect, and correctly output data from non-REM and RED
REM channels. When RED/BLACK REM capability is implemented the REM processors shall
automatically detect and correctly output data from non-REM, RED REM and RED/BLACK
REM channels.

3.1.2. REM PACKET STRUCTURE

Different packet structures are implemented within each type of REM in order to allow the
characteristics of the mode to be optimised to the required benefit (e.g. range/throughput). This
standard implements two packet structures for each type of REM (RED/BLACK REM and RED
REM). For each type of REM, one packet structure has been optimised for increased range
and the second packet structure has been optimised for increased throughput. For each type
of REM, the packet structure optimised for increased range has been designated as ALPHA,
and the packet structure optimised for increased throughput has been designated as BRAVO.
Future editions of this standard may implement additional packet structures for either, or both
types, of REM.

Figure 6 shows the channel configurations allowed with ACOMP-4724 using the two channel
MSK NATO modes (Four channel modes would repeat the second channel for channels three
and four. Figure 6 also shows how ACOMP-4724 systems can be incrementally upgraded to
enable full performance gains.

NATO UNCLASSIFIED
 AComP-4724

 3 - 22 EDITION B VERSION 1
NATO UNCLASSIFIED

 STANAG 5030 Annex A N6

STANAG 5030 VLF
Multichannel System

Ch1 STANAG 5030 Annex A Vallor Channel

Ch2 STANAG 4724 Annex A Alternate LEF Channel

 STANAG 4724 Annex A N6
STANAG 4724
reintroduces the use
of Alternate LEF
channels

 STANAG 4724 Annex B RED ALPHA REM

Ch1 STANAG 4724 Annex B RED BRAVO REM

Ch2 STANAG 4724 Annex B RED/BLACK ALPHA REM

 STANAG 4724 Annex B N8
‘RED side processor’
upgrade allows use of
RED REM

 STANAG 4724 Annex B RED/BLACK BRAVO REM

Ch1

Ch2

 STANAG 4724 Annex B N8 ‘Full RED/BLACK’
upgrade allows
RED/BLACK REM to
be mixed with other
modes

Ch1

Ch2

 STANAG 4724 Annex B N10
‘Full RED/BLACK’
upgrade also enables
Full RED/BLACK
REM broadcasts

Ch1

Ch2

FIGURE 6: ACOMP-4724 CHANNEL CONFIGURATION AND UPGRADE OPTIONS.

3.1.2.1. RED/BLACK REM PACKET STRUCTURES

 RED/BLACK REM ALPHA PACKET STRUCTURE

The ALPHA packet structure has been optimized to increase the effective broadcast coverage
area, whilst keeping the channel throughput at approximately 50bps. Increased range is
obtained by compression, FEC coding, interleaving and packetisation of the broadcast data
stream prior to multiplexing and transmission. The ALPHA packet structure uses stronger FEC
coding (compared to the BRAVO FEC) to provide an increased broadcast coverage area. If
throughput and broadcast coverage are to be kept comparable with the modes defined in
CHAPTER 2, the ALPHA packet structure may allow a reduction in transmitter power. The
packet structure has been optimised to interface with VALLOR like encryption containing
deterministic Fibonacci bits. The BLACK side processing allows for stronger FEC coding
compared to the RED ALPHA mode. This provides increased performance compared to the
RED ALPHA mode.

 RED/BLACK BRAVO PACKET STRUCTURE

The BRAVO packet structure has been optimised to increase channel throughput whilst
keeping the effective range of the VLF broadcast at least comparable with the NATO modes
defined in CHAPTER 2. RED/BLACK BRAVO increases the channel throughput to
approximately 75bps. Increased throughput is obtained by compression, FEC coding,
interleaving and packetisation of the broadcast data stream prior to multiplexing and

NATO UNCLASSIFIED
 AComP-4724

 3 - 23 EDITION B VERSION 1
NATO UNCLASSIFIED

transmission. The BRAVO packet structure uses weaker FEC coding to enhance throughput
(compared to the ALPHA FEC schemes). The packet structure has been optimised to interface
with VALLOR like encryption containing deterministic Fibonacci bits.

3.1.2.2. RED REM PACKET STRUCTURES

 RED REM ALPHA PACKET STRUCTURE

The ALPHA packet structure has been optimized to increase the effective broadcast coverage
area, whilst keeping the channel throughput at approximately 50bps. Increased range is
obtained by compression, FEC coding, interleaving and packetisation of the broadcast data
stream prior to multiplexing and transmission. The ALPHA packet structure uses stronger FEC
coding (compared to the BRAVO FEC) to provide increased broadcast coverage area. If
throughput and broadcast coverage are to be kept comparable with the modes defined in
CHAPTER 2, the ALPHA packet structure may allow a reduction in transmitter power. The
packet structure has been optimised to interface with VALLOR like encryption containing
deterministic Fibonacci bits.

 RED REM BRAVO PACKET STRUCTURE

The BRAVO packet structure has been optimised to increase channel throughput whilst
keeping the effective range of the VLF broadcast at least comparable with the NATO modes
defined in CHAPTER 2. RED BRAVO increases the channel throughput to approximately
75bps. Increased throughput is obtained by compression, FEC coding, interleaving and
packetisation of the broadcast data stream prior to multiplexing and transmission. The BRAVO
packet structure uses a weaker FEC to enhance throughput (compared to the ALPHA FEC).
The packet structure has been optimised to interface with VALLOR like encryption containing
deterministic Fibonacci bits.

 AUTO-DETECTION OF REM PACKET STRUCTURE

REM processors shall use packet headers to automatically detect, and correctly output data
from the different REM modes. When RED/BLACK REM capability is implemented the REM
processors shall automatically detect and correctly output data from all packet structures
defined for both RED/BLACK REM and RED REM. When only RED REM capability is
implemented, the REM processors shall automatically detect and correctly output data from all
packet structures defined for RED REM only.

3.1.3. NATO RED/BLACK REM

Section 3.2.2 defines the NATO RED/BLACK REM. These modes incorporate a full
implementation of REM technology, providing data compression of NATO messages on the
RED equipment side and efficient FEC on the BLACK side. Frame synchronisation must be
maintained through the packet encryption/decryption process and over the air between the
BLACK processors to enable the compressed data to be recovered. This is achieved with
reference to accurate time of day information. A RED/BLACK REM channel appears to the
broadcast channel multiplexer as an ALTERNATE_LEF channel, regardless of the link
encryption employed; this is due to the REM coding process. Figure 7 shows how the NATO
RED/BLACK REM can be incorporated into the VLF broadcast system.

NATO UNCLASSIFIED
 AComP-4724

 3 - 24 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 7: FUNCTIONAL BLOCK DIAGRAM OF REM FOR NATO MULTI-CHANNEL
VLF/LF SUBMARINE BROADCAST.

3.1.4. NATO RED REM

Section 3.3.2 defines transition REM offering some of the benefits of REM technology whilst
retaining compatibility with equipment designed for the VLF multichannel modes of CHAPTER
2. A RED REM implementation can be wholly contained on the RED equipment side.
Specifically the transition modes do not require modification to VLF receivers or the addition
of BLACK side processing equipment. Figure 8 shows how the transition REM can be
integrated into the VLF broadcast system.

NATO MSK

Modulator

Tx

P
r
o
c
e
s
s
o
r

KWT
46 NATO VLF

Broadcasts

RED side REM
Processor

Ch1 – Non REM

Ch2 – RED REM

Ch3 – Non REM

Compress,
FEC encode,
Packetise,
Format.

Ch4 – RED/BLACK REM

KWT
46

KWT

46

KWT

46

Align Characters,
Invert Fib bits,
Wagner FEC,

MUX.

RED side REM

Processor

BLACK side

REM Processor

Tod

Align Ch1
to UTC.

Compress Fib,
FEC encode,
Format.

Compress,
Packetise,
Format.

Tod

Message
Handling

System

KWT

46 Modified
VLF

Receiver

RED side REM

Processor

Ch1 – Non REM

Ch2 – RED REM

Ch3 – Non REM

Noise reduction,
Matched filter,
Bit synchronisation,
Phase track,
----Non RED/BLACK REM ---
Frame and Demultiplex channel,
Wagner FEC decode,
Fibonacci bit correction.

Ch4 – RED/BLACK REM

KWT
46

KWT

46

KWT

46

Align Characters,
Frame packets,
FEC decode,
Expand data
Format output

RED side REM

Processor

Detect packets,
Expand data,

Format

Tod Tod

BLACK side

REM Processor

Frame packets,
FEC decode,
Expand Fibonacci bits,
Format data.

NATO UNCLASSIFIED
 AComP-4724

 3 - 25 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 8: FUNCTIONAL BLOCK DIAGRAM OF TRANSITIONAL REM FOR NATO
MULTI-CHANNEL VLF/LF SUBMARINE BROADCAST.

The transition modes implement lossless message compression of a VLF broadcast stream,
the addition of forward error correction and the packetisation of the data before the link
encryption device. As such, all additional processing can be implemented by a processor on
the RED side of the link. Similarly on reception, the additional processing is carried out on the
RED side of the link encryption device: unpacking, error correcting and uncompressing the
channel data.

3.1.5. PERFORMANCE ADVANTAGE OF REM

The design objective of a full RED/BLACK REM ALPHA implementation should provide a
performance advantage over a non-REM channel of approximately 13dB. The design objective
of a RED REM ALPHA implementation should provide a performance increase over a non-
REM channel of approximately 8dB.

The REM BRAVO modes defined in this section should increase the effective channel
throughput to approximately 75 bps. The performance of the BRAVO modes would be
expected to be approximately 3dB lower than the REM ALPHA modes,

Message
Handling
System

KWT
46 VLF

Receiver

RED side REM
Processor

Ch1 – Non REM

Ch2 – RED REM

Ch3 – Non REM

Noise reduction,
Matched filter,
Bit synchronisation,
Phase track,
Frame and Demultiplex channel,
Wagner FEC decode,
Fibonacci bit correction.

Ch4 – Non REM

KWT

46

KWT

46

KWT
46

Align Characters,
Frame packets,
FEC decode,
Expand data

Format output

NATO MSK
Modulator

Tx

P
r
o
c
e
s
s
o
r

KWT

46 NATO VLF
Broadcasts

RED side REM

Processor

Ch1 – Non REM

Ch2 – RED REM

Ch3 – Non REM

Compress,
FEC encode,
Packetise,
Format.

Ch4 – Non REM

KWT

46

KWT

46

KWT

46

Align Characters,
Invert Fib bits,
Wagner FEC,
MUX.

NATO UNCLASSIFIED
 AComP-4724

 3 - 26 EDITION B VERSION 1
NATO UNCLASSIFIED

3.1.6. RECEIVER PERFORMANCE

The test methodology and receiver performance of NATO REM modes is defined in CHAPTER
4.

3.2. Processing for NATO RED/BLACK REM

The following defines additional baseband processing necessary to provide NATO VLF MSK
RED/BLACK REM. To maximise performance these modes provide data compression on the
RED side of the link encryption equipment and efficient forward error correction coding on the
BLACK side. The broadcast channel multiplexing and transmissions shall be synchronised
with an accurate time of day to ensure frame synchronisation on reception.

Different RED/BLACK REM packet structures are defined to optimise how the REM
performance advantage is realised. The following RED/BLACK REM packet structures are
defined in this standard:

a. RED/BLACK REM ALPHA defined in paragraph 3.2.3 is optimised for extended range,
interfacing with VALLOR like encryption containing deterministic Fibonacci bits;

b. RED/BLACK REM BRAVO defined in paragraph 3.2.4 is optimised to increase throughput
to 75bps per channel, interfacing with VALLOR like encryption containing deterministic
Fibonacci bits.

3.2.1. NATO RED/BLACK REM

A channel coded with RED/BLACK REM technology has the appearance of an ALTERNATE-
LEF encoded channel. A RED/BLACK REM channel may be included as one or more channels
of a broadcast operating in modes N7 or N8 (but not on channel one), or on all channels of a
broadcast operating in modes N9 or N10. Advanced agreement will be required between the
Broadcast Control Station and the subscriber Receive Platform as to the channel(s) on which
RED/BLACK REM, RED only REM and NON REM shall be used.

3.2.1.1. FRAME AND TIME SYNCHRONIZATION

To allow correct operation of the RED/BLACK encoding and decoding process it is essential
that frame synchronisation is maintained. Frame synchronisation must be maintained across
the cryptographic device, and over the air between the transmit and receive systems. Header
bits and accurate time of day may be used to maintain frame synchronisation.

To allow the receive systems to reliably search for and detect the packet header symbols
without overly large search windows, a NATO multichannel Broadcast containing at least one
RED/BLACK REM channel shall be aligned to the UTC day. The first bit of the first packet of
channel one (for a RED/BLACK REM channel one), or the first bit of channel one of the
broadcast data stream (for non REM or RED REM channel one with RED/BLACK REM on at
least one other channel) shall be transmitted at the start of the first second of each standard
24 hour UTC day. Subsequent channel one packets shall be aligned to 21 second intervals
thereafter until the start of the next 24 hour UTC day. The first bit of the first packet of channel
two shall immediately follow the first bit of channel one. In modes N7 and N9 this shall be
followed by the first bit of the first packet of channel three and then channel four.

As 21 second packets to not fit exactly into a 24 hour day, the channels shall be realigned at
midnight.

NATO UNCLASSIFIED
 AComP-4724

 3 - 27 EDITION B VERSION 1
NATO UNCLASSIFIED

 TIME OF DAY ACCURACY

The time of day used for REM synchronisation shall have an absolute accuracy of plus or
minus 0.5 ms at the receiver, relative to the transmitter. The maximum allowable drift rate shall
be no greater than 1 part in 109 over a 100 day period.

3.2.1.2. RED/BLACK REM FUNCTIONAL ALLOCATIONS

 BROADCAST COORDINATION AUTHORITY (BCA)

a. Control the allocation of channels to the Broadcast Control Stations.

b. Control the assignment of mode characteristics to ensure interoperability among the
network nodes.

c. Provide for encrypted filler to be transmitted over all channels which are not allocated to a
Broadcast Control station for operations.

d. Carry out RED side REM processing on the broadcast data stream

e. Encrypt the RED REM packaged frame using the VALLOR or ALTERNATE LEF crypto
systems as assigned

f. Provide encrypted filler when no messages are available for injection.

 BROADCAST CONTROL STATION (BCS)

The BCS shall perform the following functions:

a. Provide for an interface with an intersite link ensuring time synchronisation is maintained
for the encrypted REM frames.

 VLF/LF TRANSMITTER COMPLEX

a. Interface with, accept data and recover REM frame synchronisation from the intersite links.

b. Carry out the BLACK side REM processing of encrypted REM data frames.

c. Place the data on the VLF/LF transmitter in accordance with the channel allocation
specified by the VLF/LF Broadcast Coordination Authority.

d. Encode as appropriate non-REM and RED REM channels of the broadcast data stream as
per paragraph 2.2.3.2.3 and paragraph 3.3.

e. Multiplex the channels into the serial stream.

f. Align the broadcast with the UTC day as per paragraph 3.2.1.1.

g. Generate the MSK signal.

h. Modulate a VLF/LF carrier with the MSK signal and amplify and transmit this modulated
radio frequency

i. Generate a signal which is in accordance with paragraph 2.2.3.3.5.3 and place a clear text
signal on the appropriate channel whenever there is no signal for that channel available
from a broadcast control station.

NATO UNCLASSIFIED
 AComP-4724

 3 - 28 EDITION B VERSION 1
NATO UNCLASSIFIED

 RECEIVE PLATFORM

a. Receive the VLF/LF signal on a suitable antenna subsystem.

b. Provide a receive terminal capable of receiving, demodulating one channel, two and four
channel MSK transmissions, in addition, demultiplexing two and four channel
transmissions with and without RED/BLACK REM components. RED/BLACK REM
channels may need reference to time of day to assist with frame synchronisation.

c. Automatically identify channels and output these channels corresponding to operator
request.

d. Carry out BLACK side processing of RED/BLACK REM channels

e. Process as appropriate non-REM and RED REM channels of broadcast as per paragraph

2.2.3.2.4 and section 3.3.

f. Decrypt the channel frames using the appropriate cryptographic equipment

g. Carry out RED side REM processing on decrypted REM data frames

h. Process the decrypted data and output the data to a printer or other peripheral unit.

3.2.2. RED/BLACK REM PROCESSING DEFINITIONS

The following sections define the required REM processing functions for encoding a channel
for use with RED/BLACK REM technology.

3.2.2.1. FIXED PACKET STRUCTURE

The RED/BLACK REMs are based on 21 second Channel Packets. For 50 baud broadcast
channels this gives 1050 bit packets. These channels have the appearance of ALTERNATE-
LEF encoded channels suitable for multiplexing as part of a VLF broadcast, regardless of the
actual encryption mode used.

RED REM processing compresses the broadcast data stream (Figure 9 H) using a text data
compression technique based on Prediction by Partial Match (PPM) and arithmetic coding
technology. RED Channels Frames (Figure 9 G) are built containing 6 padding bits, 6 REM
mode identification bits, compressed broadcast stream bits and filler bits. The filler bits allow
for the BLACK FEC bits to be added after encryption. The exact number of compressed
information bits and filler bits is dependent upon the coding scheme used (ALPHA/BRAVO).

RED Packaged Frames (Figure 9 F) contains the RED Channel Frames (Figure 9 G) which
have been packaged into a format suitable for the link encryption used. The 1050 bit RED
Packaged frames are sent through the link encryption device for encryption. After encryption
the BLACK REM processor takes the 1050 bit Encrypted Channel Frames (Figure 9 E) from
the encryption device. Channel Data Frames (Figure 9 D) are made up by extracting the
encrypted padding bits, encrypted mode identification bits, encrypted compressed information
bits, and 31 Fibonacci bits from the Encrypted Channel Frames, and adding a number of filler
bits and the Low Density Parity Check (LDPC) bits. The number of compressed information
bits, filler bits and LDPC FEC bits is dependent upon the coding scheme used.

The Channel Interleaved Frame (Figure 9 C) consists of the 980 bit Channel Data Frame
whose bits have been shuffled with a fixed, random interleaver as defined in Frame Data
Interleaving paragraph 3.2.2.5. Finally the Channel Packet is created by inserting 70 header
bits into the Channel Interleaved Frame. The 70 header bits are inserted as 7 sub headers of
ten bits each, spread evenly throughout the packet as shown in Figure 9 B.

NATO UNCLASSIFIED
 AComP-4724

 3 - 29 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 9: SCHEMATIC COMPOSITION OF RED/BLACK NATO REM CHANNEL.

3.2.2.2. COMPRESSION ALGORITHM

The NATO REM information frames consist of a compressed representation of a sequence of
NATO message text characters. This sequence of characters may represent part of a line of
message text or it may represent one or more complete lines of message text (depending on
the inherent compressibility of the text). The NATO REM data compression/expansion
algorithms translate the text characters into (and out of) frames of compressed information bits
without loss of content or meaning.

 PREDICTION BY PARTIAL MATCH ALGORITHMS

Prediction by Partial Match (PPM) algorithms generate adaptive statistical models of
conditional probabilities of the next character given the context of a number of preceding
characters. For each character context a list of next characters that have been processed with
this context and their frequency is assessed. If the next character to be compressed is in this
list then the list is used as the conditional probability distribution for the arithmetic encoding of
this character. After the encoding, the statistical model is updated with this occurrence of the
processed character. Thus the statistical model updates itself while processing the character
stream.

Arithmetic encoding of characters in terms of conditional probability distribution is a variable
length encoder that matches the number of bits used to encode a character to the entropy of
the conditional probability distribution.

A. Channel Packet 1050 channel packet bits

E. Encrypted Channel Frame 1050 encrypted channel frame bits

B. Channel Packet

C. Channel Interleaved Frame 980 interleaved frame bits

G. RED Channel Frame 900 Channel Packet Bits

F. RED Packaged Frame 1050 RED packaged frame bits

D. Channel Data Frame

H. Broadcast Data Stream Variable length of Baudot message characters

Link Encryption

7 x 10 header bits + 980 interleaved frame bits

Compressed encrypted
bits

fib REM LDPC FEC bits

Compressed information bits Filler bits Pad

EPad f

Hd

EHd

NATO UNCLASSIFIED
 AComP-4724

 3 - 30 EDITION B VERSION 1
NATO UNCLASSIFIED

 PRE-LOADED STATISTICAL MODEL

Since the compressed packets only represent a small sample of the broadcast text, the
adaptive statistical model of the PPM algorithm cannot converge to a useful statistical model
if it starts with only a fixed “-1” context. Therefore, fixed, pre-defined initial statistical models
are defined for use with the compression and expansion of each compressed information
packet.

 STATISTICAL MODEL FORMAT

Details of the statistical model file and format are included in ANNEX A.

 ALTERNATE STATISTICAL MODELS

The statistical models defined in this STANAG shall be used on NATO broadcasts. Alternate
statistical models may be generated and used for national purposes.

3.2.2.3. PACKETISATION OF COMPRESSED DATA STREAM

The REM compression algorithm will produce frames of compressed data from the broadcast
data stream. The compressed data frames shall be packetised to enable them to be passed
to link encryption equipment. RED channel frames shall be produced, consisting of 6 padding
bits, 6 REM mode identification bits, compressed information bits, and sufficient filler bits to
enable the LDPC FEC coding. The RED packaged frame shall be sent to the link encryption
equipment starting with bit position 1.

3.2.2.4. RED/BLACK REM BLACK CODING

The link encryption process will output a stream of encrypted characters. Frame
synchronisation between the input and output streams of the link encryption device shall be
maintained to enable the encrypted compressed information to be extracted and further
processed on the BLACK equipment side.

 BLACK CHANNEL DATA FRAME STRUCTURE

The 980 bit BLACK channel frame shall be made up of the encrypted compressed information
bits, extracted from the encrypted channel frame, and the LDPC FEC coding bits. Frame
timing shall be maintained between the RED and BLACK data streams to enable the correct
portion of the frame to be extracted.

 LDPC FEC CODING

Each RED/BLACK REM channel shall be protected against bit errors in transmission by a FEC
code applied to the channel information prior to interleaving.

 LDPC FEC DECODING

Once the FEC parity bits have been incorporated, the channel data frame will consist of an
FEC encoded frame with a systematic FEC LDPC code. Using an appropriate decoding
algorithm at the receiver, the codes can correct nearly the maximum number of transmission
bit errors that are theoretically possible to correct.

A set of parity equations may be used to detect bit errors within the data frame. If the data
frame satisfies all the parity check equations there remains only a very small probability that
the frame contains undetectable bit errors. ANNEX B describes an example LDPC decoder
and defines the parity equations required for the REM modes.

NATO UNCLASSIFIED
 AComP-4724

 3 - 31 EDITION B VERSION 1
NATO UNCLASSIFIED

If the FEC decoding process cannot complete successfully (owing to un-correctable bit errors),
the expansion of the frame will cause a large amount of garble message text to be generated.
Therefore, in this circumstance, the frame should be marked for discarding.

3.2.2.5. FRAME DATA INTERLEAVING

The channel data frame shall be protected from correlated bursts of bit errors in the received
data frame by shuffling the data bits in a random (but fixed) order before transmission. This
operation spreads clusters of bit errors (that may be due to strong atmospheric noise impulses)
more uniformly throughout the data frame. The 980 bit channel data frame shall be shuffled
into the 980 bit channel interleaved frame using TABLE 6 (channel data frame bit position =>
channel interleaved frame bit position).

 1 => 15 2 => 69 3 => 254 4 => 906 5 => 283 6 => 566 7 => 150

 8 => 166 9 => 267 10 => 947 11 => 437 12 => 352 13 => 826 14 => 846

 15 => 11 16 => 117 17 => 856 18 => 876 19 => 712 20 => 74 21 => 236

 22 => 668 23 => 455 24 => 834 25 => 802 26 => 835 27 => 98 28 => 71

 29 => 472 30 => 29 31 => 500 32 => 357 33 => 104 34 => 824 35 => 557

 36 => 344 37 => 556 38 => 892 39 => 147 40 => 645 41 => 724 42 => 845

 43 => 127 44 => 893 45 => 486 46 => 315 47 => 376 48 => 719 49 => 700

 50 => 896 51 => 770 52 => 737 53 => 263 54 => 259 55 => 207 56 => 579

 57 => 33 58 => 977 59 => 524 60 => 857 61 => 868 62 => 723 63 => 620

 64 => 224 65 => 683 66 => 109 67 => 370 68 => 272 69 => 339 70 => 728

 71 => 634 72 => 635 73 => 690 74 => 252 75 => 308 76 => 944 77 => 636

 78 => 274 79 => 251 80 => 831 81 => 54 82 => 426 83 => 338 84 => 910

 85 => 781 86 => 340 87 => 449 88 => 813 89 => 735 90 => 630 91 => 460

 92 => 173 93 => 773 94 => 927 95 => 249 96 => 581 97 => 772 98 => 865

 99 => 674 100 => 691 101 => 611 102 => 75 103 => 631 104 => 134 105 => 167

 106 => 979 107 => 504 108 => 297 109 => 615 110 => 453 111 => 878 112 => 446

 113 => 397 114 => 594 115 => 809 116 => 912 117 => 201 118 => 558 119 => 946

 120 => 886 121 => 958 122 => 188 123 => 641 124 => 369 125 => 448 126 => 371

 127 => 487 128 => 619 129 => 394 130 => 891 131 => 138 132 => 124 133 => 133

 134 => 537 135 => 180 136 => 555 137 => 447 138 => 682 139 => 490 140 => 565

 141 => 232 142 => 956 143 => 945 144 => 767 145 => 347 146 => 13 147 => 443

 148 => 792 149 => 425 150 => 822 151 => 93 152 => 978 153 => 805 154 => 905

 155 => 790 156 => 57 157 => 667 158 => 237 159 => 136 160 => 603 161 => 590

 162 => 435 163 => 851 164 => 116 165 => 107 166 => 854 167 => 187 168 => 76

 169 => 976 170 => 23 171 => 450 172 => 374 173 => 584 174 => 195 175 => 879

 176 => 568 177 => 268 178 => 80 179 => 489 180 => 559 181 => 118 182 => 672

 183 => 59 184 => 190 185 => 604 186 => 965 187 => 623 188 => 593 189 => 823

 190 => 52 191 => 257 192 => 729 193 => 299 194 => 410 195 => 506 196 => 572

 197 => 666 198 => 771 199 => 601 200 => 220 201 => 204 202 => 763 203 => 49

 204 => 148 205 => 907 206 => 404 207 => 722 208 => 400 209 => 92 210 => 720

 211 => 707 212 => 898 213 => 114 214 => 901 215 => 526 216 => 306 217 => 920

 218 => 516 219 => 812 220 => 363 221 => 629 222 => 181 223 => 789 224 => 476

 225 => 847 226 => 727 227 => 230 228 => 721 229 => 332 230 => 505 231 => 82

 232 => 128 233 => 904 234 => 758 235 => 68 236 => 517 237 => 968 238 => 588

 239 => 56 240 => 199 241 => 480 242 => 458 243 => 432 244 => 750 245 => 534

 246 => 477 247 => 694 248 => 680 249 => 273 250 => 816 251 => 5 252 => 44

 253 => 778 254 => 563 255 => 561 256 => 456 257 => 25 258 => 595 259 => 319

 260 => 708 261 => 966 262 => 353 263 => 163 264 => 485 265 => 184 266 => 495

 267 => 745 268 => 158 269 => 110 270 => 597 271 => 140 272 => 416 273 => 270

 274 => 837 275 => 678 276 => 399 277 => 551 278 => 422 279 => 413 280 => 775

NATO UNCLASSIFIED
 AComP-4724

 3 - 32 EDITION B VERSION 1
NATO UNCLASSIFIED

 281 => 858 282 => 925 283 => 228 284 => 747 285 => 766 286 => 587 287 => 336

 288 => 467 289 => 791 290 => 578 291 => 598 292 => 226 293 => 497 294 => 45

 295 => 161 296 => 833 297 => 725 298 => 608 299 => 50 300 => 311 301 => 466

 302 => 519 303 => 592 304 => 610 305 => 607 306 => 864 307 => 19 308 => 51

 309 => 582 310 => 178 311 => 474 312 => 933 313 => 373 314 => 384 315 => 312

 316 => 346 317 => 364 318 => 310 319 => 954 320 => 616 321 => 562 322 => 115

 323 => 40 324 => 698 325 => 647 326 => 961 327 => 669 328 => 481 329 => 137

 330 => 193 331 => 569 332 => 664 333 => 420 334 => 586 335 => 309 336 => 955

 337 => 86 338 => 278 339 => 463 340 => 889 341 => 888 342 => 113 343 => 322

 344 => 596 345 => 522 346 => 329 347 => 801 348 => 832 349 => 103 350 => 788

 351 => 157 352 => 255 353 => 172 354 => 452 355 => 711 356 => 229 357 => 95

 358 => 351 359 => 91 360 => 391 361 => 600 362 => 508 363 => 288 364 => 3

 365 => 760 366 => 706 367 => 215 368 => 142 369 => 414 370 => 687 371 => 333

 372 => 381 373 => 671 374 => 433 375 => 705 376 => 861 377 => 126 378 => 8

 379 => 881 380 => 210 381 => 817 382 => 162 383 => 908 384 => 431 385 => 544

 386 => 31 387 => 208 388 => 738 389 => 887 390 => 289 391 => 290 392 => 929

 393 => 320 394 => 217 395 => 885 396 => 9 397 => 409 398 => 266 399 => 176

 400 => 883 401 => 916 402 => 454 403 => 189 404 => 549 405 => 511 406 => 20

 407 => 234 408 => 101 409 => 186 410 => 930 411 => 637 412 => 330 413 => 164

 414 => 580 415 => 478 416 => 689 417 => 65 418 => 574 419 => 324 420 => 783

 421 => 70 422 => 154 423 => 262 424 => 205 425 => 663 426 => 498 427 => 292

 428 => 742 429 => 245 430 => 662 431 => 403 432 => 951 433 => 4 434 => 269

 435 => 203 436 => 206 437 => 628 438 => 396 439 => 585 440 => 471 441 => 741

 442 => 64 443 => 285 444 => 342 445 => 253 446 => 155 447 => 389 448 => 840

 449 => 632 450 => 963 451 => 323 452 => 280 453 => 441 454 => 838 455 => 233

 456 => 935 457 => 577 458 => 859 459 => 387 460 => 444 461 => 676 462 => 298

 463 => 899 464 => 334 465 => 624 466 => 132 467 => 776 468 => 106 469 => 932

 470 => 246 471 => 869 472 => 131 473 => 90 474 => 757 475 => 520 476 => 318

 477 => 957 478 => 282 479 => 819 480 => 149 481 => 368 482 => 343 483 => 222

 484 => 880 485 => 72 486 => 503 487 => 797 488 => 894 489 => 395 490 => 424

 491 => 6 492 => 702 493 => 828 494 => 356 495 => 7 496 => 392 497 => 542

 498 => 860 499 => 287 500 => 235 501 => 62 502 => 677 503 => 539 504 => 362

 505 => 733 506 => 848 507 => 144 508 => 276 509 => 684 510 => 798 511 => 192

 512 => 552 513 => 675 514 => 949 515 => 81 516 => 589 517 => 512 518 => 839

 519 => 922 520 => 378 521 => 153 522 => 902 523 => 660 524 => 386 525 => 337

 526 => 22 527 => 281 528 => 327 529 => 242 530 => 884 531 => 78 532 => 393

 533 => 900 534 => 307 535 => 398 536 => 211 537 => 974 538 => 326 539 => 554

 540 => 716 541 => 510 542 => 382 543 => 867 544 => 182 545 => 759 546 => 168

 547 => 380 548 => 911 549 => 459 550 => 919 551 => 328 552 => 367 553 => 928

 554 => 67 555 => 862 556 => 715 557 => 546 558 => 818 559 => 305 560 => 143

 561 => 275 562 => 216 563 => 633 564 => 300 565 => 548 566 => 421 567 => 313

 568 => 408 569 => 24 570 => 540 571 => 844 572 => 407 573 => 294 574 => 917

 575 => 786 576 => 915 577 => 445 578 => 61 579 => 284 580 => 317 581 => 175

 582 => 419 583 => 223 584 => 66 585 => 325 586 => 473 587 => 924 588 => 102

 589 => 46 590 => 658 591 => 777 592 => 703 593 => 625 594 => 613 595 => 755

 596 => 659 597 => 348 598 => 820 599 => 209 600 => 648 601 => 430 602 => 606

 603 => 121 604 => 475 605 => 469 606 => 643 607 => 191 608 => 58 609 => 345

 610 => 734 611 => 509 612 => 764 613 => 717 614 => 331 615 => 710 616 => 714

 617 => 673 618 => 465 619 => 464 620 => 55 621 => 36 622 => 640 623 => 528

 624 => 753 625 => 247 626 => 599 627 => 895 628 => 545 629 => 159 630 => 494

 631 => 942 632 => 89 633 => 573 634 => 293 635 => 681 636 => 244 637 => 354

 638 => 718 639 => 793 640 => 523 641 => 575 642 => 221 643 => 855 644 => 436

NATO UNCLASSIFIED
 AComP-4724

 3 - 33 EDITION B VERSION 1
NATO UNCLASSIFIED

 645 => 794 646 => 622 647 => 96 648 => 304 649 => 277 650 => 111 651 => 302

 652 => 47 653 => 42 654 => 88 655 => 218 656 => 355 657 => 853 658 => 656

 659 => 576 660 => 730 661 => 1 662 => 468 663 => 699 664 => 830 665 => 964

 666 => 639 667 => 200 668 => 231 669 => 26 670 => 335 671 => 948 672 => 358

 673 => 531 674 => 256 675 => 940 676 => 810 677 => 752 678 => 169 679 => 286

 680 => 800 681 => 434 682 => 863 683 => 112 684 => 39 685 => 692 686 => 815

 687 => 63 688 => 921 689 => 383 690 => 806 691 => 564 692 => 538 693 => 950

 694 => 179 695 => 697 696 => 139 697 => 873 698 => 975 699 => 35 700 => 496

 701 => 366 702 => 442 703 => 602 704 => 385 705 => 686 706 => 32 707 => 962

 708 => 261 709 => 165 710 => 654 711 => 926 712 => 18 713 => 913 714 => 341

 715 => 214 716 => 250 717 => 713 718 => 375 719 => 903 720 => 160 721 => 688

 722 => 693 723 => 787 724 => 427 725 => 518 726 => 939 727 => 27 728 => 12

 729 => 225 730 => 754 731 => 361 732 => 16 733 => 852 734 => 780 735 => 836

 736 => 21 737 => 185 738 => 740 739 => 746 740 => 696 741 => 14 742 => 388

 743 => 197 744 => 423 745 => 614 746 => 980 747 => 350 748 => 241 749 => 769

 750 => 651 751 => 653 752 => 48 753 => 872 754 => 874 755 => 571 756 => 732

 757 => 401 758 => 550 759 => 827 760 => 198 761 => 652 762 => 174 763 => 825

 764 => 457 765 => 877 766 => 829 767 => 970 768 => 238 769 => 240 770 => 482

 771 => 94 772 => 129 773 => 171 774 => 438 775 => 406 776 => 405 777 => 145

 778 => 849 779 => 536 780 => 493 781 => 609 782 => 135 783 => 841 784 => 649

 785 => 748 786 => 626 787 => 923 788 => 349 789 => 799 790 => 60 791 => 941

 792 => 807 793 => 749 794 => 532 795 => 428 796 => 866 797 => 130 798 => 543

 799 => 960 800 => 412 801 => 87 802 => 909 803 => 591 804 => 774 805 => 762

 806 => 491 807 => 264 808 => 650 809 => 953 810 => 850 811 => 501 812 => 567

 813 => 202 814 => 492 815 => 10 816 => 461 817 => 709 818 => 100 819 => 583

 820 => 969 821 => 502 822 => 41 823 => 952 824 => 665 825 => 547 826 => 808

 827 => 784 828 => 119 829 => 638 830 => 462 831 => 379 832 => 768 833 => 811

 834 => 73 835 => 971 836 => 30 837 => 470 838 => 525 839 => 295 840 => 871

 841 => 726 842 => 918 843 => 296 844 => 514 845 => 316 846 => 938 847 => 83

 848 => 937 849 => 321 850 => 685 851 => 533 852 => 418 853 => 439 854 => 483

 855 => 959 856 => 897 857 => 99 858 => 84 859 => 642 860 => 271 861 => 618

 862 => 377 863 => 151 864 => 372 865 => 943 866 => 219 867 => 621 868 => 303

 869 => 183 870 => 530 871 => 507 872 => 125 873 => 646 874 => 265 875 => 936

 876 => 479 877 => 17 878 => 796 879 => 213 880 => 761 881 => 484 882 => 731

 883 => 890 884 => 795 885 => 756 886 => 843 887 => 914 888 => 605 889 => 972

 890 => 97 891 => 417 892 => 227 893 => 736 894 => 488 895 => 785 896 => 248

 897 => 411 898 => 239 899 => 743 900 => 803 901 => 695 902 => 617 903 => 670

 904 => 499 905 => 34 906 => 527 907 => 657 908 => 105 909 => 521 910 => 973

 911 => 931 912 => 108 913 => 314 914 => 535 915 => 38 916 => 212 917 => 365

 918 => 146 919 => 875 920 => 390 921 => 141 922 => 79 923 => 53 924 => 402

 925 => 260 926 => 553 927 => 123 928 => 513 929 => 541 930 => 515 931 => 765

 932 => 739 933 => 704 934 => 301 935 => 934 936 => 821 937 => 196 938 => 779

 939 => 177 940 => 529 941 => 291 942 => 43 943 => 804 944 => 814 945 => 415

 946 => 243 947 => 85 948 => 120 949 => 870 950 => 644 951 => 2 952 => 156

 953 => 258 954 => 77 955 => 882 956 => 679 957 => 570 958 => 751 959 => 429

 960 => 360 961 => 655 962 => 967 963 => 359 964 => 122 965 => 782 966 => 842

 967 => 170 968 => 627 969 => 560 970 => 612 971 => 661 972 => 194 973 => 152

 974 => 744 975 => 451 976 => 28 977 => 701 978 => 279 979 => 440 980 => 37.

TABLE 6: CHANNEL INTERLEAVING.

At the receiver the data frame shall be un-shuffled (deinterleaved) using the reverse operation.

NATO UNCLASSIFIED
 AComP-4724

 3 - 34 EDITION B VERSION 1
NATO UNCLASSIFIED

3.2.2.6. RED/BLACK REM FRAME HEADER

Before transmission, 70 header bits shall be inserted into the 980 bit channel interleaved frame
making a channel packet of 1050 bits. The header bits allow the receiver to determine the
exact position of the beginning of each REM packet (resolving timing offsets and propagation
delays), to estimate the phase of the carrier signal over the REM packet to allow coherent
demodulation of the binary symbols, and to identify the type of REM coding used on the
channel.

The RED/BLACK REM channel interleaved frame header consists of 70 known bits distributed
along the frame in seven 10 bit header segments. The header sequences have low cross
correlation and autocorrelation properties to allow for unambiguous detection and framing of
the channel packets.

Header sequences shall be used to identify the type of packet structure and coding used on
the frames (ALPHA/BRAVO, etc).

3.2.2.7. CHANNEL MULTIPLEXING

 RED/BLACK REM CHANNEL IN NATO MULTICHANNEL MODES N7 AND N8

For NATO modes N7 and N8, RED/BLACK REM channels shall be time division multiplexed
onto a broadcast data stream in accordance with paragraph 2.2.3.3.4. To enable frame
synchronisation for broadcasts containing non REM or RED REM channels, Channel 1 shall
be a VALLOR encrypted channel (or VALLOR like encrypted channel with deterministic
Fibonacci bits). This may be non-REM or RED only REM. The multiplexed broadcast shall be
aligned to the UTC day in accordance with paragraph 3.2.1.1. if it contains any RED/BLACK
REM channels.

 RED/BLACK REM CHANNEL IN NATO MULTICHANNEL MODES N9 AND
N10

For NATO modes N9 and N10, RED/BLACK REM channels shall be time division multiplexed
onto a broadcast data stream in accordance with paragraph 2.2.3.3.5.4 but Channel 1 does
not have to be a VALLOR encrypted channel. The multiplexed broadcast stream shall be
aligned to the UTC day in accordance with paragraph 3.2.1.1.

3.2.2.8. MODE CAPACITY INTEGRITY WITH RED/BLACK REM

To prevent interruption of data flow over the VLF/LF multiplexed transmission, a locally
generated signal shall be used when a RED/BLACK data stream is not presented to the
multiplexer. (This may also be generated by the BLACK processor should it not receive
encrypted data.) The signal sequence defined in 2.2.3.3.5.3 is not suitable for RED/BLACK
REM. For RED/BLACK REM the sequence shall be constructed as follows:

a. The ‘missing’ Encrypted Channel Frame (Figure 9 E) shall be replaced with the a frame
consisting of the repeated sequence defined in 2.2.3.3.5.3 (Letter Filler, R, Y, Figure Filler,
Channel Number). The stop bit/Fibonacci bit for all channels shall be set to a low data state
(0). Each Frame shall start with a Letter Filler character.

b. This frame shall be processed as a standard Encrypted Channel Frame appropriate to
the channel mode being used (ALPHA/BRAVO).

c. The resulting deterministic Channel Packet shall be sent correctly time aligned with the
other broadcast channels.

3.2.3. RED/BLACK REM ALPHA PACKET STRUCTURE

NATO UNCLASSIFIED
 AComP-4724

 3 - 35 EDITION B VERSION 1
NATO UNCLASSIFIED

The ALPHA packet structure and coding scheme has been optimized to increase the effective
broadcast coverage area whilst keeping the channel throughput at approximately 50bps. The
packet structure has been optimised to interface with VALLOR like encryption containing
deterministic Fibonacci bits.

3.2.3.1. RED/BLACK REM ALPHA PACKET STRUCTURE DETAIL

RED/BLACK ALPHA REM packets are based on 21 second Channel Packets for 50 baud
channels,, giving 1050 bit packets as shown in Figure 10.

RED ALPHA REM processing compresses the broadcast data stream (Figure 10 H) using a
text data compression technique based on PPM and arithmetic coding technology. RED
Channels Frames (Figure 10 G) are built containing 6 padding bits, 6 REM mode identification
bits, 444 compressed broadcast stream bits and 444 filler bits. The filler bits allow for the
BLACK FEC bits to be added after encryption.

RED Packaged Frames (Figure 10 F) contains the 900 bit RED Channel Frames (Figure 10
G) which have been packaged into 6 bit ITA2 64-ary style characters by inserting a stop bit
after each character (6 bits), adding 150 stop bits. The 1050 bit RED Packaged frames are
sent through the link encryption device for encryption.

After encryption the BLACK REM processor takes the 1050 bit Encrypted Channel Frames
(Figure 10 E) from the encryption device. Channel Data Frames (Figure 10 D) are made up
by extracting the 6 encrypted padding bits, 6 encrypted mode identification bits, 444 encrypted
compressed information bits, and the first 31 Fibonacci bits from each Encrypted Channel
Frame. The ALPHA Channel data frames are completed by adding 3 filler bits and 490 bits of
Low Density Parity Check (LDPC) FEC.

The Channel Interleaved Frame (Figure 10 C) consists of the 980 bit Channel Data Frame
whose bits have been shuffled with a fixed, random interleaver as defined in Frame Data
Interleaving paragraph 3.2.2.5. Finally the Channel Packet is created by inserting 70 header
bits into the Channel Interleaved Frame. The 70 header bits are inserted as 7 sub headers of
ten bits each, spread evenly throughout the packet as shown in Figure 10 B.

NATO UNCLASSIFIED
 AComP-4724

 3 - 36 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 10: SCHEMATIC COMPOSITION OF RED/BLACK ALPHA NATO REM
CHANNEL.

3.2.3.2. RED/BLACK REM ALPHA PPM ALGORITHMS

RED/BLACK REM ALPHA uses a PPM algorithm based on an adaptive statistical model of
conditional probabilities of the next character given the most recent four character context.
The algorithm shall be initialised with a pre-defined, fixed model for each output compressed
information frame. Characters shall be assessed one at a time from a sequence of characters
of the broadcast stream and be compressed using an arithmetic coding scheme based on the
conditional probability distribution of the statistical model given the current context of the four
preceding characters.

 RED/BLACK REM ALPHA PPM COMPRESSION

RED/BLACK REM ALPHA PPM compression coding shall be carried out to be interoperable
with the code given in ANNEX C.

 RED/BLACK REM ALPHA PPM EXPANSION

The RED/BLACK REM ALPHA shall be expanded to recover the original broadcast data
stream. An example of a suitable expansion algorithm is given ANNEX D.

A. Channel Packet 1050 channel packet bits

E. Encrypted Channel Frame 1050 encrypted channel frame bits

B. Channel Packet

C. Channel Interleaved Frame 980 interleaved frame bits

G. 900 bit RED Channel Frame 900 Channel Packet Bits

F. RED Packaged Frame 1050 RED packaged frame bits

D. Channel Data Frame

H. Broadcast Data Stream Variable length of Baudot message characters

Link Encryption

7 x 10 header bits + 980 interleaved frame bits

444 compressed encrypted
bits

fib 490 REM LDPC FEC bits

444 compressed information
bits

444 filler bits Pad

6 enc

pad

3

fil

Hd

6en

Hd

NATO UNCLASSIFIED
 AComP-4724

 3 - 37 EDITION B VERSION 1
NATO UNCLASSIFIED

 RED/BLACK REM ALPHA STATISTICAL MODEL

Details of the statistical model file and format are included ANNEX A

3.2.3.3. RED/BLACK REM ALPHA RED SIDE PACKETISATION

The RED/BLACK REM ALPHA compression algorithm will produce 444 bit frames of
compressed data from the broadcast data stream, each frame providing the information for a
21 second channel packet. The compressed data frames shall be packetised before being
passed to the link encryption equipment.

The first 6 bit positions of each 900 bit RED channel frame shall contain padding bits. These
6 bits shall all be set to zero. The next six bits shall contain a REM mode identification
character to allow auto mode detection of RED/BLACK REM frames in the RED REM
processor. For RED/BLACK REM ALPHA the mode identification character shall be as defined
in TABLE 7.

Bit position 7 8 9 10 11 12

Content 1 0 0 0 0 0

TABLE 7: RED/BLACK REM ALPHA MODE IDENTIFICATION CHARACTER

The 444 compressed information bits shall be inserted into the RED channel frame
immediately after the mode identification character bits. The compressed information shall be
loaded into the 900 bit RED channel frame in the order that it is generated, i.e. the first bit
generated shall map to bit 13; the last bit generated shall map to bit 456. The last 444 bits of
the RED channel frame are filler bits and shall all be set to one.

This RED channel frame shall be packaged into 6 bit ITA2 64-ary characters with a stop bit
inserted after each sixth bit. The inserted stop bits shall all be set to one. A total of 150 stop
bits will be required, making a RED packaged frame of 1050 bits.

3.2.3.4. RED/BLACK REM ALPHA BLACK PROCESSING

RED/BLACK REM ALPHA BLACK processing extracts the compressed encrypted bits and
Fibonacci sequence from the encrypted channel frames, applies FEC and interleaving to the
frames and inserts a header to make the channel packet ready for multiplexing and
transmission.

 RED/BLACK REM ALPHA BLACK DATA FRAME

The first 456 bits of the channel data frame shall be made up of the encrypted padding bits,
the encrypted mode identification character, and the encrypted compressed information bits
extracted from the encrypted channel frame with the Fibonacci bits removed. The next 31 bits
shall contain the compressed Fibonacci sequence extracted from the encrypted channel frame
in accordance with paragraph 3.2.3.4.2. These shall occupy bit position 457 to 487 of the
channel data frame. Bits 488 to 490 shall contain 3 filler bits which shall be set to zero. The
final 490 bits of the channel data frame shall contain the LDPC FEC bits coded in accordance
with paragraph 3.2.3.4.4.

 RED/BLACK REM ALPHA FIBONACCI BIT COMPRESSION

The Fibonacci sequence shall be extracted from the first 31 characters of the encrypted
channel frame. The first 31 Fibonacci bits shall be extracted from the encrypted channel frame
and placed in bit positions 457 to 487 of the channel data frame (the first Fibonacci bit shall be

NATO UNCLASSIFIED
 AComP-4724

 3 - 38 EDITION B VERSION 1
NATO UNCLASSIFIED

placed into position 457). The extracted 31 bit Fibonacci sequence contain sufficient
information for the complete Fibonacci sequence to be regenerated by the receive processor.
The remaining Fibonacci bits contained within the encrypted channel frame shall be discarded.

 RED/BLACK REM ALPHA FILLER BITS

Three filler bits shall be inserted into the BLACK data frame after the Fibonacci bits. The filler
bits shall occupy positions 488 to 490 of the BLACK data frame and shall be set to zero.

 RED/BLACK REM ALPHA LDPC FEC

RED/BLACK REM ALPHA shall use a ½ rate FEC code applied to the channel information
prior to interleaving. The FEC code can be decoded using soft decision information from the
MSK matched filters during BLACK side processing at the receiver, allowing the correction of
bit errors. The FEC coding shall be applied to the 490 information bits contained within the
channel data frame (6 encrypted padding bits, 6 encrypted mode identification bits,444
encrypted compressed information bits, 31 Fibonacci sequence bits and 3 filler bits).

3.2.3.4.4.1. RED/BLACK REM ALPHA LDPC FEC CODING

The FEC code shall be generated by the binary multiplication of the information bit frame
(considered as a binary column vector) by the binary coding matrix Equation 1; this produces
a binary column vector (the parity bit vector) which shall be used to fill the FEC parity bit portion
of the channel data frame.

































































































490

3

2

1

490

3

2

1

490490349024901490

4903332313

4902322212

4901312111

.

.

.

.

.

.

.........

.

.

.

....................

....................

.....................

p

p

p

p

d

d

d

d

MMMM

MMMM

MMMM

MMMM

EQUATION 1: RED/BLACK ALPHA FEC PARITY GENERATOR MATRIX.

M1-1 to M490-490 represents the binary generator matrix as defined in ANNEX E. d1 represents
the first bit of information contained within the channel data frame (bit position 1) and d490 the
last bit of information contained within the channel data frame (the last filler bit at bit position
490). The parity bits generated (p1 to p490) shall be inserted into the channel data frame
immediately after the information bits (p1 to bit position 491, p490 to bit position 980).

3.2.3.4.4.2. RED/BLACK REM ALPHA LDPC FEC DECODING

The receiver may use an LDPC decoder to detect and correct errors. An example decoder is
described in ANNEX B and parity equations defined.

 RED/BLACK REM ALPHA CHANNEL DATA FRAME RECEPTION

On reception, the Encrypted Channel Frame shall be built up using the 6 encrypted padding
bits, the 6 encrypted mode identification bits, the 444 error corrected Compressed Encrypted
Data bits, 444 Filler Bits, all combined with 150 bits of recovered Fibonacci bit sequence.
paragraph. The 444 Filler Bits shall all be set to one. The frame shall be packaged into 6 bit
characters with a Fibonacci bit inserted in place of a stop bit after each character as shown in
Figure 11

NATO UNCLASSIFIED
 AComP-4724

 3 - 39 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 11: SCHEMATIC COMPOSITION OF RED/BLACK BRAVO NATO REM
CHANNEL.

3.2.3.5. RED/BLACK REM ALPHA FRAME DATA INTERLEAVING

The channel data frame shall be protected from correlated bursts of bit errors in the received
data frame by interleaving the data in accordance with paragraph 3.2.2.5.

3.2.3.6. RED/BLACK REM ALPHA RED/BLACK FRAME HEADER

Before transmission, 70 header bits shall be inserted into the 980 bit channel interleaved frame
making a channel packet of 1050 bits. The header bits allow the receiver to determine the
exact start of each REM packet (resolving timing offsets and propagation delays) to estimate
the phase of the carrier signal over the REM packet to allow coherent demodulation of the
binary symbols and to identify the type of REM coding used on the channel.

The RED/BLACK REM ALPHA coding channel interleaved frame header consists of 70 known
bits distributed along the frame in seven 10 bit header segments. The values of the seven 10
bit header segments and their position in the channel packet shall be as shown in TABLE 8.

Bit position 1 2 3 4 5 6 7 8 9 10

Content 1 1 1 1 0 0 0 0 1 0

Bit position 151 152 153 154 155 156 157 158 159 160

Content 1 0 0 0 1 1 0 0 0 0

Bit position 301 302 303 304 305 306 307 308 309 310

Content 0 1 0 0 0 0 1 0 1 0

Bit position 451 452 453 454 455 456 457 458 459 460

Content 1 1 0 0 1 0 0 1 0 1

Bit position 601 602 603 604 605 606 607 608 609 610

Content 1 1 0 0 1 1 1 0 1 1

Bit position 751 752 753 754 755 756 757 758 759 760

Content 0 1 1 1 1 1 0 1 1 0

6 Pad bits

444 compressed data 444 filler bits fib bits

444 filler bits

6 Pad bits + 1

expanded fib 444 filler bits + 74 expanded fib bits

Fib removed for recovery

6 Pad bits Channel Data Frame 6 Hd

444 compressed data 6 Hd

450 compressed data + 75 expanded fib
bits

6 Hd bits +

1 exp fib

NATO UNCLASSIFIED
 AComP-4724

 3 - 40 EDITION B VERSION 1
NATO UNCLASSIFIED

Bit position 901 902 903 904 905 906 907 908 909 910

Content 0 1 0 1 1 1 0 0 0 1

TABLE 8: RED/BLACK ALPHA -BLACK HEADER BIT POSITIONS.

On reception of the channel packet, the 70 header bits shall be removed from the channel
packet before the frame is de-interleaved.

3.2.4. RED/BLACK REM BRAVO PACKET STRUCTURE

The BRAVO packet structure and coding scheme has been optimised to increase channel
throughput to 75bps whilst keeping the effective range of the VLF broadcast comparable with
the NATO modes defined in CHAPTER 2. The coding scheme has been optimised to interface
with VALLOR like encryption containing deterministic Fibonacci bits.

3.2.4.1. RED/BLACK REM BRAVO PACKET STRUCTURE DETAIL

RED/BLACK BRAVO REM packets are based on 21 second channel packets for 50 baud
channels, giving 1050 bit packets as shown in Figure 12.

RED BRAVO REM processing compresses the broadcast data stream (Figure 12 H) using a
text data compression technique based on PPM and arithmetic coding technology. RED
Channels Frames (Figure 12 G) are built containing 6 padding bits, 6 REM mode identification
bits, 672 compressed broadcast stream bits and 216 filler bits. The filler bits allow for the
BLACK FEC bits to be added after encryption.

RED Packaged Frames (Figure 12 F) contains the 900 bit RED Channel Frames (Figure 12
G) which have been packaged into 6 bit ITA2 64-ary style characters by inserting a stop bit
after each character (6 bits), adding 150 stop bits. The 1050 bit RED Packaged frames are
sent through the link encryption device for encryption.

After encryption the BLACK REM processor takes the 1050 bit Encrypted Channel Frames
(Figure 12 E) from the encryption device. Channel Data Frames (Figure 12 D) are made up
by extracting the 6 encrypted padding bits, 6 encrypted mode identification bits, 672 encrypted
compressed information bits, and the first 31 Fibonacci bits from each Encrypted Channel
Frame. The ALPHA Channel data frames are completed by adding 3 filler bits and 263 bits of
Low Density Parity Check (LDPC) FEC.

The Channel Interleaved Frame (Figure 12 C) consists of the 980 bit Channel Data Frame
whose bits have been shuffled with a fixed, random interleaver as defined in Frame Data
Interleaving paragraph 3.2.2.5. Finally the Channel Packet is created by inserting 70 header
bits into the Channel Interleaved Frame. The 70 header bits are inserted as 7 sub headers of
ten bits each, spread evenly throughout the packet as shown in Figure 12 B.

NATO UNCLASSIFIED
 AComP-4724

 3 - 41 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 12: SCHEMATIC COMPOSITION OF RED/BLACK BRAVO NATO REM
CHANNEL.

3.2.4.2. RED/BLACK REM BRAVO PPM ALGORITHMS

RED/BLACK REM BRAVO uses a PPM algorithm based on an adaptive statistical model of
conditional probabilities of the next character given the most recent four character context.
The algorithm shall be initialised with a pre-defined fixed model for each output compressed
information frame. Characters shall be assessed one at a time from a sequence of characters
of the broadcast stream and be compressed using an arithmetic coding scheme based on the
conditional probability distribution of the statistical model given the context of the four
preceding characters.

 RED/BLACK REM BRAVO PPM COMPRESSION

RED/BLACK REM BRAVO PPM compression coding shall be carried out to be interoperable
with the code given in ANNEX C.

 RED/BLACK REM BRAVO PPM EXPANSION

The RED/BLACK REM BRAVO shall be expanded to recover the original broadcast data
stream. An example of a suitable expansion algorithm is given in ANNEX D.

 RED/BLACK REM BRAVO STATISTICAL MODEL

Details of the statistical model file and format are included in ANNEX A.

A. Channel Packet 1050 channel packet bits

E. Encrypted Channel Frame 1050 encrypted channel frame bits

B. Channel Packet

C. Channel Interleaved Frame 980 interleaved frame bits

G. 900 bit RED Channel Frame 900 Channel Packet Bits

F. RED Packaged Frame 1050 RED packaged frame bits

D. Channel Data Frame

H. Broadcast Data Stream Variable length of Baudot message characters

Link Encryption

7 x 10 header bits + 980 interleaved frame bits

672 compressed encrypted
bits

fib 263 REM LDPC FEC bits

672 compressed information
bits

216 filler bits Pad

2 fil
6 enc

pad

Hd

6en

Hd

NATO UNCLASSIFIED
 AComP-4724

 3 - 42 EDITION B VERSION 1
NATO UNCLASSIFIED

3.2.4.3. RED/BLACK REM BRAVO RED SIDE PACKETISATION

The RED/BLACK REM BRAVO compression algorithm will produce 672 bit frames of
compressed data from the broadcast data stream, each frame providing the information for a
21 second channel packet. The compressed data frames shall be packetised before being
passed to the link encryption equipment.

The first 6 bit positions of each 900 bit RED channel frame shall contain the paragraph padding
bits. These 6 bits shall all be set to zero. The next six bits shall contain a REM mode
identification character to allow auto mode detection of RED/BLACK REM frames in the RED
REM processor. For RED/BLACK REM BRAVO the mode identification character shall be as
defined in TABLE 9.

Bit position 7 8 9 10 11 12

Content 0 1 0 0 0 0

TABLE 9: RED/BLACK REM ALPHA MODE IDENTIFICATION CHARACTER

The 672 compressed information bits shall be inserted into the RED channel frame
immediately after the mode identification character bits. The compressed information shall be
loaded into the 900 bit RED channel frame in the order that it is generated, i.e. the first bit
generated shall map to bit 13; the last bit generated shall map to bit 684. The last 216bits of
the RED channel frame are filler bits and shall all be set to one.

This RED channel frame shall be packaged into 6 bit ITA2 64-ary characters with a stop bit
inserted after each sixth bit. The inserted stop bits shall all be set to one. A total of 150 stop
bits will be required making a RED packaged frame of 1050 bits.

3.2.4.4. RED/BLACK REM BRAVO BLACK PROCESSING

RED/BLACK REM BRAVO BLACK processing extracts the compressed encrypted bits and
Fibonacci sequence from the encrypted channel frames applies FEC and interleaving to the
frames and inserts a header to make the channel packet ready for multiplexing and
transmission.

 RED/BLACK REM BRAVO CODING BLACK DATA FRAME

The first 684 bits of the channel data frame shall be made up of the encrypted padding bits,
the encrypted mode identification character, and the encrypted compressed information bits
extracted from the encrypted channel frame with the Fibonacci bits removed. The next 31 bits
shall contain the compressed Fibonacci sequence extracted from the encrypted channel frame
in accordance with paragraph 3.2.4.4.2. These shall occupy bit position 685 to 715 of the
channel data frame. Bits 716 and 717 shall contain 2 filler bits which shall be set to zero. The
final 263 bits of the channel data frame shall contain the LDPC FEC bits coded in accordance
with paragraph 3.2.4.4.4.

 RED/BLACK REM BRAVO FIBONACCI BIT COMPRESSION

The Fibonacci sequence shall be extracted from the first 31 characters of the encrypted
channel frame. The first 31 Fibonacci bits shall be extracted from the encrypted channel frame
and placed in bit positions 685 to 715 of the channel data frame (the first Fibonacci bit shall be
placed into position 685). The extracted 31 bit Fibonacci sequence contain sufficient
information for the complete Fibonacci sequence to be regenerated by the receive processor.
The remaining Fibonacci bits contained within the encrypted channel frame shall be discarded.

NATO UNCLASSIFIED
 AComP-4724

 3 - 43 EDITION B VERSION 1
NATO UNCLASSIFIED

 RED/BLACK REM BRAVO FILLER BITS

Two filler bits shall be inserted into the BLACK data frame after the Fibonacci bits. The filler
bits shall occupy positions 716 and 717 of the BLACK data frame and shall be set to zero.

 RED/BLACK REM BRAVO LDPC FEC

RED/BLACK REM ALPHA shall use a 0.73 rate FEC code applied to the channel information
prior to interleaving. The FEC code can be decoded using soft decision information from the
MSK matched filters during BLACK side processing at the receiver, allowing the correction of
bit errors. The FEC coding shall be applied to the 717 information bits contained within the
channel data frame (6 encrypted padding bits, 6 encrypted mode identification bits,672
encrypted compressed information bits, 31 Fibonacci sequence bits and 2 filler bits).

3.2.4.4.4.1. RED/BLACK REM BRAVO LDPC FEC CODING

The FEC code shall be generated by the binary multiplication of the information bit frame
(considered as a binary column vector) by the binary coding matrix shown in Equation 2. This
produces a binary column vector (the parity bit vector) which shall be used to fill the FEC parity
bit portion of the channel data frame.

































































































263

3

2

1

717

3

2

1

717263326322631263

7173332313

7172322212

7171312111

.

.

.

.

.

.

.........

.

.

.

....................

....................

.....................

p

p

p

p

d

d

d

d

MMMM

MMMM

MMMM

MMMM

EQUATION 2: RED/BLACK BRAVO FEC PARITY GENERATOR MATRIX.

M1-1 to M263-717 represents the binary generator matrix as defined in ANNEX E. d1 represents
the first bit of information contained within the channel data frame (bit position 1) and d717 the
last bit of information contained within the channel data frame (the second filler bit at bit position
717) . The parity bits generated (p1 to p263) shall be inserted into the channel data frame
immediately after the information bits (p1 to bit position 718, p263 to bit position 980).

3.2.4.4.4.2. RED/BLACK REM BRAVO LDPC FEC DECODING

The receiver may use an LDPC decoder to detect and correct errors. An example decoder is
described in ANNEX B and parity equations defined.

 RED/BLACK REM BRAVO CHANNEL DATA FRAME RECEPTION

On reception, the Encrypted Channel Frame shall be built up using the 6 encrypted padding
bits, the 6 encrypted mode identification bits, the 672 error corrected Compressed Encrypted
Data bits, 216 Filler Bits combined with 150 bits of recovered Fibonacci bit sequence.
paragraph. The 216 Filler Bits shall all be set to one. The frame shall be packaged into 6 bit
characters, with a Fibonacci bit inserted in place of a stop bit after each character.

3.2.4.5. RED/BLACK REM BRAVO FRAME DATA INTERLEAVING

The channel data frame shall be protected from correlated bursts of bit errors in the received
data frame by interleaving the data in accordance with paragraph 3.2.2.5.

NATO UNCLASSIFIED
 AComP-4724

 3 - 44 EDITION B VERSION 1
NATO UNCLASSIFIED

3.2.4.6. RED/BLACK REM BRAVO RED/BLACK FRAME HEADER

Before transmission, 70 header bits shall be inserted into the 980 bit channel interleaved frame
making a channel packet of 1050 bits. The header bits allow the receiver to determine the
exact start of each REM packet (resolving timing offsets and propagation delays), to estimate
the phase of the carrier signal over the REM packet to allow coherent demodulation of the
binary symbols, and to identify the type of REM coding used on the channel.

The RED/BLACK REM BRAVO coding channel interleaved frame header consists of 70 known
bits distributed along the frame in seven 10 bit header segments. The values of the seven 10
bit header segments and their position in the channel packet shall be as shown in TABLE 10.

Bit position 1 2 3 4 5 6 7 8 9 10

Content 1 0 0 0 1 1 1 0 1 0

Bit position 151 152 153 154 155 156 157 158 159 160

Content 0 1 1 0 1 1 1 1 1 0

Bit position 301 302 303 304 305 306 307 308 309 310

Content 1 1 0 1 1 1 0 0 1 1

Bit position 451 452 453 454 455 456 457 458 459 460

Content 1 0 1 0 0 1 0 0 1 1

Bit position 601 602 603 604 605 606 607 608 609 610

Content 0 1 0 1 0 0 0 0 1 0

Bit position 751 752 753 754 755 756 757 758 759 760

Content 0 0 0 0 1 1 0 0 0 1

Bit position 901 902 903 904 905 906 907 908 909 910

Content 0 1 0 0 0 0 1 1 1 1

TABLE 10: RED/BLACK BRAVO BLACK HEADER BIT POSITIONS.

On reception of the channel packet, the 70 header bits shall be removed from the channel
packet before the frame is de-interleaved.

3.3. Baseband Processing RED only NATO REM

The following defines additional baseband processing necessary to provide transitional NATO
VLF MSK REM. These modes co-exist with existing capability and are compatible with existing
in-service equipment, but they do not provide the full performance benefits of a full REM
implementation. Access to these modes requires baseband processing functions which are
additional to, but do not interfere with, those currently utilized. A channel coded with RED
REM technology appears as a VALLOR channel. These REM may be incorporated onto one
or more channels of a NATO multichannel broadcast operating in modes N7 or N8.

Different RED only REM packet structures and coding schemes are defined to optimise how
the REM performance advantage is realised. The following RED only REM packet structures
are defined in this standard:

a. RED only REM ALPHA defined in 3.3.3.3 is optimised for extended range;

NATO UNCLASSIFIED
 AComP-4724

 3 - 45 EDITION B VERSION 1
NATO UNCLASSIFIED

b. RED only REM BRAVO defined in 3.3.4.4 is optimised for extended throughput to 75bps
per channel.

3.3.1. NATO RED REM MULTICHANNEL MODES

NATO REM VALLOR channels may be used on VLF broadcasts operating multi-channel
modes N7 or N8 along with standard non REM channels as defined in Annex A and
RED/BLACK REM channels as defined in section 3.2. Advanced agreement will be required
between the Broadcast Control Station and the subscriber Receive Platform as to the
channel(s) on which RED/BLACK REM, RED only REM and NON REM shall be used.

3.3.1.1. ADDITIONAL RED REM FUNCTIONAL ALLOCATION.

 BROADCAST COORDINATION AUTHORITY (BCA)

The BCA shall perform the functions detailed in paragraph 2.2.3.2.1. In addition, the BCA shall
perform the following functions for the RED REM channels:

a. Carry out RED REM processing on broadcast data stream.

b. Present the data packet stream to the assigned crypto system.

 BROADCAST CONTROL STATION (BCS)

The BCS shall perform functions detailed in paragraph 2.2.3.2.2:

 VLF/LF TRANSMITTER COMPLEX

The VLF/LF Transmitter Complex shall perform the functions detailed in paragraph 2.2.3.2.3:

 RECEIVE PLATFORM

The Receive Platform shall perform the following additional functions to those detailed in
paragraph 2.2.3.2.4:

a. Identify RED REM coding scheme (if in use) on a channel;

b. Carry out RED REM decoding;

c. Process the decrypted data and output the data to a printer or other peripheral unit.

3.3.2. RED ONLY REM PROCESSING DEFINITIONS

The following sections define the required REM processing functions for encoding a channel
with RED only REM for use with NATO multichannel modes N7 and N8.

3.3.2.1. FIXED PACKET STRUCTURE

The RED only REM are based on 21 second packets on 50 baud channels giving 150,
VALLOR Encrypted Channel Frame characters per packet as shown in Figure 13 A. The RED
Packaged Frame (Figure 13 B) contains a 900 bit Interleaved RED Data Frame (Figure 13 C)
which has been packaged into 6 bit ITA2 64-ary characters.

The Interleaved RED Data Frame consists of a 53 bit header and an 847 bit RED Data Frame
whose bits have been shuffled with a fixed random interleaver. Contained within the RED Data
Frame are the compressed broadcast stream bits (Figure 13 E), generated by a text data
compression technique based on Prediction by Partial Match (PPM) and arithmetic coding
technology, and the LDPC FEC bits as shown in Figure 13.

NATO UNCLASSIFIED
 AComP-4724

 3 - 46 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 13: SCHEMATIC COMPOSITION OF RED NATO REM CHANNEL.

3.3.2.2. COMPRESSION ALGORITHM

The compression algorithm used for the RED REM mode is based upon the algorithm
described in paragraph 3.2.2.

3.3.2.3. FORWARD ERROR CORRECTION CODING

Forward error correction coding shall be added to the compressed information bits to protect
against bit errors in transmission. The forward error correction code shall be based on LDPC
coding.

3.3.2.4. PACKETISATION OF COMPRESSED DATA STREAM

The compressed information bits and the LDPC parity bits shall be packaged into a RED
packaged Frame prior to encryption. The RED packaged frame contains a 53 bit header and
interleaved information and FEC bits, packaged into 6 bit ITA2 64-ary characters as defined
below.

 RED DATA FRAME HEADER

The first 53 bit positions of each 900 bit Interleaved RED Data Frame shall consist of a known
frame header sequence. The bit streams have been chosen to have low autocorrelation
properties so they can be used to detect and frame channel frames without the need for
knowledge of the timing of the channel frame transmission, and to identify the type of RED
only REM coding used on the frames. The headers allow the processing of the RED REM
frames to be performed off-line in non-real time if needed.

A. Encrypted Channel Frame

150 7-bit characters (1050 channel bits)

D. RED Data Frame

C. Interleaved RED Data Frame 847 interleaved RED data bits

B. RED Packaged Frame

150 VALLOR encrypted characters (1050 bits)

E. Broadcast Data Stream Variable length of Baudot message characters

Link Encryption

Compressed information bits LDPC FEC bits

head

NATO UNCLASSIFIED
 AComP-4724

 3 - 47 EDITION B VERSION 1
NATO UNCLASSIFIED

 FRAME DATA INTERLEAVING

The RED data frame is protected from correlated bursts of bit errors in the received data by
shuffling the data bits in a random (but fixed) order before encryption. This operation spreads
clusters of bit errors (that may be due to strong atmospheric noise impulses) more uniformly
throughout the data frame. The 847 bit RED data frame shall be shuffled in accordance with
TABLE 11 (RED data frame bit position => interleaved RED data bit position). Once shuffled
the bits shall be inserted into the Interleaved RED Data Frame immediately after the header
(bit positions 54 through 900).

 1 => 13 2 => 60 3 => 219 4 => 783 5 => 245 6 => 489 7 => 130

 8 => 143 9 => 231 10 => 819 11 => 377 12 => 304 13 => 714 14 => 731

 15 => 10 16 => 101 17 => 740 18 => 757 19 => 615 20 => 64 21 => 204

 22 => 577 23 => 393 24 => 721 25 => 693 26 => 85 27 => 62 28 => 408

 29 => 25 30 => 432 31 => 309 32 => 90 33 => 712 34 => 481 35 => 298

 36 => 480 37 => 771 38 => 127 39 => 558 40 => 626 41 => 730 42 => 110

 43 => 772 44 => 420 45 => 272 46 => 325 47 => 622 48 => 605 49 => 774

 50 => 665 51 => 637 52 => 228 53 => 224 54 => 179 55 => 500 56 => 29

 57 => 845 58 => 453 59 => 741 60 => 750 61 => 625 62 => 535 63 => 194

 64 => 591 65 => 95 66 => 320 67 => 235 68 => 293 69 => 629 70 => 548

 71 => 549 72 => 597 73 => 218 74 => 267 75 => 816 76 => 550 77 => 237

 78 => 217 79 => 718 80 => 47 81 => 368 82 => 292 83 => 787 84 => 675

 85 => 294 86 => 388 87 => 703 88 => 635 89 => 544 90 => 398 91 => 149

 92 => 668 93 => 801 94 => 215 95 => 502 96 => 747 97 => 582 98 => 528

 99 => 65 100 => 546 101 => 116 102 => 144 103 => 846 104 => 436 105 => 256

 106 => 532 107 => 392 108 => 759 109 => 385 110 => 343 111 => 513 112 => 699

 113 => 788 114 => 174 115 => 482 116 => 818 117 => 766 118 => 828 119 => 163

 120 => 554 121 => 319 122 => 387 123 => 321 124 => 129 125 => 421 126 => 341

 127 => 770 128 => 120 129 => 107 130 => 115 131 => 465 132 => 156 133 => 386

 134 => 589 135 => 423 136 => 488 137 => 201 138 => 826 139 => 817 140 => 663

 141 => 300 142 => 11 143 => 383 144 => 685 145 => 367 146 => 710 147 => 81

 148 => 696 149 => 782 150 => 683 151 => 49 152 => 576 153 => 205 154 => 117

 155 => 521 156 => 510 157 => 376 158 => 736 159 => 100 160 => 93 161 => 739

 162 => 162 163 => 66 164 => 844 165 => 20 166 => 389 167 => 324 168 => 505

 169 => 169 170 => 464 171 => 760 172 => 491 173 => 69 174 => 422 175 => 483

 176 => 102 177 => 581 178 => 51 179 => 164 180 => 522 181 => 834 182 => 538

 183 => 512 184 => 711 185 => 45 186 => 223 187 => 630 188 => 259 189 => 355

 190 => 437 191 => 494 192 => 539 193 => 575 194 => 378 195 => 667 196 => 519

 197 => 190 198 => 176 199 => 340 200 => 659 201 => 42 202 => 128 203 => 784

 204 => 349 205 => 624 206 => 346 207 => 536 208 => 80 209 => 28 210 => 623

 211 => 611 212 => 776 213 => 98 214 => 779 215 => 220 216 => 455 217 => 545

 218 => 265 219 => 795 220 => 222 221 => 446 222 => 702 223 => 314 224 => 157

 225 => 682 226 => 412 227 => 732 228 => 199 229 => 287 230 => 71 231 => 847

 232 => 111 233 => 781 234 => 655 235 => 59 236 => 447 237 => 837 238 => 508

 239 => 172 240 => 415 241 => 396 242 => 373 243 => 648 244 => 461 245 => 600

NATO UNCLASSIFIED
 AComP-4724

 3 - 48 EDITION B VERSION 1
NATO UNCLASSIFIED

 246 => 588 247 => 236 248 => 706 249 => 4 250 => 38 251 => 672 252 => 486

 253 => 485 254 => 394 255 => 22 256 => 514 257 => 275 258 => 612 259 => 835

 260 => 305 261 => 374 262 => 141 263 => 786 264 => 159 265 => 427 266 => 644

 267 => 137 268 => 244 269 => 516 270 => 121 271 => 359 272 => 234 273 => 724

 274 => 586 275 => 345 276 => 476 277 => 365 278 => 357 279 => 670 280 => 742

 281 => 799 282 => 197 283 => 646 284 => 662 285 => 507 286 => 290 287 => 404

 288 => 517 289 => 195 290 => 429 291 => 39 292 => 139 293 => 720 294 => 627

 295 => 526 296 => 43 297 => 269 298 => 403 299 => 448 300 => 527 301 => 524

 302 => 746 303 => 17 304 => 44 305 => 503 306 => 154 307 => 409 308 => 807

 309 => 322 310 => 332 311 => 354 312 => 299 313 => 89 314 => 268 315 => 825

 316 => 533 317 => 34 318 => 604 319 => 559 320 => 830 321 => 578 322 => 416

 323 => 118 324 => 166 325 => 492 326 => 574 327 => 363 328 => 506 329 => 273

 330 => 74 331 => 240 332 => 400 333 => 768 334 => 97 335 => 449 336 => 278

 337 => 515 338 => 451 339 => 285 340 => 719 341 => 681 342 => 136 343 => 424

 344 => 391 345 => 614 346 => 198 347 => 82 348 => 303 349 => 79 350 => 338

 351 => 580 352 => 518 353 => 439 354 => 249 355 => 3 356 => 495 357 => 414

 358 => 657 359 => 610 360 => 186 361 => 123 362 => 291 363 => 358 364 => 594

 365 => 288 366 => 329 367 => 609 368 => 744 369 => 109 370 => 700 371 => 61

 372 => 7 373 => 761 374 => 181 375 => 78 376 => 616 377 => 140 378 => 785

 379 => 471 380 => 27 381 => 701 382 => 397 383 => 628 384 => 767 385 => 251

 386 => 803 387 => 277 388 => 188 389 => 765 390 => 8 391 => 353 392 => 230

 393 => 152 394 => 763 395 => 792 396 => 474 397 => 442 398 => 202 399 => 87

 400 => 161 401 => 70 402 => 804 403 => 142 404 => 413 405 => 276 406 => 595

 407 => 56 408 => 496 409 => 48 410 => 280 411 => 676 412 => 134 413 => 227

 414 => 177 415 => 573 416 => 431 417 => 253 418 => 641 419 => 212 420 => 572

 421 => 348 422 => 557 423 => 822 424 => 232 425 => 178 426 => 543 427 => 342

 428 => 407 429 => 640 430 => 246 431 => 296 432 => 336 433 => 99 434 => 726

 435 => 832 436 => 279 437 => 242 438 => 705 439 => 381 440 => 808 441 => 499

 442 => 334 443 => 384 444 => 585 445 => 257 446 => 777 447 => 289 448 => 114

 449 => 645 450 => 671 451 => 91 452 => 806 453 => 213 454 => 643 455 => 751

 456 => 113 457 => 77 458 => 654 459 => 16 460 => 450 461 => 243 462 => 707

 463 => 318 464 => 297 465 => 769 466 => 192 467 => 435 468 => 689 469 => 498

 470 => 18 471 => 5 472 => 606 473 => 372 474 => 590 475 => 738 476 => 715

 477 => 454 478 => 308 479 => 6 480 => 468 481 => 248 482 => 203 483 => 53

 484 => 466 485 => 313 486 => 633 487 => 733 488 => 119 489 => 124 490 => 239

 491 => 592 492 => 504 493 => 690 494 => 477 495 => 583 496 => 820 497 => 509

 498 => 443 499 => 725 500 => 797 501 => 327 502 => 132 503 => 570 504 => 333

 505 => 19 506 => 282 507 => 209 508 => 764 509 => 67 510 => 339 511 => 778

 512 => 266 513 => 344 514 => 182 515 => 842 516 => 479 517 => 619 518 => 743

 519 => 511 520 => 684 521 => 441 522 => 21 523 => 330 524 => 749 525 => 656

 526 => 145 527 => 328 528 => 762 529 => 284 530 => 317 531 => 802 532 => 58

 533 => 745 534 => 618 535 => 472 536 => 173 537 => 428 538 => 264 539 => 283

NATO UNCLASSIFIED
 AComP-4724

 3 - 49 EDITION B VERSION 1
NATO UNCLASSIFIED

 540 => 547 541 => 473 542 => 520 543 => 364 544 => 270 545 => 323 546 => 729

 547 => 352 548 => 200 549 => 255 550 => 793 551 => 252 552 => 679 553 => 790

 554 => 52 555 => 274 556 => 151 557 => 362 558 => 57 559 => 281 560 => 798

 561 => 88 562 => 571 563 => 40 564 => 569 565 => 607 566 => 540 567 => 530

 568 => 652 569 => 301 570 => 708 571 => 560 572 => 470 573 => 104 574 => 411

 575 => 405 576 => 673 577 => 556 578 => 165 579 => 50 580 => 634 581 => 440

 582 => 661 583 => 620 584 => 286 585 => 430 586 => 617 587 => 402 588 => 401

 589 => 31 590 => 148 591 => 780 592 => 796 593 => 553 594 => 456 595 => 650

 596 => 241 597 => 791 598 => 469 599 => 258 600 => 187 601 => 814 602 => 596

 603 => 211 604 => 306 605 => 452 606 => 680 607 => 94 608 => 263 609 => 497

 610 => 191 611 => 686 612 => 537 613 => 83 614 => 96 615 => 261 616 => 36

 617 => 76 618 => 189 619 => 307 620 => 737 621 => 567 622 => 631 623 => 1

 624 => 833 625 => 552 626 => 214 627 => 23 628 => 459 629 => 221 630 => 812

 631 => 551 632 => 146 633 => 247 634 => 692 635 => 375 636 => 33 637 => 598

 638 => 55 639 => 636 640 => 331 641 => 821 642 => 716 643 => 84 644 => 155

 645 => 713 646 => 603 647 => 653 648 => 755 649 => 843 650 => 30 651 => 666

 652 => 758 653 => 584 654 => 92 655 => 316 656 => 382 657 => 593 658 => 315

 659 => 434 660 => 831 661 => 226 662 => 697 663 => 565 664 => 800 665 => 15

 666 => 677 667 => 789 668 => 295 669 => 54 670 => 185 671 => 216 672 => 722

 673 => 138 674 => 599 675 => 824 676 => 369 677 => 233 678 => 75 679 => 41

 680 => 651 681 => 312 682 => 125 683 => 674 684 => 193 685 => 160 686 => 639

 687 => 602 688 => 691 689 => 754 690 => 587 691 => 12 692 => 501 693 => 335

 694 => 170 695 => 366 696 => 531 697 => 37 698 => 208 699 => 525 700 => 664

 701 => 563 702 => 564 703 => 756 704 => 493 705 => 410 706 => 805 707 => 171

 708 => 150 709 => 813 710 => 395 711 => 717 712 => 838 713 => 206 714 => 63

 715 => 207 716 => 112 717 => 147 718 => 379 719 => 351 720 => 350 721 => 133

 722 => 734 723 => 463 724 => 426 725 => 727 726 => 561 727 => 775 728 => 647

 729 => 467 730 => 541 731 => 302 732 => 698 733 => 35 734 => 460 735 => 370

 736 => 748 737 => 356 738 => 419 739 => 773 740 => 669 741 => 229 742 => 562

 743 => 735 744 => 433 745 => 417 746 => 490 747 => 9 748 => 425 749 => 613

 750 => 86 751 => 254 752 => 823 753 => 678 754 => 103 755 => 399 756 => 840

 757 => 26 758 => 753 759 => 180 760 => 444 761 => 105 762 => 175 763 => 810

 764 => 14 765 => 122 766 => 72 767 => 361 768 => 380 769 => 829 770 => 555

 771 => 534 772 => 326 773 => 815 774 => 262 775 => 158 776 => 458 777 => 438

 778 => 108 779 => 809 780 => 688 781 => 184 782 => 658 783 => 418 784 => 632

 785 => 687 786 => 601 787 => 73 788 => 523 789 => 196 790 => 487 791 => 642

 792 => 694 793 => 827 794 => 579 795 => 126 796 => 568 797 => 704 798 => 811

 799 => 841 800 => 638 801 => 238 802 => 183 803 => 337 804 => 68 805 => 46

 806 => 621 807 => 347 808 => 250 809 => 566 810 => 225 811 => 608 812 => 478

 813 => 168 814 => 106 815 => 271 816 => 2 817 => 445 818 => 406 819 => 24

 820 => 260 821 => 752 822 => 153 823 => 839 824 => 457 825 => 794 826 => 462

 827 => 695 828 => 836 829 => 167 830 => 310 831 => 210 832 => 728 833 => 135

NATO UNCLASSIFIED
 AComP-4724

 3 - 50 EDITION B VERSION 1
NATO UNCLASSIFIED

 834 => 660 835 => 709 836 => 649 837 => 371 838 => 311 839 => 390 840 => 475

 841 => 723 842 => 542 843 => 360 844 => 529 845 => 484 846 => 131 847 => 32

TABLE 11: RED CHANNEL INTERLEAVING

At the receiver the interleaved data frame shall be shuffled using the reverse operation once
the 53 header bits have been stripped off the frame.

 RED PACKAGED FRAME

The RED Interleaved Data Frame shall be packaged into 6 bit ITA2 64-ary characters, starting
at bit position 1, with stop bits inserted after each character (after every six bits). The inserted
stop bits shall be set to one. A total of 150 stop bits will be required, taking a RED packaged
frame of 1050 bits. The RED Packaged Frame shall be set to the encryption device starting
with bit position 1.

3.3.2.5. CHANNEL MULTIPLEXING

 RED ONLY REM CHANNEL IN NATO MULTICHANNEL MODES N7 AND N8

For NATO modes N7 and N8, RED only REM channels shall be time division multiplexed onto
a broadcast data stream in accordance with paragraph 2.2.3.3.5.4. To maintain frame
synchronisation Channel 1 shall be a VALLOR encrypted channel. This may be non-REM or
RED only REM. If a NATO multichannel broadcast contains only non-REM or RED only REM
channel, time of day synchronisation of the broadcast, in accordance with paragraph 3.2.1.1,
is not required.

3.3.3. RED ONLY REM ALPHA PACKET STRUCTURE

The ALPHA packet structure and coding scheme has been optimised to increase the effective
broadcast coverage area, whilst keeping the channel throughput at approximately 50bps. The
packet structure has been optimised to interface with VALLOR like encryption containing
deterministic Fibonacci bits.

3.3.3.1. RED ONLY REM ALPHA PACKET STRUCTURE DETAIL

The RED only REM ALPHA packet structure is based on 21 second packets on 50 baud
channels giving 150 VALLOR Encrypted Channel Frame characters per packet as shown in
Figure 12 A.

The 847 bit RED Data Frame contains 484 bits of compressed broadcast stream (Figure 12
E), generated by a text data compression technique based on Prediction by Partial Match
(PPM) and arithmetic coding technology, and 363 bits of LDPC FEC bits as shown in Figure
12 D.

NATO UNCLASSIFIED
 AComP-4724

 3 - 51 EDITION B VERSION 1
NATO UNCLASSIFIED

FIGURE 14: SCHEMATIC COMPOSITION OF RED ALPHA NATO REM CHANNEL.

3.3.3.2. RED ONLY REM ALPHA RED DATA FRAME STRUCTURE

The 847 RED Data Frame shall contain the compressed message data and FEC coding bits.
The first 484 bits of the RED Data Frame shall be made up of the 484 compressed information
bits. These shall be loaded into the frame as they are generated; the first bit generated by the
text compression process shall occupy bit one of the RED Data Frame, and the frame shall
then be filled sequentially to bit position 484. The FEC coding bits shall follow the compressed
information occupying bit positions 485 to 847.

3.3.3.3. RED ONLY REM ALPHA PPM ALGORITHMS

RED only REM ALPHA uses a PPM algorithm based on an adaptive statistical model of
conditional probabilities of the next character given the most recent four character context.
The algorithm shall be initialised with a pre-defined, fixed model for each compressed
information frame. Characters shall be assessed one at a time from a sequence of 6-bit
characters on the broadcast stream and be compressed using an arithmetic coding scheme
based on the conditional probability distribution of the statistical modem given the context of
the four preceding characters.

 RED ONLY REM ALPHA PPM COMPRESSION

The RED only REM ALPHA PPM compression coding shall be carried out to be interoperable
with the code given in ANNEX C.

 RED ONLY REM ALPHA PPM EXPANSION

The RED only REM ALPHA packets shall be expanded to recover the original broadcast data
stream. An example of a suitable expansion algorithm is given in ANNEX D.

A. Encrypted Channel Frame

150 7-bit characters (1050 channel bits)

D. RED Data Frame

C. Interleaved RED Data Frame 847 interleaved RED data bits

B. RED Packaged Frame

150 VALLOR encrypted characters (1050 bits)

E. Broadcast Data Stream Variable length of Baudot message characters

Link Encryption

484 compressed information bits 363 LDPC FEC bits

NATO UNCLASSIFIED
 AComP-4724

 3 - 52 EDITION B VERSION 1
NATO UNCLASSIFIED

 RED ONLY REM ALPHA STATISTICAL MODEL

Details of the statistical model file and format are included in ANNEX A.

3.3.3.4. RED ONLY REM ALPHA LDPC FEC

The RED only REM ALPHA packet structure shall be protected against bit errors in
transmission by a 0.57 rate LDPC FEC code.

 RED ONLY REM ALPHA LDPC FEC CODING

The FEC code shall be applied to the 484 compressed information bits. The FEC code shall
be generated by the binary multiplication of the information bits (considered as a binary column
vector) by the binary coding matrix defined in Equation 3. This produces a binary column
vector (the parity bit vector) which shall be used to fill the FEC parity bit portion of the RED
data frame.











































































































363

3

2

1

484

3

2

1

484363336323631363

4843332313

4842322212

4841312111

.

.

.

.

.

.

.

.

.

..........

.

.

.

....................

....................

.....................

p

p

p

p

d

d

d

d

MMMM

MMMM

MMMM

MMMM

EQUATION 3: RED LDPC FEC GENERATOR MATRIX.

M1-1 to M363-484 represents the binary generator matrix as defined in ANNEX E. d1 represents
the first bit of information contained within the RED data frame (bit position 1) and d484 the last
information bit contained within the RED data frame (bit position 484). The parity bits
generated (p1 to p363) shall be inserted into the channel data frame immediately after the
information bits (p1 to bit position 485, p363 to bit position 847).

 RED ONLY REM ALPHA LDPC FEC DECODING

An LDPC decoder may be used to detect and correct errors. An example decoder is described
in ANNEX B and parity equations defined.

3.3.3.5. RED ONLY REM ALPHA RED DATA FRAME HEADER

The first 53 bit positions of each 900 bit Interleaved RED Data Frame shall consist of a known
frame header sequence. RED only REM ALPHA coding shall use the header bits defined in
TABLE 12.

Bit position 1 2 3 4 5 6 7 8 9 10 11

Content 1 1 1 0 0 1 1 1 1 0 1

Bit position 12 13 14 15 16 17 18 19 20 21 22

Content 0 0 1 1 0 1 1 1 0 1 0

Bit position 23 24 25 26 27 28 29 30 31 32 33

NATO UNCLASSIFIED
 AComP-4724

 3 - 53 EDITION B VERSION 1
NATO UNCLASSIFIED

Content 1 1 0 1 1 0 1 0 0 0 1

Bit position 34 35 36 37 38 39 40 41 42 43 44

Content 1 0 1 1 1 0 1 0 0 0 0

Bit position 45 46 47 48 49 50 51 52 53

Content 0 0 1 0 0 1 1 0 0

TABLE 12: RED ALPHA REM HEADER BIT POSITIONS.

3.3.4. RED only REM BRAVO packet structure

The BRAVO packet structure and coding scheme has been optimised to increase channel
throughput to approximately 75bps whilst keeping the effective range of the VLF broadcast
comparable with the NATO modes defined in CHAPTER 2. The coding scheme has been
optimised to interface with VALLOR like encryption containing deterministic Fibonacci bits.

3.3.4.1. RED ONLY REM BRAVO CODING PACKET STRUCTURE DETAIL

The RED only REM BRAVO packet structure is based on 21 second packets on 50 baud
channels giving 150, VALLOR Encrypted Channel Frame characters per packet as shown in
Figure 14 A.

The 847 bit RED Data Frame contains 681 bits of compressed broadcast stream (Figure 14
E), generated by a text data compression technique based on Prediction by Partial Match
(PPM) and arithmetic coding technology and 166 bits of LDPC FEC bits as shown in Figure 14
D.

FIGURE 15: SCHEMATIC COMPOSITION OF RED BRAVO NATO REM CHANNEL.

A. Encrypted Channel Frame

150 7-bit characters (1050 channel bits)

D. RED Data Frame

C. Interleaved RED Data Frame 847 interleaved RED data bits

B. RED Packaged Frame

150 VALLOR encrypted characters (1050 bits)

E. Broadcast Data Stream Variable length of Baudot message characters

Link Encryption

681 compressed information bits 166 LDPC FEC bits

head

head

363
LDP
C
FEC
bits
484
com
pres
sed
infor
mati

NATO UNCLASSIFIED
 AComP-4724

 3 - 54 EDITION B VERSION 1
NATO UNCLASSIFIED

3.3.4.2. RED ONLY REM BRAVO RED DATA FRAME STRUCTURE

The 847 RED Data Frame shall contain the compressed message data and FEC coding bits.
The first 681 bits of the RED Data Frame shall be made up of the 681 compressed information
bits. These shall be loaded into the frame as they are generated; the first bit generated by the
text compression process shall occupy bit one of the RED Data Frame and the frame shall
then be filled sequentially to bit position 681. The FEC coding bits shall follow the compressed
information occupying bit positions 682 to 847.

3.3.4.3. RED ONLY REM BRAVO PPM ALGORITHMS

RED only REM BRAVO uses a PPM algorithm based on an adaptive statistical model of
conditional probabilities of the next character given the most recent four character context.
The algorithm shall be initialised with a pre-defined fixed model for each compressed
information frame. Characters shall be assessed one at a time from a sequence of 6-bit
characters on the broadcast stream and be compressed using an arithmetic coding scheme
based on the conditional probability distribution of the statistical modem given the context of
the four preceding characters.

 RED ONLY REM BRAVO PPM COMPRESSION

The RED only REM BRAVO PPM compression coding shall be carried out to be interoperable
with the code given in ANNEX C.

 RED ONLY REM BRAVO PPM EXPANSION

The RED only REM BRAVO packets shall be expanded to recover the original broadcast data
stream. An example of a suitable expansion algorithm is given in ANNEX D

 RED ONLY REM BRAVO STATISTICAL MODEL

Details of the statistical model file and format are included in ANNEX A.

3.3.4.4. RED ONLY REM BRAVO LDPC FEC

The RED only REM BRAVO packet structure shall be protected against bit errors in
transmission by a 0.78 rate LDPC FEC code.

 RED ONLY REM BRAVO CODING LDPC FEC CODING

The FEC code shall be applied to the 681 compressed information bits. The FEC code shall
be generated by the binary multiplication of the information bits (considered as a binary column
vector) by the binary coding matrix defined in Equation 4 This produces a binary column
vector (the parity bit vector) which shall be used to fill the FEC parity bit portion of the RED
data frame.

NATO UNCLASSIFIED
 AComP-4724

 3 - 55 EDITION B VERSION 1
NATO UNCLASSIFIED











































































































166

3

2

1

681

3

2

1

681166316621661166

6813332313

6812322212

6811312111

.

.

.

.

.

.

.

.

.

..........

.

.

.

....................

....................

.....................

p

p

p

p

d

d

d

d

MMMM

MMMM

MMMM

MMMM

EQUATION 4: RED LDPC FEC GENERATOR MATRIX.

M1-1 to M166-681 represents the binary generator matrix as defined in ANNEX E. d1 represents
the first bit of information contained within the RED data frame (bit position 1) and d681 the last
information bit contained within the RED data frame (bit position 681). The parity bits
generated (p1 to p166) shall be inserted into the channel data frame immediately after the
information bits (p1 to bit position 682 p166 to bit position 847).

 RED ONLY REM BRAVO LDPC FEC DECODING

An LDPC decoder may be used to detect and correct errors. An example decoder is described
in ANNEX B where the necessary parity equations are defined.

3.3.4.5. RED ONLY REM BRAVO RED DATA FRAME HEADER

The first 53 bit positions of each 900 bit Interleaved RED Data Frame shall consist of a known
frame header sequence. RED only REM BRAVO coding shall use the header bits defined in
TABLE 13.

Bit position 1 2 3 4 5 6 7 8 9 10 11

Content 1 0 1 1 0 0 1 0 1 1 1

Bit position 12 13 14 15 16 17 18 19 20 21 22

Content 1 0 0 1 1 1 0 1 1 1 1

Bit position 23 24 25 26 27 28 29 30 31 32 33

Content 1 0 0 0 1 1 1 1 0 1 1

Bit position 34 35 36 37 38 39 40 41 42 43 44

Content 0 0 0 1 0 0 0 0 1 0 1

Bit position 45 46 47 48 49 50 51 52 53

Content 0 1 1 1 0 0 1 1 0

TABLE 13: RED BRAVO REM HEADER BIT POSITIONS.

NATO UNCLASSIFIED
 AComP-4724

 4 - 56 EDITION A VERSION 1
NATO UNCLASSIFIED

CHAPTER 4 NATO REM PERFORMANCE REQUIREMENTS

This Annex defines the performance required of receive systems operating in NATO REM
modes. The chapter defines a standard test environment within which VLF receivers and
REM processing systems are to be tested and defines the associated required performance
characteristics.

4.1. NON-REM RECEIVER PERFORMANCE

4.1.1. Non-REM receiver performance testing

The REM modes of CHAPTER 3 include performance requirements on the VLF receive
system in addition to those defined in CHAPTER 2. These requirements shall be met without
the inclusion of REM processing. The performance of the receive system shall be tested
with a set of defined test signals.

4.2. Non-REM test signals

The test signals contain a simulated MSK broadcast in a defined noise environment. The
signal broadcast contains a VALLOR encrypted channel 1 for receiver synchronisation and
Plain Language test messages on the remaining channels for producing the character error
rates. Test broadcasts are provided for MSK4 modulation. Test broadcasts are provided for
three different noise environments: Gaussian noise, atmospheric noise and a broadcast
containing adjacent channel transmissions. In each test environment the test broadcast
shall be transmitted on the frequency defined. Figure 16 shows the test configuration.

FIGURE 16: NON-REM RECEIVER PERFORMANCE TESTING CONFIGURATION.

The VALLOR channel 1 allows the receiver to synchronise on the broadcast data stream
and correctly decode the channels. The plain language channels are to be used for
character error rate testing. The test signals are provided as .WAV files encoded at 96kHz
/ 24bit.

The test signals provided for non-REM receiver performance testing are as defined in
TABLE 14 below.

VLF Receiver STANAG 4724
Standard Test

Signal

Character
Error
Rate

Tester

STANAG 4724
Standard Test

Message

NATO UNCLASSIFIED
 AComP-4724

 4 - 57 EDITION A VERSION 1
NATO UNCLASSIFIED

Filename
MD5 Checksum

Mode Additive Noise Broadcast test frequency

STANAG4724TestFile1.wav N5 Gaussian 19.0kHz

STANAG4724TestFile2.wav N5 Atmospheric 28.0kHz

STANAG4724TestFile3.wav N5 Adjacent Channel 21.22kHz

TABLE 14: RECEIVER PERFORMANCE TEST MESSAGE.

4.2.1.1. STANAG 4724 STANDARD TEST MESSAGE

The test message used on the plain language channels of the test broadcasts is defined in
TABLE 15 below.

Character 1 2 3 4 5 6 7 8 9 10

Content S T A N A G FIGS 4 7 2

Character 11 12 13 14 15 16 17 18 19 20

Content 4 space LTRS T E S T space M E

Character 21 22 23 24 25 26 27 28 29 30

Content S S A G E space FIGS 0 1 2

Character 31 32 33 34 35 36 37 38 39 40

Content 3 4 5 6 7 8 9 CR CR LF

Character 41 42 43 44 45 46 47 48 49 50

Content LTRS T H E space Q U I C K

Character 51 52 53 54 55 56 57 58 59 60

Content space B R O W N space F O X

Character 61 62 63 64 65 66 67 68 69 70

Content space J U M P S space O V E

Character 71 72 73 74 75 76 77 78 79 80

Content R space T H E space L A Z Y

Character 80 82 83 84 85 86 87

Content space D O G CR CR LF

TABLE 15: RECEIVER PERFORMANCE TEST MESSAGE.

The characters are 7 unit 32-ary ITA2 characters transmitted in accordance with paragraph
2.2.2.2.1. After the 87 characters defined in TABLE 15 the message shall be repeated
starting at character 1.

4.2.1.2. NON-REM RECEIVER PERFORMANCE TEST REQUIREMENTS

Character error rates shall be determined from either channel 2, 3 or 4 of the MSK4 test
broadcasts.

NATO UNCLASSIFIED
 AComP-4724

 4 - 58 EDITION A VERSION 1
NATO UNCLASSIFIED

 N6 GAUSSIAN NOISE PERFORMANCE

The minimum performance requirements for a STANAG 4724 VLF receiver receiving the
STANAG 4724 test file 1 is for a character error rate no worse than 1 in 1000.

 N6 ATMOSPHERIC NOISE PERFORMANCE

The minimum performance requirements for a STANAG 4724 VLF receiver receiving the
STANAG 4724 test file 2 is for a character error rate no worse than 1 in 1000.

 N6 ADJACENT CHANNEL PERFORMANCE

The minimum performance requirements for a STANAG 4724 VLF receiver receiving the
STANAG 4724 test file 3 is for a character error rate no worse than 1 in 1000.

4.2.2. REM performance testing

4.2.2.1. RED ONLY REM PERFORMANCE TESTING

In addition to the non-REM performance tests of paragraph 4.1.1 above, RED only REM
system shall be capable of correctly decoding a set of defined test data streams. These
data streams consist of RED Packaged Frames of a defined test message stream, encoded
with the RED only REM processing. The data stream shall be injected into the RED REM
processor in place of the decrypted data stream as shown in Figure 17.

FIGURE 17: RED ONLY REM CER PERFORMANCE TESTING CONFIGURATION.

4.2.2.2. RED ONLY REM TEST DATA STREAM

The RED only test message stream consists of the STANAG 4724, test message defined in
paragraph 4.2.1.1, repeated 100 times. The test data streams consist of the message
stream compressed, encoded, interleaved and packaged into 64-ary ITA 2 character RED
packaged frames using the defined RED only coding schemes. A test data stream is
provided for each RED only REM coding scheme defined within the standard. The test data
streams are defined in TABLE 16.

File Name
MD5 Checksum

RED only coding

REDAlphaTest.dat Alpha

REDBravoTest.dat Bravo

TABLE 16: RED ONLY REM STANDARD NOISE FILES.

NATO UNCLASSIFIED
 AComP-4724

 4 - 59 EDITION A VERSION 1
NATO UNCLASSIFIED

 RED ONLY TEST FILE FORMAT

The RED only REM test files contain the 64-ary ITA 2 character red data stream stored as
8 bit binary characters. The most significant bit of each 8 bit character is set to 0; the
remaining bits contain the 64-ary ITA2 character ordered as per Figure 18.

FIGURE 18: RED ONLY TEST FILE FORMAT.

4.2.2.3. RED ONLY REM TESTING

When a test data stream is injected into the RED only REM processor the processor shall
decode the data stream using the correct processing definitions and output the RED only
REM test data stream without error. This shall be conducted for each RED coding scheme
implemented within the processor.

4.2.2.4. RED/BLACK REM TESTING

A similar pre-defined signal method for RED/BLACK REM testing is not currently considered
to be practicable due to the link encryption (and need for associated keymat) requirement
between the RED and BLACK processors on both APLHA and BRAVO modes.

NATO UNCLASSIFIED
 AComP-4724

 A - 60 EDITION B VERSION 1
NATO UNCLASSIFIED

 STATISTICAL MODEL

A.1. STATISTICAL MODEL FORMAT

A fixed, pre-defined initial statistical model is included with this STANAG. This is a binary
file that contains conditional probabilities for arithmetic encoding of characters based on a
large representative message data set. The statistical model file is required for the
compression and expansion of the compressed data stream. The statistical model is
reloaded by the compress/expand process at the start of each packet.

A.2. STATISTICAL MODEL FILE

The following file shall be used as the standard statistical model for RED/BLACK ALPHA
REM, RED/BLACK BRAVO REM, RED ALPHA REM and RED BRAVO REM.

 STANAG4724StatisticalModel.cmp

 MD5 Checksum: i.a.w. finalised StatisticalModel.cmp

NATO UNCLASSIFIED
 AComP-4724

 B - 61 EDITION B VERSION 1
NATO UNCLASSIFIED

 LDPC FEC DECODING

B.1. LDPC DECODER OPERATION

A set of parity equations may be used to detect bit errors within the received frames. The
input frame to the LDPC decoder is the receiver soft decision likelihood values for each
received bit of the FEC encoded frame. The decoder uses this frame and knowledge of the
parity equations to iteratively estimate the correct values for the data. If the parity equations
can be satisfied there remains only a very small probability that the frame contains
undetectable bit errors.

The decoder maintains two versions of the parity matrix elements:

 The Horizontal matrix HL(i,j);

 The Vertical matrix B(I,j), where i indexes the parity equations and j indexes the frame
bit.

The decoder iteratively updates the HL matrix and the B matrix until the parity equations are
satisfied or a maximum number of iterations have been reached without convergence. Two
additional matrices are defined that allow for irregular codes. The Horizontal Index matrix
and the Vertical Index matrix define the lengths of each row and column in the horizontal
and vertical matrix where the code is irregular. The ALPHA codes defined in this STANAG
are regular and the BRAVO codes are only irregular in horizontal matrix; thus only the row
index matrix is required for the BRAVO codes. Figure 19 shows an overview of the operation
of the decoder.

FIGURE 19: LDPC DECODER OPERATION

Use Frame F values to initialise B matrix

Done?

Update HL matrix using B values by
“Horizontal” Probability Propagation

Algorithm

Update B matrix using HL values by “Vertical”
Probability Propagation Algorithm

Check for correctness of all parity equations

Construct decoder output frame of binary values

NATO UNCLASSIFIED
 AComP-4724

 B - 62 EDITION B VERSION 1
NATO UNCLASSIFIED

The received data frame values initialise the B matrix. The HL matrix is then updated using
values of the parity equations in the B matrix. The B matrix is then updated using values of
the parity equations in the HL matrix. If the parity equations are satisfied the decoder outputs
the frame of binary values; if the equations cannot be satisfied the decoder runs through
another iteration. The process is followed until either:

 The parity bit equations are satisfied;

 A maximum number of iterations is reached;

 No changes occur to the tentative bit decisions for 10 iterations (the code stops
converging);

 If the code cannot be satisfied the frame is rejected.

To allow a compact representation and rapid access to the appropriate B and HL matrix
entries an index of frame positions for each parity equation component (Column matrix) and
an index of parity equations that involve each frame (Row matrix) is provided for each code.
These are used by the decoder on initialisation to define the parity matrix for the LDPC FEC
code.

B.2. LDPC FEC DECODER EXAMPLE

The following code is an example LDPC FEC decoder.

{Decode symbol block}

 {L_BLOCK^[] (data+parity block size)

 Parity_index[] (data+parity block size)

 Hor_index[] (parity block size)

 COL[]^[] Max_mult.(# parity entries)

 ROW[]^[] Max_mult.(# parity entries)

 b[]^[] Max_mult.(parity index[])

 HL[]^[] Max_mult.(parity index[])

 State^[] (data+parity block size)

 d^[] (hor_index[])

 Decode_block^[](data+parity block size)

 }

 {Init decode}

 FOR J:= 1 TO DATA_BLOCK_SIZE + PARITY_BLOCK_SIZE DO

 BEGIN

 FOR I := 1 TO PARITY_INDEX[J] {NO_PARITIES_PER_SYMBOL} DO

 BEGIN

 HL[I]^[J] := 1.0;

 b[I]^[J] := L_BLOCK^[J];

 END;

 END;

 FOR J := 1 TO DATA_BLOCK_SIZE + PARITY_BLOCK_SIZE DO

 IF L_BLOCK^[J] < 1 THEN STATE^[J]:=1 ELSE STATE^[J]:=0;

 {Iterate decode}

 INDEX := 0; CONVERGENCE:= FALSE; CONVERGENCE_COUNT := 0;

 STATE_CONVERGENCE := FALSE;

 REPEAT

 BEGIN

 INDEX := INDEX + 1;

 {25 June 06 Data Extraction Mod}

 If INDEX = 1 {2} then

 Begin

 {Evaluate the parity equation status; stop if all consistent}

NATO UNCLASSIFIED
 AComP-4724

 B - 63 EDITION B VERSION 1
NATO UNCLASSIFIED

 CONVERGENCE := TRUE; Parity_errors := 0;

 FOR J:= 1 TO PARITY_BLOCK_SIZE DO

 BEGIN

 PARITY_COUNT := 0;

 FOR L := 1 TO HOR_INDEX[J] {NO_PARITY_ENTRIES} DO

 BEGIN

 IF L_BLOCK^[COL[L]^[J]] < 1 THEN

 BEGIN

 IF PARITY_COUNT = 0 THEN PARITY_COUNT := 1 ELSE

PARITY_COUNT := 0;

 END;

 END;

 IF PARITY_COUNT = 0 THEN

 CONVERGENCE := CONVERGENCE AND TRUE

 ELSE

 Begin

 CONVERGENCE := FALSE;

 Parity_errors := Parity_errors + 1;

 End;

 END;

 WRITELN(Log_file,' BLOCK INDEX = ',BLOCK_INDEX_' ITERATION =

',INDEX,' ',Parity_errors:4:0);

 End;

 WRITELN(' ITERATION = ',INDEX,' ',Parity_errors:4:0,'

',Convergence_count:4);

 {Horizontal Update}

 FOR I := 1 TO PARITY_BLOCK_SIZE DO

 BEGIN

 FOR K := 1 TO HOR_INDEX[I] {NO_PARITY_ENTRIES} DO

 BEGIN

 d^[K] := (b[ROW[K]^[I]]^[COL[K]^[I]] - 1.0)/

 (b[ROW[K]^[I]]^[COL[K]^[I]] + 1.0);

 END;

 FOR M := 1 TO HOR_INDEX[I] {NO_PARITY_ENTRIES} DO

 BEGIN

 DELTA:=1.0;

 FOR L := 1 TO HOR_INDEX[I] {NO_PARITY_ENTRIES} DO

 BEGIN

 IF L <> M THEN

 BEGIN

 DELTA := DELTA*d^[L];

 END;

 END;

 IF DELTA >= 0.999999 THEN TEMP:= TOP

 ELSE TEMP := ((1+DELTA))/

 ((1-DELTA));

 IF TEMP > TOP THEN TEMP := TOP;

 IF TEMP < BOTTOM THEN TEMP := BOTTOM;

 HL[ROW[M]^[I]]^[COL[M]^[I]] := TEMP;

 END;

 END;

 STATE_CHANGE_COUNT:=0;

 {Vertical Update}

 FOR K := 1 TO DATA_BLOCK_SIZE + PARITY_BLOCK_SIZE DO

 BEGIN

 BL^[K] := L_BLOCK^[K];{Bit estimate for iteration}

 FOR J:= 1 TO PARITY_INDEX[K] {NO_PARITIES_PER_SYMBOL} DO

 BEGIN

 b[J]^[K]:= L_BLOCK^[K];

 FOR L := 1 TO PARITY_INDEX[K] {NO_PARITIES_PER_SYMBOL} DO

 BEGIN

NATO UNCLASSIFIED
 AComP-4724

 B - 64 EDITION B VERSION 1
NATO UNCLASSIFIED

 IF L <> J THEN

 BEGIN

 TEMP := b[J]^[K]*HL[L]^[K];

 IF TEMP > TOP THEN TEMP := TOP;

 IF TEMP < BOTTOM THEN TEMP := BOTTOM;

 b[J]^[K] := TEMP;

 END;

 TEMP := BL^[K]*HL[L]^[K];

 IF TEMP > TOP THEN TEMP := TOP;

 IF TEMP < BOTTOM THEN TEMP := BOTTOM;

 BL^[K] := TEMP;

 END;

 END;

 IF BL^[K] < 1 THEN

 BEGIN

 IF STATE^[K] = 0 THEN

 BEGIN

 STATE_CHANGE_COUNT := STATE_CHANGE_COUNT + 1;

 STATE^[K] := 1;

 END

 ELSE

 BEGIN

 END;

 END

 ELSE

 BEGIN

 IF STATE^[K] = 0 THEN

 BEGIN

 END

 ELSE

 BEGIN

 STATE_CHANGE_COUNT := STATE_CHANGE_COUNT + 1;

 STATE^[K] := 0;

 END;

 END;

 END;

 END; {Iteration}

 IF STATE_CHANGE_COUNT = 0 THEN

 BEGIN

 CONVERGENCE_COUNT := CONVERGENCE_COUNT + 1;

 IF CONVERGENCE_COUNT >= CONVERGENCE_LIMIT THEN STATE_CONVERGENCE

:= TRUE;

 END

 ELSE

 BEGIN

 CONVERGENCE_COUNT := 0;

 STATE_CONVERGENCE := FALSE;

 END;

 {Evaluate the parity equation status; stop if all consistent}

 CONVERGENCE := TRUE; Parity_errors := 0;

 FOR J:= 1 TO PARITY_BLOCK_SIZE DO

 BEGIN

 PARITY_COUNT := 0;

 FOR L := 1 TO HOR_INDEX[J] {NO_PARITY_ENTRIES} DO

 BEGIN

 IF BL^[COL[L]^[J]] < 1 THEN

 BEGIN

 IF PARITY_COUNT = 0 THEN PARITY_COUNT := 1 ELSE PARITY_COUNT

:= 0;

 END;

 END;

 IF PARITY_COUNT = 0 THEN

 CONVERGENCE := CONVERGENCE AND TRUE

 ELSE

 Begin

 CONVERGENCE := FALSE;

NATO UNCLASSIFIED
 AComP-4724

 B - 65 EDITION B VERSION 1
NATO UNCLASSIFIED

 Parity_errors := Parity_errors + 1;

 End;

 END;

 UNTIL (CONVERGENCE) OR (INDEX >= MAX_ITERATIONS) OR

(STATE_CONVERGENCE);

B.3. LDPC DECODER MATRICES

The files defined in the tables below (TABLE 17 to Table 20) are included with the standard
and provide the matrices for the LDPC FEC decoder for the REM modes defined in
CHAPTER 3.

RED/BLACK ALPHA REM Filename MD5 Checksum

Column Matrix rb_alpha.col 300a9e2f132d390ca09fee179bf01869

Row Matrix rb_alpha.row 1d6c9c073925f5e14301f94a62b9a38d

Column Index Matrix rb_alpha.cdx 8a863f9e572b30def03c67f8f48442fd

Row Index Matrix rb_alpha.rdx cbdad0809e1e5109ed7a48189fb9da80

TABLE 17: RED/BLACK ALPHA REM LDPC MATRICES.

RED/BLACK BRAVO REM Filename MD5 Checksum

Column Matrix rb_bravo.col 3df9e51c29c2aecb1a6410146041cc98

Row Matrix rb_bravo.row 6e745f849f91bb137819cc34540e1468

Column Index Matrix rb_bravo.cdx 175fcd8689115f96c00f9dfe4f8030b

Row Index Matrix rb_bravo.rdx 6e4e49516713f66f5357825eaa9d9bf8

TABLE 18: RED/BLACK ALPHA REM LDPC MATRICES

RED ALPHA REM Filename MD5 Checksum

Column Matrix r_alpha.col e9741dfc462be3c22b57f9e77363da4e

Row Matrix r_alpha.row 970a9a34b55b7bc1c432e438fdd3dc29

Column Index Matrix r_alpha.cdx 36af90274eb70dd169b059d59abb2553

Row Index Matrix r_alpha.rdx c654c2934714597939ceb99132e7ae30

TABLE 19: RED/BLACK ALPHA REM LDPC MATRICES.

NATO UNCLASSIFIED
 AComP-4724

 B - 66 EDITION B VERSION 1
NATO UNCLASSIFIED

RED BRAVO REM Filename MD5 Checksum

Column Matrix r_bravo.col cb5dff917252f0a61a8585a7c2771282

Row Matrix r_bravo.row 4fe6e65363e2f002cd6f929b1fda8d3b

Column Index Matrix r_bravo.cdx 9984e07d8bc1f1b2547549034ee7147f

Row Index Matrix r_bravo.rdx bfe8c7d3a80acfd75ecfde375ceb58e2

TABLE 20: RED/BLACK ALPHA REM LDPC MATRICES.

NATO UNCLASSIFIED
 AComP-4724

 C - 67 EDITION B VERSION 1
NATO UNCLASSIFIED

 PPM COMPRESSION CODING

C.1. PPM COMPRESSION CODE

The PPM compression of message text for the NATO REM modes shall be carried out to be
interoperable with the code defined below. When build, the compression programme
requires three files: the statistical model file (STANAG4724StatisticalModel.cmp), a file
containing the message stream to be compressed, and an output file for the compressed
message stream.

Whilst this code may be used to compress non-ITA2 data, the statistical model has been
built using only the characters contained within the ITA2 character set. If non ITA2 data is
compressed using the NATO statistical model, compression performance will be reduced.

The code below defines PACKET_SIZE. This is the size of the compressed broadcast
message stream used in each data frame. The value of PACKET_SIZE is dependent on
the type of REM coding being implemented. The following values shall be used for
PACKET_SIZE when compiling the code for the REM defined in CHAPTER 3:

CODING PACKET_SIZE

RED/BLACK REM ALPHA coding 444 bytes

RED/BLACK REM BRAVO coding 672 bytes

RED REM ALPHA coding 484 bytes

RED REM BRAVO coding 681 bytes

NATO UNCLASSIFIED
 AComP-4724

 C - 68 EDITION B VERSION 1
NATO UNCLASSIFIED

/************************* Start of MAIN-C.C *************************/

/*

 *

 * Compression Test Main(Driver)

 *

 *

 *

 * PPM Context Statistical Model Usage for text compression into binary packets

and subsequent expansion of

 * said binary packets back into text format.

 *

 * The basis of the PPM Context Statistical Model Compression and Expansion

Software is the open source Arith-N.C code * of Mark Nelson and Jean-loup

Gailly as presented in The Data Compression Book (2nd edition).

 *

 * The software was modified, enhanced, and adapted for packet communications

usage by Technology Service Corporation * under contract to SPAWAR Systems

Center Pacific.

 *

 * Revision History of this baseline file (Apr2012):

 *

 * This is the driver program used when testing compression algorithms.

 * In order to cut back on repetitive code, this version of main is

 * used with all of the compression routines. It in order to turn into

 * a real program, it needs to have another module that supplies one

 * routine and two strings, namely:

 *

 * void CompressFile(FILE *input2, BIT_FILE *output_

 * int argc, char *argv);

 * char *Usage;

 * char *CompressionName;

 *

 * The main() routine supplied here has the job of checking for valid

 * input and output files, opening them, and then calling the

 * compression routine. If the files are not present, or no arguments

 * are supplied, it prints out an error message, which includes the

 * Usage string supplied by the compression module. All of the

 * routines and strings needed by this routine are defined in the

 * main.h header file.

 *

 * After this is built into a compression program of any sort, the

 * program can be called like this:

 *

 * main-c infile1 infile2 outfile [options]

 *

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdarg.h>

#include <math.h>

#include <malloc.h>

typedef struct bit_file {

 FILE *file;

 unsigned char mask;

 int rack;

 int pacifier_counter;

} BIT_FILE;

#ifdef __STDC__

void usage_exit(char *prog_name);

void print_ratios(char *input, char *output);

long file_size(char *name);

long file_size_2(char *name);

NATO UNCLASSIFIED
 AComP-4724

 C - 69 EDITION B VERSION 1
NATO UNCLASSIFIED

void LoadModel(BIT_FILE *input1, int argc, char *argv[]);

int readTheStatsFile(char* filename);

void LoadStatsModel(BIT_FILE *input1, int argc, char *argv[], char

*statsFilename);

int CompressMessages(FILE *input2, BIT_FILE *output1, int argc, char *argv[]);

int ExpandFile(BIT_FILE *input2, FILE *output, int argc, char *argv[]);

BIT_FILE *OpenInputBitFile(char *name);

BIT_FILE *OpenOutputBitFile(char *name);

int OutputBit(BIT_FILE *bit_file, int bit, int tempwrite);

int OutputBits(BIT_FILE *bit_file, unsigned long code, int count);

int InputBit(BIT_FILE *bit_file); //, int tempwrite);

unsigned long InputBits(BIT_FILE *bit_file, int bit_count);

void CloseInputBitFile(BIT_FILE *bit_file);

void CloseOutputBitFile(BIT_FILE *bit_file);

void FilePrintBinary(FILE *file, unsigned int code, int bits);

void fatal_error(char *fmt, ...);

#else

void usage_exit();

void print_ratios();

long file_size();

void LoadModel();

int readTheStatsFile();

void LoadStatsModel();

int CompressMessages();

int ExpandFile();

BIT_FILE *OpenInputBitFile();

BIT_FILE *OpenOutputBitFile();

int OutputBit();

int OutputBits();

int InputBit();

unsigned long InputBits();

void CloseInputBitFile();

void CloseOutputBitFile();

void FilePrintBinary();

void fatal_error();

#endif

/* Compression procedures */

int main(argc, argv)

int argc;

char *argv[];

{

 BIT_FILE *output1, *input1;

 FILE *input2;

 int status=1;

 char statsFilename[256];

 strcpy(statsFilename, "");

 setbuf(stdout, NULL);

 if (argc < 4)

 usage_exit(argv[0]);

 // Model Creating File

 input1 = OpenInputBitFile(argv[1]);

 if (input1 == NULL)

NATO UNCLASSIFIED
 AComP-4724

 C - 70 EDITION B VERSION 1
NATO UNCLASSIFIED

 fatal_error("Error opening %s for output\n", argv[1]);

 input2 = fopen(argv[2], "rb");

 if (input2 == NULL)

 fatal_error("Error opening %s for input\n", argv[2]);

 //Binary Model Output

 output1 = OpenOutputBitFile(argv[3]);

 if (output1 == NULL)

 fatal_error("Error opening %s for output\n", argv[3]);

 if(argv[6] != NULL)

 strcpy(statsFilename, argv[6]);

 if (strlen(statsFilename) > 1){

 printf("\nCompressing %s to %s using STATS %s as initial data\n",

argv[2], argv[3], argv[1]);

 //load statistics in to memory

 LoadStatsModel(input1, argc - 4, argv + 4, statsFilename);

 }

 else{

 printf("\nCompressing %s to %s using MODEL %s as initial data\n",

argv[2], argv[3], argv[1]);

 //Load Model into memory

 LoadModel(input1, argc - 4, argv + 4);

 }

 //Compress Data into Packets as long as input buffer(file) is not empty

(ended)

 while (status > 0)

 {

 status = CompressMessages(input2, output1, argc -4 , argv +4);

 }

 //Check for error if last return value is not EOF indicator (-1)

 if (status != -1)

 printf("Possible Error Ending File\n");

 CloseOutputBitFile(output1);

 CloseInputBitFile(input1);

 fclose(input2); //fclose(input2);

 printf("Message Compression Ratio : ");

 print_ratios(argv[2], argv[3]);

 return(0);

}

/*

 * This routine just wants to print out the usage message that is

 * called for when the program is run with no parameters. The first

 * part of the Usage statement is supposed to be just the program

 * name. argv[0] generally holds the fully qualified path name

 * of the program being run. I make a half-hearted attempt to strip

 * out that path info and file extension before printing it. It should

 * get the general idea across.

 */

void usage_exit(prog_name)

char *prog_name;

{

NATO UNCLASSIFIED
 AComP-4724

 C - 71 EDITION B VERSION 1
NATO UNCLASSIFIED

 char *short_name;

 char *extension;

 char *Usage = "in-file1 in-file2 out-file [-o order][stats-in-

file]\n\n";

 short_name = strrchr(prog_name, '\\');

 if (short_name == NULL)

 short_name = strrchr(prog_name, '/');

 if (short_name == NULL)

 short_name = strrchr(prog_name, ':');

 if (short_name != NULL)

 short_name++;

 else

 short_name = prog_name;

 extension = strrchr(short_name, '.');

 if (extension != NULL)

 *extension = '\0';

 printf("\nUsage: %s %s\n", short_name, Usage);

 exit(0);

}

/*

 * This routine is used by main to print out get the size of a file after

 * it has been closed. It does all the work, and returns a long. The

 * main program gets the file size for the plain text, and the size of

 * the compressed file, and prints the ratio.

 */

#ifndef SEEK_END

#define SEEK_END 2

#endif

long file_size(name)

char *name;

{

 FILE *file;

 int ch, count = 0;

 file = fopen(name, "r");

 if (file == NULL)

 return(0L);

 while (1) {

 ch = fgetc(file);

 if (ch == EOF)

 break;

 ++count;

 }

 fclose(file);

 return (count);

}

long file_size_2(name)

char *name;

{

 long eof_ftell;

 FILE *file;

 file = fopen(name, "r");

 if (file == NULL)

 return(0L);

 fseek(file, 0L, SEEK_END);

 eof_ftell = ftell(file);

 fclose(file);

 return(eof_ftell);

}

/*

NATO UNCLASSIFIED
 AComP-4724

 C - 72 EDITION B VERSION 1
NATO UNCLASSIFIED

 * This routine prints out the compression ratios after the input

 * and output files have been closed.

 */

void print_ratios(input, output)

char *input;

char *output;

{

 long input_size;

 long output_size;

 float ratio;

 FILE *summary;

 input_size = file_size(input);

 if (input_size == 0)

 input_size = 1;

 output_size = file_size_2(output);

 ratio = (float) output_size*8/(float)input_size;

 printf("\nInput characters: %ld\n", input_size);

 printf("Output bits: %ld\n", output_size*8);

 if (output_size == 0)

 output_size = 1;

 printf("Compression ratio: %g bpc\n", ratio);

 summary = fopen("summary.out", "w");

 if (summary == NULL)

 fatal_error("Error opening summary.out for output\n");

 fprintf(summary,"Input bytes: %ld",input_size);

 fprintf(summary," Output bytes: %ld",output_size);

 fprintf(summary," Compression ratio: %d%%\n",ratio);

 fclose(summary);

}

/* Compression procedures

 *

 * Compression and Expansion routines for use with packet communications using

PPM Context Statistical Model

 * as input.

 *

 */

void fatal_error(fmt)

char *fmt;

{

 va_list argptr;

 va_start(argptr, fmt);

 printf("Fatal error: ");

 vprintf(fmt, argptr);

 va_end(argptr);

 exit(-1);

}

/*

 * The SYMBOL structure is what is used to define a symbol in

 * arithmetic coding terms.

 */

typedef struct {

 unsigned short int low_count;

 unsigned short int high_count;

 unsigned short int scale;

} SYMBOL;

#define MAXIMUM_SCALE 16383 /* Maximum allowed frequency count */

#define ESCAPE 256 /* The escape symbol */

#define DONE (-1) /* The output stream empty symbol */

#define FLUSH (-2) /* The symbol to flush the model */

#define END_PACKET (-3) /* The symbol to notify end expansion */

NATO UNCLASSIFIED
 AComP-4724

 C - 73 EDITION B VERSION 1
NATO UNCLASSIFIED

#define PACKET_SIZE 484 /* Packet Size In Bits (RED: 484, RED/BLACK: 444)

*/

#define UPDATE_EXC 1 /* Update Exclusion Flag, 1 = on, 0 = off 0 */

/*

 * Function prototypes.

 */

#ifdef __STDC__

void initialize_options(int argc, char **argv);

int check_compression(FILE *input, BIT_FILE *output);

void initialize_model(void);

void initialize_model2(void);

void initialize_model_load(void);

void update_model(int symbol);

void update_model2(int symbol);

int convert_int_to_symbol(int symbol, SYMBOL *s);

int convert_int_to_symbol2(int symbol, SYMBOL *s);

void get_symbol_scale(SYMBOL *s);

void get_symbol_scale2(SYMBOL *s);

int convert_symbol_to_int(int count, SYMBOL *s);

int convert_symbol_to_int1(int count, SYMBOL *s, int debug);

void add_character_to_model(int c);

void add_character_to_model2(int c, int flag);

void flush_model(void);

void initialize_arithmetic_decoder(BIT_FILE *stream);

void initialize_arithmetic_decoder1(BIT_FILE *stream , int numbits);

int remove_symbol_from_stream(BIT_FILE *stream, SYMBOL *s);

int remove_symbol_from_stream1(BIT_FILE *stream, SYMBOL *s, int bits);

void initialize_arithmetic_encoder(void);

int encode_symbol1(BIT_FILE *stream, SYMBOL *s, int tempwriteflag);

void encode_symbol(BIT_FILE *stream, SYMBOL *s);

int flush_arithmetic_encoder1(BIT_FILE *stream);

void flush_arithmetic_encoder(BIT_FILE *stream);

short int get_current_count(SYMBOL *s);

void save_model(void);

void reset_model(void);

#else /* __STDC_, */

void initialize_options();

int check_compression();

void initialize_model();

void initialize_model2();

void initialize_model_load();

void update_model();

void update_model2();

int convert_int_to_symbol();

int convert_int_to_symbol2();

void get_symbol_scale();

void get_symbol_scale2();

int convert_symbol_to_int();

int convert_symbol_to_int1();

void add_character_to_model();

void add_character_to_model2();

void flush_model();

void initialize_arithmetic_decoder();

void initialize_arithmetic_decoder1();

int remove_symbol_from_stream();

int remove_symbol_from_stream1();

void initialize_arithmetic_encoder();

int encode_symbol1();

void encode_symbol();

int flush_arithmetic_encoder1();

void flush_arithmetic_encoder();

short int get_current_count();

NATO UNCLASSIFIED
 AComP-4724

 C - 74 EDITION B VERSION 1
NATO UNCLASSIFIED

void save_model();

void reset_model();

#endif /* __STDC_, */

char *CompressionName = "Adaptive order n model with arithmetic coding";

int max_order = 4;

int bitsinpacket = 0; //num compressed bits in packet

int pknum = 0; //packet number

int numalloc = 0; //number of memory slots allocated

long int input_pos = 0;

int offset = 16;

void initialize_options(argc, argv)

int argc;

char *argv[];

{

 while (argc-- > 0) {

 if (strcmp(*argv, "-o") == 0) {

 argc--;

 max_order = atoi(*++argv);

 } else

 printf("Uknown argument on command line: %s\n", *argv);

 argc--;

 argv++;

 }

}

/*

 * This routine is called once every 256 input symbols. Its job is to

 * check to see if the compression ratio falls below 10%. If the

 * output size is 90% of the input size, it means not much compression

 * is taking place, so we probably ought to flush the statistics in the

 * model to allow for more current statistics to have greater impact.

 * This heuristic approach does seem to have some effect.

 */

int check_compression(input, output)

FILE *input;

BIT_FILE *output;

{

 static long local_input_marker = 0L;

 static long local_output_marker = 0L;

 long total_input_bytes;

 long total_output_bytes;

 int local_ratio;

 total_input_bytes = ftell(input) - local_input_marker;

 total_output_bytes = ftell(output->file);

 total_output_bytes -= local_output_marker;

 if (total_output_bytes == 0)

 total_output_bytes = 1;

 local_ratio = (int)((total_output_bytes * 100) / total_input_bytes);

 local_input_marker = ftell(input);

 local_output_marker = ftell(output->file);

 return(local_ratio > (int)90);

}

//Define context data structures

typedef struct {

 unsigned char symbol;

 unsigned char counts;

NATO UNCLASSIFIED
 AComP-4724

 C - 75 EDITION B VERSION 1
NATO UNCLASSIFIED

} STATS;

typedef struct {

 struct context *next;

} LINKS;

typedef struct context {

 int max_index;

 LINKS *links;

 STATS *stats;

 struct context *lesser_context;

} CONTEXT;

/*

 * *contexts[] is an array of current contexts.

 */

CONTEXT **contexts;

/*

 * current_order contains the current order of the model. It starts

 * at max_order, and is decremented every time an ESCAPE is sent. It

 * will only go down to -1 for normal symbols, but can go to -2 for

 * EOF and FLUSH.

 */

int current_order;

short int totals[258];

char scoreboard[256];

char tempscoreboard[256];

//Global vars now due to functionality break-up

int modtotals[258] = {0};

int modcontexts[20] = {0};

/*

 * Local procedure declarations for modeling routines.

 */

#ifdef __STDC__

void update_table(CONTEXT *table, int symbol);

void rescale_table(CONTEXT *table);

void totalize_table(CONTEXT *table);

void totalize_table2(CONTEXT *table);

CONTEXT *shift_to_next_context(CONTEXT *table, int c, int order);

CONTEXT *shift_to_next_context2(CONTEXT *table, int c, int order);

CONTEXT *shift_to_next_context3(CONTEXT *table, int c, int order);

CONTEXT *allocate_next_order_table(CONTEXT *table, int symbol, CONTEXT

*lesser_context);

void recursive_flush(CONTEXT *table);

CONTEXT* create_model(int ContextT, int Index0, int Index1, int Index2, int

Index3, int Index4, int Order, int Symbol, int Count);

#else

void update_table();

void rescale_table();

void totalize_table();

void totalize_table2();

CONTEXT *shift_to_next_context();

CONTEXT *shift_to_next_context2();

CONTEXT *shift_to_next_context3();

CONTEXT *allocate_next_order_table();

void recursive_flush();

CONTEXT* create_model();

#endif

void initialize_model()

{

NATO UNCLASSIFIED
 AComP-4724

 C - 76 EDITION B VERSION 1
NATO UNCLASSIFIED

 int i;

 CONTEXT *null_table;

 CONTEXT *control_table;

 current_order = max_order;

 contexts = (CONTEXT **) calloc(sizeof(CONTEXT *), 20);

 if (contexts == NULL)

 fatal_error("Failure #1: allocating context table!");

 contexts += 2;

 null_table = (CONTEXT *) calloc(sizeof(CONTEXT), 1);

 if (null_table == NULL)

 fatal_error("Failure #2: allocating null table!");

 null_table->max_index = -1;

 contexts[-1] = null_table;

 for (i = 0 ; i <= max_order ; i++)

 contexts[i] = allocate_next_order_table(contexts[i-1], 0, contexts[

i-1]);

 null_table->stats =

 (STATS *) realloc((char *) null_table->stats, sizeof(STATS)*256);

 if (null_table->stats == NULL)

 fatal_error("Failure #3: allocating null table!");

 null_table->max_index = 255;

 for (i=0 ; i < 256 ; i++) {

 null_table->stats[i].symbol = (unsigned char) i;

 null_table->stats[i].counts = 1;

 }

 control_table = (CONTEXT *) calloc(sizeof(CONTEXT), 1);

 if (control_table == NULL)

 fatal_error("Failure #4: allocating null table!");

 control_table->stats =

 (STATS *) calloc(sizeof(STATS), 2);

 if (control_table->stats == NULL)

 fatal_error("Failure #5: allocating null table!");

 contexts[-2] = control_table;

 control_table->max_index = 2;

 control_table->stats[0].symbol = -FLUSH;

 control_table->stats[0].counts = 1;

 control_table->stats[1].symbol = -DONE;

 control_table->stats[1].counts = 1;

 control_table->stats[2].symbol = -END_PACKET;

 control_table->stats[2].counts = 1;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

CONTEXT* create_model(ContextT, Index0, Index1, Index2, Index3, Index4, Order,

Symbol, Count)

int ContextT;

int Index0;

int Index1;

int Index2;

int Index3;

int Index4;

int Order;

int Symbol;

int Count;

{

 int index = 0;

 int new_size;

 CONTEXT *lesser_context = NULL;

 CONTEXT *table = NULL;

 CONTEXT *new_table = NULL;

 struct node *ptr = NULL;

NATO UNCLASSIFIED
 AComP-4724

 C - 77 EDITION B VERSION 1
NATO UNCLASSIFIED

 CONTEXT *found_table = NULL;

 if (Order == -1)

 {

 if (contexts[ContextT] == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = 0;

 new_table->lesser_context = NULL;

 contexts[ContextT] = new_table;

 }

 table = contexts[ContextT];

 index = ContextT;

 table->max_index = Count;

 }

 else if (Order == 0){

 table = contexts[ContextT];

 index = Index0;

 if (table->stats == NULL){

 table->stats = (STATS *)calloc(1, sizeof(STATS));

 if (table->stats == NULL)

 fatal_error("Failure STATS allocating!");

 }

 if (table->links == NULL){

 table->links = (LINKS *)calloc(1, sizeof(LINKS));

 if (table->links == NULL)

 fatal_error("Failure LINKS allocating!");

 table->links->next = NULL;

 }

 }

 else if (Order == 1){

 if (contexts[ContextT]->links[Index0].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

 contexts[ContextT]->links[Index0].next = new_table;

 }

 table = contexts[ContextT]->links[Index0].next;

 index = Index1;

 }

 else if (Order == 2){

 if (contexts[ContextT]->links[Index0].next->links[Index1].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

NATO UNCLASSIFIED
 AComP-4724

 C - 78 EDITION B VERSION 1
NATO UNCLASSIFIED

 contexts[ContextT]->links[Index0].next->links[Index1].next =

new_table;

 }

 table = contexts[ContextT]->links[Index0].next->links[Index1].next;

 index = Index2;

 }

 else if (Order == 3){

 if (contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

 contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next = new_table;

 }

 table = contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next;

 index = Index3;

 }

 else if (Order == 4){

 if (contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next->links[Index3].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

 contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next->links[Index3].next = new_table;

 }

 table = contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next->links[Index3].next;

 index = Index4;

 }

 if (Order >= 0){

 new_size = sizeof(LINKS);

 new_size *= index + 1;

 if (Order <= max_order) {

 if (index == 0) {

 table->links = (LINKS *)calloc(1, new_size);

 }

 else {

 table->links = (LINKS *)realloc((char *)table->links,

new_size);

 }

 if (table->links == NULL)

 fatal_error("Error #9: reallocating table space!");

NATO UNCLASSIFIED
 AComP-4724

 C - 79 EDITION B VERSION 1
NATO UNCLASSIFIED

 table->links[index].next = NULL;

 }

 new_size = sizeof(STATS);

 new_size *= index + 1;

 if (index == 0){

 table->stats = (STATS *)calloc(1, new_size);

 }

 else {

 table->stats = (STATS *)realloc((char *)table->stats, new_size);

 }

 if (table->stats == NULL)

 fatal_error("Error #10: reallocating table space!");

 table->stats[index].symbol = '0';

 table->stats[index].counts = 0;

 }

 if (Order > -1)

 { //add the stats data

 table->stats[index].symbol = (unsigned char)Symbol;

 table->stats[index].counts = Count;

 if (Order > 0)

 table->max_index++;

 }

 return table;

}

void initialize_model2()

{

 int i;

 current_order = max_order;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

/*

* This routine has to get everything set up properly so that

* the model can be maintained properly. The first step is to create

* the *contexts[] array used later to find current context tables.

* The *contexts[] array indices go from -2 up to max_order, so

* the table needs to be fiddled with a little. This routine then

* has to create the special order -2 and order -1 tables by hand,

* since they aren't quite like other tables. Then the current

* context is set to \0, \0, \0, ... and the appropriate tables

* are built to support that context. The current order is set

* to max_order, the scoreboard is cleared, and the system is

* ready to go.

*/

void initialize_model_load()

{

 int i;

 CONTEXT *null_table;

 CONTEXT *control_table;

 current_order = max_order;

 contexts = (CONTEXT **)calloc(20, sizeof(CONTEXT *)); //20

 if (contexts == NULL)

 fatal_error("Failure #1: allocating context table!");

NATO UNCLASSIFIED
 AComP-4724

 C - 80 EDITION B VERSION 1
NATO UNCLASSIFIED

 contexts += 2;

 null_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (null_table == NULL)

 fatal_error("Failure #2: allocating null table!");

 null_table->max_index = -1;

 contexts[-1] = null_table;

 for (i = 0; i <= max_order; i++)

 contexts[i] = allocate_next_order_table(contexts[i - 1], 0, contexts[i -

1]);

 null_table->stats = (STATS *)realloc((char *)null_table->stats,

sizeof(STATS)* 256);

 if (null_table->stats == NULL)

 fatal_error("Failure #3: allocating null table!");

 null_table->max_index = 255;

 for (i = 0; i < 256; i++) {

 null_table->stats[i].symbol = (unsigned char)i;

 null_table->stats[i].counts = 1;

 }

 control_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (control_table == NULL)

 fatal_error("Failure #4: allocating null table!");

 control_table->stats = (STATS *)calloc(3, sizeof(STATS));

 if (control_table->stats == NULL)

 fatal_error("Failure #5: allocating null table!");

 contexts[-2] = control_table;

 control_table->max_index = 2;

 control_table->stats[0].symbol = -FLUSH;

 control_table->stats[0].counts = 1;

 control_table->stats[1].symbol = -DONE;

 control_table->stats[1].counts = 1;

 control_table->stats[2].symbol = -END_PACKET;

 control_table->stats[2].counts = 1;

 for (i = 0; i < 256; i++)

 scoreboard[i] = 0;

}

/*

 * This is a utility routine used to create new tables when a new

 * context is created.

 */

int num = 0;

CONTEXT *allocate_next_order_table(table, symbol, lesser_context)

CONTEXT *table;

int symbol;

CONTEXT *lesser_context;

{

 CONTEXT *new_table;

 int i;

 unsigned int new_size;

 for (i = 0 ; i <= table->max_index ; i++)

 if (table->stats[i].symbol == (unsigned char) symbol)

 break;

 if (i > table->max_index) {

 table->max_index++;

 new_size = sizeof(LINKS);

NATO UNCLASSIFIED
 AComP-4724

 C - 81 EDITION B VERSION 1
NATO UNCLASSIFIED

 new_size *= table->max_index + 1;

 if (table->links == NULL)

 {

 table->links = (LINKS *) calloc(new_size, 1);

 }

 else

 {

 table->links = (LINKS *)realloc((char *) table->links, new_size);

 }

 if (table->links == NULL)

 fatal_error("Failure #6: allocating new table");

 new_size = sizeof(STATS);

 new_size *= table->max_index + 1;

 if (table->stats == NULL)

 {

 table->stats = (STATS *) calloc(new_size, 1);

 }

 else

 {

 table->stats = (STATS *)

 realloc((char *) table->stats, new_size);

 }

 if (table->stats == NULL)

 fatal_error("Failure #7: allocating new table");

 table->stats[i].symbol = (unsigned char) symbol;

 table->stats[i].counts = 0;

 }

 new_size = sizeof(CONTEXT);

 new_table = (CONTEXT *) calloc(sizeof(CONTEXT), 1);

 if (new_table == NULL)

 fatal_error("Failure #8: allocating new table");

 new_table->max_index = -1;

 table->links[i].next = new_table;

 new_table->lesser_context = lesser_context;

 return(new_table);

}

/*

 * This routine is called to increment the counts for the current

 * contexts. It is called after a character has been encoded or

 * decoded.

 */

void update_model(symbol)

int symbol;

{

 int i;

 int local_order;

 int loopstart;

 if (current_order < 0)

 local_order = 0;

 else

 local_order = current_order;

 //Determines starting point of loop based on UPDATE_EXC flag

 if (UPDATE_EXC)

 loopstart = local_order;

 else

 loopstart = 0;

 if (symbol >= 0) {

 while (loopstart <= max_order) {

 if (symbol >= 0)

 update_table(contexts[loopstart], symbol);

 loopstart++;

NATO UNCLASSIFIED
 AComP-4724

 C - 82 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 }

 current_order = max_order;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

void update_model2(symbol)

int symbol;

{

 int i;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

/*

 * This routine is called to update the count for a particular symbol

 * in a particular table. The table is one of the current contexts_

 * and the symbol is the last symbol encoded or decoded.

 */

void update_table(table, symbol)

CONTEXT *table;

int symbol;

{

 int i;

 int index;

 unsigned char temp;

 CONTEXT *temp_ptr;

 unsigned int new_size;

 index = 0;

 while (index <= table->max_index &&

 table->stats[index].symbol != (unsigned char) symbol)

 index++;

 if (index > table->max_index) {

 table->max_index++;

 new_size = sizeof(LINKS);

 new_size *= table->max_index + 1;

 if (current_order < max_order) {

 if (table->max_index == 0) {

 table->links = (LINKS *) calloc(new_size, 1);

 }

 else {

 table->links = (LINKS *)

 realloc((char *) table->links, new_size);

 }

 if (table->links == NULL)

 fatal_error("Error #9: reallocating table space!");

 table->links[index].next = NULL;

 }

 new_size = sizeof(STATS);

 new_size *= table->max_index + 1;

 if (table->max_index==0){

 table->stats = (STATS *) calloc(new_size, 1);

 }

 else {

 table->stats = (STATS *)

 realloc((char *) table->stats, new_size);

 }

 if (table->stats == NULL)

 fatal_error("Error #10: reallocating table space!");

 table->stats[index].symbol = (unsigned char) symbol;

 table->stats[index].counts = 0;

 }

NATO UNCLASSIFIED
 AComP-4724

 C - 83 EDITION B VERSION 1
NATO UNCLASSIFIED

 i = index;

 while (i > 0 &&

 table->stats[index].counts == table->stats[i-1].counts)

 i--;

 if (i != index) {

 temp = table->stats[index].symbol;

 table->stats[index].symbol = table->stats[i].symbol;

 table->stats[i].symbol = temp;

 if (table->links != NULL) {

 temp_ptr = table->links[index].next;

 table->links[index].next = table->links[i].next;

 table->links[i].next = temp_ptr;

 }

 index = i;

 }

 table->stats[index].counts++;

 if (table->stats[index].counts == 255)

 rescale_table(table);

}

/*

 * This routine is called when a given symbol needs to be encoded.

 * It is the job of this routine to find the symbol in the context

 * table associated with the current table, and return the low and

 * high counts associated with that symbol, as well as the scale.

 *

 */

int convert_int_to_symbol(c, s)

int c;

SYMBOL *s;

{

 int i;

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table(table);

 s->scale = totals[0];

 if (current_order == -2)

 c = -c;

 for (i = 0 ; i <= table->max_index ; i++) {

 if (c == (int) table->stats[i].symbol) {

 if (table->stats[i].counts == 0)

 break;

 s->low_count = totals[i+2];

 s->high_count = totals[i+1];

 return(0);

 }

 }

 s->low_count = totals[1];

 s->high_count = totals[0];

 current_order--;

 return(1);

}

int convert_int_to_symbol2(c, s)

int c;

SYMBOL *s;

{

 int i;

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table2(table);

 s->scale = totals[0];

 if (table->max_index != -1)

 {

NATO UNCLASSIFIED
 AComP-4724

 C - 84 EDITION B VERSION 1
NATO UNCLASSIFIED

 if (current_order == -2)

 c = -c;

 for (i = 0 ; i <= table->max_index ; i++) {

 if (c == (int) table->stats[i].symbol) {

 if (table->stats[i].counts == 0)

 break;

 s->low_count = totals[i+2];

 s->high_count = totals[i+1];

 return(0);

 }

 }

 }

 s->low_count = totals[1];

 s->high_count = totals[0];

 contexts[current_order] = NULL;

 current_order--;

 return(1);

}

/*

 * This routine is called when decoding an arithmetic number. In

 * order to decode the present symbol, the current scale in the

 * model must be determined.

 */

void get_symbol_scale(s)

SYMBOL *s;

{

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table(table);

 s->scale = totals[0];

}

void get_symbol_scale2(s)

SYMBOL *s;

{

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table2(table);

 s->scale = totals[0];

}

/*

 * This routine is called during decoding. It is given a count that

 * came out of the arithmetic decoder, and has to find the symbol that

 * matches the count.

 */

int convert_symbol_to_int(count, s)

int count;

SYMBOL *s;

{

 int c;

 CONTEXT *table;

 table = contexts[current_order];

 for (c = 0; count < totals[c] ; c++)

 ;

 s->high_count = totals[c - 1];

 s->low_count = totals[c];

 if (c == 1) {

 current_order--;

 return(ESCAPE);

 }

NATO UNCLASSIFIED
 AComP-4724

 C - 85 EDITION B VERSION 1
NATO UNCLASSIFIED

 if (current_order < -1)

 return((int) -table->stats[c-2].symbol);

 else

 return(table->stats[c-2].symbol);

}

int convert_symbol_to_int1(count, s, debug)

int count;

SYMBOL *s;

int debug;

{

 int c;

 CONTEXT *table;

 table = contexts[current_order];

 for (c = 0; count < totals[c] ; c++)

 ;

 s->high_count = totals[c - 1];

 s->low_count = totals[c];

 if (c == 1) {

 current_order--;

 return(ESCAPE);

 }

 if (c==0)

 {

 printf("c = 0\n");

 return(-10);

 }

 if (current_order < -1)

 return((int) -table->stats[c-2].symbol);

 else

 return(table->stats[c-2].symbol);

}

/*

 * After the model has been updated for a new character, this routine

 * is called to "shift" into the new context.

 */

void add_character_to_model(c)

int c;

{

 int i;

 if (max_order < 0 || c < 0)

 return;

 contexts[max_order] =

 shift_to_next_context(contexts[max_order], c, max_order);

 for (i = max_order-1 ; i > 0 ; i--)

 contexts[i] = contexts[i+1]->lesser_context;

}

void add_character_to_model2(c, flag)

int c;

int flag;

{

 int i,local_order;

 local_order = current_order;

 if (max_order < 0 || c < 0)

 return;

 // Attempt to raise order if flag is 1

 if (flag || local_order == -1)

 {

 contexts[local_order + 1] =

NATO UNCLASSIFIED
 AComP-4724

 C - 86 EDITION B VERSION 1
NATO UNCLASSIFIED

 shift_to_next_context3(contexts[local_order], c, local_order

);

 }

 // Stay at current_order if flag is 0 or if attempt to raise order

failed

 if ((!flag || (flag && contexts[local_order + 1] == NULL)) &&

local_order != -1)

 {

 contexts[current_order] =

 shift_to_next_context2(contexts[current_order], c,

current_order);

 }

 for (i = current_order-1 ; i > 0 ; i--)

 contexts[i] = contexts[i+1]->lesser_context;

}

/*

 * This routine is called when adding a new character to the model. From

 * the previous example, if the current context was "ABC", and the new

 * symbol was 'D', this routine would get called with a pointer to

 * context table "ABC", and symbol 'D', with order max_order.

 */

CONTEXT *shift_to_next_context(table, c, order)

CONTEXT *table;

int c;

int order;

{

 int i;

 CONTEXT *new_lesser;

 table = table->lesser_context;

 if (order == 0)

 return(table->links[0].next);

 for (i = 0 ; i <= table->max_index ; i++)

 if (table->stats[i].symbol == (unsigned char) c)

 if (table->links[i].next != NULL)

 return(table->links[i].next);

 else

 break;

 new_lesser = shift_to_next_context(table, c, order-1);

 table = allocate_next_order_table(table, c, new_lesser);

 return(table);

}

CONTEXT *shift_to_next_context2(table, c, order)

CONTEXT *table;

int c;

int order;

{

 int i = 0;

 table = table->lesser_context;

 if (order < 0 || table->lesser_context == NULL)

 return(table->links[0].next);

 for (i = 0 ; i <= table->max_index ; i++){

 if (table->stats[i].symbol == (unsigned char) c)

 if (table->links[i].next != NULL)

 return(table->links[i].next);

 else

 break;

 }

 return(table);

}

NATO UNCLASSIFIED
 AComP-4724

 C - 87 EDITION B VERSION 1
NATO UNCLASSIFIED

CONTEXT *shift_to_next_context3(table, c, order)

CONTEXT *table;

int c;

int order;

{

 int i;

 if (order < 0){

 current_order++;

 return(table->links[0].next);

 }

 for (i = 0 ; i <= table->max_index ; i++){

 if (table->stats[i].symbol == (unsigned char) c)

 if (table->links[i].next != NULL){

 current_order++;

 return(table->links[i].next);

 }

 else

 break;

 }

 return(table = NULL);

}

/*

 * Rescaling the table needs to be done for one of three reasons.

 * First, if the maximum count for the table has exceeded 16383, it

 * means that arithmetic coding using 16 and 32 bit registers might

 * no longer work. Secondly, if an individual symbol count has

 * reached 255, it will no longer fit in a byte. Third, if the

 * current model isn't compressing well, the compressor program may

 * want to rescale all tables in order to give more weight to newer

 * statistics.

 */

void rescale_table(table)

CONTEXT *table;

{

 int i;

 if (table->max_index == -1)

 return;

 for (i = 0 ; i <= table->max_index ; i++)

 table->stats[i].counts /= 2;

 if (table->stats[table->max_index].counts == 0 &&

 table->links == NULL) {

 while (table->stats[table->max_index].counts == 0 &&

 table->max_index >= 0)

 table->max_index--;

 if (table->max_index == -1) {

 free((char *) table->stats);

 table->stats = NULL;

 }

 else {

 table->stats = (STATS *)

 realloc((char *) table->stats,

 sizeof(STATS) * (table->max_index + 1));

 if (table->stats == NULL)

 fatal_error("Error #11: reallocating stats space!");

 }

 }

}

/*

 * This routine has the job of creating a cumulative totals table for

 * a given context.

 */

void totalize_table(table)

NATO UNCLASSIFIED
 AComP-4724

 C - 88 EDITION B VERSION 1
NATO UNCLASSIFIED

CONTEXT *table;

{

 int i;

 unsigned char max;

 for (; ;) {

 max = 0;

 i = table->max_index + 2;

 totals[i] = 0;

 for (; i > 1 ; i--) {

 totals[i-1] = totals[i];

 if (table->stats[i-2].counts)

 if ((current_order == -2) ||

 scoreboard[table->stats[i-2].symbol] == 0)

 totals[i-1] += table->stats[i-2].counts;

 if (table->stats[i-2].counts > max)

 max = table->stats[i-2].counts;

 }

 if (max == 0)

 totals[0] = 1;

 else {

 totals[0] = (short int) (256 - table->max_index);

 totals[0] *= table->max_index;

 totals[0] /= 256;

 totals[0] /= max;

 totals[0]++;

 totals[0] += totals[1];

 }

 if (totals[0] < MAXIMUM_SCALE)

 break;

 rescale_table(table);

 }

 for (i = 0 ; i < table->max_index ; i++)

 if (table->stats[i].counts != 0)

 scoreboard[table->stats[i].symbol] = 1;

}

void totalize_table2(table)

CONTEXT *table;

{

 int i;

 unsigned char max;

 for (; ;) {

 max = 0;

 i = table->max_index + 2;

 totals[i] = 0;

 for (; i > 1 ; i--) {

 totals[i-1] = totals[i];

 if (table->stats[i-2].counts)

 if ((current_order == -2) ||

 scoreboard[table->stats[i-2].symbol] == 0)

 totals[i-1] += table->stats[i-2].counts;

 if (table->stats[i-2].counts > max)

 max = table->stats[i-2].counts;

 }

 if (max == 0)

 totals[0] = 1;

 else {

 totals[0] = (short int) (256 - table->max_index);

 totals[0] *= table->max_index;

 totals[0] /= 256;

 totals[0] /= max;

 totals[0]++;

 totals[0] += totals[1];

NATO UNCLASSIFIED
 AComP-4724

 C - 89 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 if (totals[0] < MAXIMUM_SCALE)

 break;

 }

 for (i = 0 ; i < table->max_index ; i++)

 if (table->stats[i].counts != 0)

 scoreboard[table->stats[i].symbol] = 1;

}

/*

 * This routine is called when the entire model is to be flushed.

 */

void recursive_flush(table)

CONTEXT *table;

{

 int i;

 if (table->links != NULL)

 for (i = 0 ; i <= table->max_index ; i++)

 if (table->links[i].next != NULL)

 recursive_flush(table->links[i].next);

 rescale_table(table);

}

/*

 * This routine is called to flush the whole table, which it does

 * by calling the recursive flush routine starting at the order 0

 * table.

 */

void flush_model()

{

 putc('F', stdout);

 recursive_flush(contexts[0]);

}

static unsigned short int code; /* The present input code value */

static unsigned short int low; /* Start of the current code range */

static unsigned short int high; /* End of the current code range */

long underflow_bits; /* Number of underflow bits pending */

/*

 * This routine must be called to initialize the encoding process.

 */

void initialize_arithmetic_encoder()

{

 low = 0;

 high = 0xffff;

 underflow_bits = 0;

}

/*

 * At the end of the encoding process, there are still significant

 * bits left in the high and low registers. We output two bits_

 * plus as many underflow bits as are necessary.

 */

void flush_arithmetic_encoder(stream)

BIT_FILE *stream;

{

 OutputBit(stream, low & 0x4000 , 0);

 underflow_bits++;

 while (underflow_bits-- > 0)

 OutputBit(stream, ~low & 0x4000 , 0);

 OutputBits(stream, 0L, 16);

}

/* This is used at end of each packet. It flushes the encoder by

NATO UNCLASSIFIED
 AComP-4724

 C - 90 EDITION B VERSION 1
NATO UNCLASSIFIED

 * outputting an bits left from the last character and any underflow bits.

 * It then outputs a variable number of zeros so the decoder can sync up

 * and the next packet will start at a predictable location.

 */

int flush_arithmetic_encoder1(stream)

BIT_FILE *stream;

{

 int count = 0;

 int retval = 0;

 int bitsinstream = 0;

 int lastmask = 0;

 int zeros = 0;

 int bisorig = 0;

 int fp = 0;

 int i;

 bitsinstream = bitsinpacket;

 lastmask = stream->mask;

 OutputBit(stream, low & 0x4000,0);

 if (stream -> mask != lastmask){

 bitsinstream++;

 lastmask = stream->mask;

 }

 underflow_bits++;

 while (underflow_bits > 0)

 {

 OutputBit(stream, ~low & 0x4000,0);

 if (stream -> mask != lastmask)

 {

 bitsinstream++;

 lastmask = stream->mask;

 }

 underflow_bits--;

 }

 zeros = PACKET_SIZE - bitsinstream;

 for (i=0;i<zeros;i++)

 OutputBit(stream,0,0);

 return (zeros + (bitsinstream - bitsinpacket));

}

/*

 * This routine is called to encode a symbol. The symbol is passed

 * in the SYMBOL structure as a low count, a high count, and a range.

 */

void encode_symbol(stream, s)

BIT_FILE *stream;

SYMBOL *s;

{

 long range;

 range = (long) (high-low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 OutputBit(stream, high & 0x8000 , 0);

 while (underflow_bits > 0) {

 OutputBit(stream, ~high & 0x8000 , 0);

 underflow_bits--;

NATO UNCLASSIFIED
 AComP-4724

 C - 91 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 }

 else if ((low & 0x4000) && !(high & 0x4000)) {

 underflow_bits += 1;

 low &= 0x3fff;

 high |= 0x4000;

 }

 else

 return ;

 low <<= 1;

 high <<= 1;

 high |= 1;

 }

}

//Sames as above, but returns the number of encoded bits

int encode_symbol1(stream, s, tempwriteflag)

BIT_FILE *stream;

SYMBOL *s;

int tempwriteflag;

{

 long range;

 int count = 0;

 int debug = 0;

 int lastmask = 0;

 int addedbits = 0;

 range = (long) (high-low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 lastmask = stream->mask;

 debug += OutputBit(stream, high & 0x8000, tempwriteflag);

 if (stream -> mask != lastmask){

 addedbits++;

 lastmask = stream->mask;

 }

 while (underflow_bits > 0) {

 count += OutputBit(stream, ~high & 0x8000, tempwriteflag);

 if (stream -> mask != lastmask){

 addedbits++;

 lastmask = stream->mask;

 }

 underflow_bits--;

 }

 }

 else if ((low & 0x4000) && !(high & 0x4000)) {

 underflow_bits += 1;

 low &= 0x3fff;

 high |= 0x4000;

 } else

 return addedbits;

 low <<= 1;

 high <<= 1;

 high |= 1;

 }

 return addedbits;

}

/*

 * When decoding, this routine is called to figure out which symbol

 * is presently waiting to be decoded.

NATO UNCLASSIFIED
 AComP-4724

 C - 92 EDITION B VERSION 1
NATO UNCLASSIFIED

 */

short int get_current_count(s)

SYMBOL *s;

{

 long range;

 short int count;

 range = (long) (high - low) + 1;

 count = (short int)

 ((((long) (code - low) + 1) * s->scale-1) / range);

 return(count);

}

/*

 * This routine is called to initialize the state of the arithmetic

 * decoder.

 */

void initialize_arithmetic_decoder(stream)

BIT_FILE *stream;

{

 int i;

 code = 0;

 for (i = 0 ; i < 16 ; i++) {

 code <<= 1;

 code += InputBit(stream);

 }

 low = 0;

 high = 0xffff;

 underflow_bits = 0;

}

/* Starts decoder in correct spot for each new packet

 * Numbits is related to variable number of underflow bits and zeros

 * encoded at end of each packet.

 */

void initialize_arithmetic_decoder1(stream , numbits)

BIT_FILE *stream;

int numbits;

{

 int i;

 code = 0;

 for (i = 0 ; i < numbits ; i++) {

 code <<= 1;

 code += InputBit(stream);

 }

 low = 0;

 high = 0xffff;

}

int remove_symbol_from_stream(stream, s)

BIT_FILE *stream;

SYMBOL *s;

{

 long range;

 int numout = 0;

 range = (long)(high - low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 if (underflow_bits > 0)

 underflow_bits = 0;

NATO UNCLASSIFIED
 AComP-4724

 C - 93 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0) {

 code ^= 0x4000;

 low &= 0x3fff;

 high |= 0x4000;

 underflow_bits++;

 }

 else

 return numout;

 low <<= 1;

 high <<= 1;

 high |= 1;

 code <<= 1;

 code += InputBit(stream);

 numout++;

 }

}

int remove_symbol_from_stream1(stream, s, bits)

BIT_FILE *stream;

SYMBOL *s;

int bits;

{

 long range;

 int numout = 0;

 range = (long)(high - low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (;;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 if (underflow_bits > 0)

 underflow_bits = 0;

 }

 else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0) {

 code ^= 0x4000;

 low &= 0x3fff;

 high |= 0x4000;

 underflow_bits++;

 }

 else

 return numout;

 low <<= 1;

 high <<= 1;

 high |= 1;

 code <<= 1;

 if (bits + 16 < PACKET_SIZE) {

 code += InputBit(stream);

 bits++;

 }

 else {

 code += 0;

 bits++;

 }

 numout++;

 }

}

/*

 * This function is called once at the beginning of compression or expansion

processing to access a standard_

NATO UNCLASSIFIED
 AComP-4724

 C - 94 EDITION B VERSION 1
NATO UNCLASSIFIED

 * compressed PPM Context Statistical Model and to generate the network

realization of this PPM Context Statistical * Model in processor memory. This

memory Model remains unchanged during subsequent calls of compression or

expansion * functions.

 *

 */

void LoadModel(input1, argc, argv)

BIT_FILE *input1;

int argc;

char *argv[];

{

 SYMBOL s;

 int c, count;

 int thresh=0;

 int i;

 thresh = 0;

 initialize_options(argc, argv);

 initialize_model();

 initialize_arithmetic_decoder(input1);

 for (; ;) {

 do {

 get_symbol_scale(&s);

 count = get_current_count(&s);

 c = convert_symbol_to_int(count, &s);

 remove_symbol_from_stream(input1, &s);

 } while (c == ESCAPE);

 if (c == DONE || c == END_PACKET)

 break;

 if (c != FLUSH)

 {}

 else

 ;

 update_model(c);

 add_character_to_model(c);

 } //end model read in for loop

 for(i = 0; i< 258; i++)

 modtotals[i] = totals[i];

 for(i = 0; i<20; i++)

 modcontexts[i] = (int)contexts[i-2];

}

int readTheStatsFile(filename)

char* filename;

{

 int Context = 0;

 int Index = 0;

 int Index0 = 0;

 int Index1 = 0;

 int Index2 = 0;

 int Index3 = 0;

 int Index4 = 0;

 int Order = 0;

 int Symbol = 0;

 int Count = 0;

NATO UNCLASSIFIED
 AComP-4724

 C - 95 EDITION B VERSION 1
NATO UNCLASSIFIED

 int totCount = -1;

 int totVal = 0;

 int curorder = -10;

 int totscore = -1;

 int valscore = 0;

 char ioBuffer[1024];

 char * tok;

 FILE *file;

 char parent[10];

 char lesser[10];

 int maximum_ID = -1;

 CONTEXT** lookup_table = 0;

 for (int pass = 0; pass < 2; pass++)

 {

 if (pass == 1)

 {

 lookup_table = (CONTEXT**) calloc(maximum_ID,

sizeof(CONTEXT*));

 lookup_table[0] = contexts[-1];

 }

 file = fopen(filename, "r");

 current_order = -10;

 if (file != NULL)

 {

 if (pass == 1)

 {

 printf("\nReading stats parameters\n");

 }

 ioBuffer[0] = ' ';

 while (!feof(file))

 {

 fgets(ioBuffer, 1024, file);

 ioBuffer[strlen(ioBuffer) - 1] = '\0';

 if ((ioBuffer[0] != '\0') && (ioBuffer[0] != '#'))

 {

 tok = strtok(ioBuffer, ",");

 while (tok != NULL)

 {

 if (strstr(tok, "C0:"))

 {

 // Receive Context

 Context = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I:"))

 {

 // Receive Order0 set

 Index = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I0:"))

 {

 // Receive Order0 set

 Index0 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I1:"))

NATO UNCLASSIFIED
 AComP-4724

 C - 96 EDITION B VERSION 1
NATO UNCLASSIFIED

 {

 // Receive Order1 set

 Index1 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I2:"))

 {

 // Receive Order2 set

 Index2 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I3:"))

 {

 // Receive Order3 set

 Index3 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I4:"))

 {

 // Receive Order3 set

 Index4 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "O:"))

 {

 // Order number

 Order = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "S:"))

 {

 // Character or symbol number

 Symbol = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "C:"))

 {

 // Receive count

 Count = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "P:"))

 {

 // Receive count

 strcpy(parent, strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "PL:"))

 {

 // Receive count

 strcpy(lesser, strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "totals:"))

 {

 // Receive count

 totCount = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "val:"))

 {

 // Receive count

 totVal = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "current_order:"))

 {

 // Receive count

 curorder = atoi(strchr(tok, ':') + 1);

 Context = -10;

 totscore = -1;

 valscore = -1;

NATO UNCLASSIFIED
 AComP-4724

 C - 97 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 tok = strtok(NULL, ",");

 }

 if (curorder > -10){

 current_order = curorder;

 curorder = -10;

 }

 else if (totCount >= 0){

 totals[totCount] = totVal;

 totCount = -1;

 if (pass==1){

 putc('.', stdout);

 }

 }

 else if (Context > -10){

 int parent_as_int = atoi (parent);

 if (pass == 0)

 {

 if (parent_as_int > maximum_ID)

 maximum_ID = parent_as_int;

 }

 else // pass 1

 {

 if (Context > -1){

 lookup_table[parent_as_int] =

create_model(Context, Index0, Index1, Index2, Index3, Index4, Order, Symbol,

Count);

 int lesser_as_int =

atoi(lesser);

 if (lesser_as_int >= 0)

lookup_table[parent_as_int]->lesser_context = lookup_table[lesser_as_int];

 else

lookup_table[parent_as_int]->lesser_context = 0;

 }

 }

 }

 }

 }

 }

 else

 {

 fprintf(stderr, "Error opening statistics file %s.\n", filename);

 exit(0);

 }

 fclose(file);

 } // pass 0, 1

 return(1);

}

void LoadStatsModel(input1, argc, argv, statsFilename)

NATO UNCLASSIFIED
 AComP-4724

 C - 98 EDITION B VERSION 1
NATO UNCLASSIFIED

BIT_FILE *input1;

int argc;

char *argv[];

char *statsFilename;

{

 int thresh = 0;

 int j;

 thresh = 0;

 initialize_options(argc, argv);

 initialize_model_load();

 // this is not required here

 //initialize_arithmetic_decoder_load(input1);

 // populate the data model

 readTheStatsFile(statsFilename);

 for (j = 0; j< 258; j++)

 modtotals[j] = totals[j];

 for (j = 0; j<20; j++)

 modcontexts[j] = (int)contexts[j - 2];

 printf("\nInitialised\n");

}

/*

 *

 * CompressFile routine uses a PPM Context Statistical Model in processor memory

to compress the Input2 text file * into binary compressed packets in the

output1 file.

 * Once created the model is not changed. Input2 is compressed and packetized

 * based on the static probability model. This precludes the model from adapting

to new

 * input data, but also makes synchronization between tx compression and rx

expansion much more reliable.

 *

 */

int CompressMessages(input2, output1, argc, argv)

FILE *input2;

BIT_FILE *output1;

int argc;

char *argv[];

{

 SYMBOL s;

 int c;

 int escaped;

 int flush = 0;

 long int text_count = 0;

 long int esc_count = 0;

 int i=0,j=0;

 int bitsleft = 0;

 int mem[20] = {0};

 int numchar = 0;

 int newpacket = 0;

 int lastorder = 0;

 int orderflag = 0;

 int ordertime = 0;

 int cocount = 0;

 int biplast=0;

 int order_drop_flag=0;

NATO UNCLASSIFIED
 AComP-4724

 C - 99 EDITION B VERSION 1
NATO UNCLASSIFIED

 long int filepos;

 int highsave, lowsave,bipsave,currentordersave,lastordersave;

 int reset=0;

 int numcharenc=0;

 int tempwrite=0;

 int endpacket=0;

 int orderflagsave, ordertimesave, odfsave;

 char scoreboardsave[256];

 int contextssave[20] = {0};

 int redo = 0;

 int numcharsave=0;

 int masksave=0;

 int racksave=0;

 int ufbitssave=0;

 int firsttime=0;

// int backtrack=0;

 int count=0;

 int thresh=0;

// char inact_text[]="CHANNEL INACTIVE...";

// int numtext=19;

// int index5=0;

// int index5save=0;

 int chanin=0;

 int chaninsave=0;

 FILE *packettext,*packetlength,*pkstats;

 if (input_pos==0)

 {

 packettext = fopen("packettext.dat","w");

 packetlength = fopen("packetlength.dat","w");

 pkstats = fopen("pkstats.dat","w");

 }

 else

 {

 packettext = fopen("packettext.dat","a");

 packetlength = fopen("packetlength.dat","a");

 pkstats = fopen("pkstats.dat","a");

 }

 thresh = 0;

 fprintf(pkstats,"Pknum\tUncompBits\tCompBits\tAvgOrder\n");

 esc_count = 0;

 lastorder = current_order;

 fseek (input2 , input_pos , SEEK_SET);

 newpacket = 1;

 pknum++;

 bitsinpacket = 0;

 biplast=0;

 numchar = 0;

 current_order = max_order;

 order_drop_flag=0;

 numcharenc=0;

 endpacket=0;

 tempwrite=0;

 firsttime=0;

// backtrack=0;

 bitsleft = 0;

 fprintf(packettext,"\n\n%d\n",pknum);

 cocount = 0;

 initialize_model2();

 initialize_arithmetic_encoder();

NATO UNCLASSIFIED
 AComP-4724

 C - 100 EDITION B VERSION 1
NATO UNCLASSIFIED

 for(i = 0; i<20; i++)

 contexts[i-2] = (CONTEXT *)modcontexts[i];

 for(i = 0; i< 258; i++)

 totals[i] = modtotals[i];

 for (; ;) {

 lastorder = current_order;

 reset=0;

 // if (!flush){

 if (redo && numchar == numcharenc){

 c = END_PACKET;

 }

 else {

 if (!chanin){

 c = getc(input2);

 if (c==EOF)

 chanin=1;

 }

 }

 // }

 // else

 // c = FLUSH;

 if (chanin && newpacket)

 c = DONE;

 do {

 escaped = convert_int_to_symbol2(c, &s);

 bitsinpacket += encode_symbol1(output1, &s,

tempwrite);

 if (escaped) esc_count++;

 } while (escaped);

 if (orderflag)

 ordertime = 1;

 if (current_order < lastorder){

 orderflag = 1;

 ordertime = 0;

 }

 numchar++;

 cocount += current_order;

 // if (pknum == 90 && numchar>=120)

 // i++;i--;

 biplast=bitsinpacket;

 newpacket = 0;

 fprintf(packettext,"%c",c);

 //Prepare for End of Packet Processing

 if((bitsinpacket >= PACKET_SIZE - 16) || c==END_PACKET)

{

 if (bitsinpacket + underflow_bits + 1 < PACKET_SIZE)

{

 endpacket=1;

 redo=0;

 }

 //Too many bits, try with one less

char and EOP

 if (!endpacket || (tempwrite && endpacket)) {

 reset=1;

NATO UNCLASSIFIED
 AComP-4724

 C - 101 EDITION B VERSION 1
NATO UNCLASSIFIED

 redo=1;

// backtrack++;

 if (!endpacket){

 if(numcharenc==0)

 numcharenc=numchar-2;

 else

 numcharenc--;

 }

 if (endpacket && tempwrite){

 endpacket=0;

 tempwrite=0;

 }

 //reset everything

 fseek (input2 , filepos , SEEK_SET);

 high=highsave;

 low=lowsave;

 bitsinpacket=bipsave;

 current_order=currentordersave;

 lastorder=lastordersave;

 order_drop_flag=odfsave;

 ordertime=ordertimesave;

 orderflag=orderflagsave;

 numchar=numcharsave;

 output1->mask=masksave;

 output1->rack=racksave;

 underflow_bits=ufbitssave;

// index5=index5save;

 chanin=chaninsave;

 for(i = 0; i<20; i++){

 contexts[i-2] = (CONTEXT*)contextssave[i];

 }

 for (i=0;i<256;i++){

 scoreboard[i] = scoreboardsave[i];

 }

 }

 } //end bip check

 //Special Case--end file while in tempwrite mode

 else if (c==DONE){

 if (tempwrite){

 reset=1;

 redo=1;

 tempwrite=0;

 //reset everything

 fseek (input2 , filepos , SEEK_SET);

 high=highsave;

 low=lowsave;

 bitsinpacket=bipsave;

 current_order=currentordersave;

 lastorder=lastordersave;

 order_drop_flag=odfsave;

 ordertime=ordertimesave;

 orderflag=orderflagsave;

 numchar=numcharsave;

 output1->mask=masksave;

 output1->rack=racksave;

 underflow_bits=ufbitssave;

// index5 = index5save;

 chanin = chaninsave;

 for(i = 0; i<20; i++){

 contexts[i-2] =

(CONTEXT*)contextssave[i];

NATO UNCLASSIFIED
 AComP-4724

 C - 102 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 for (i=0;i<256;i++) {

 scoreboard[i] = scoreboardsave[i];

 }

 }

 else

 {

 endpacket=1;

 }

 }

 //Finalize End of Packet Processing and reset for next

packet

 if (endpacket){

 fprintf(packetlength,"%d\t%d\t",pknum,bitsinpacket);

 bitsinpacket+=flush_arithmetic_encoder1(output1);

 fprintf(packetlength,"%d\n",bitsinpacket);

 printf("Packet %d done\n",pknum);

fprintf(pkstats,"%d\t\t%d\t\t%d\t\t%0.2f\n",pknum,numchar*8,bitsinpacket,(float)

cocount/(float)numchar);

 fclose(packettext);

 fclose(packetlength);

 fclose(pkstats);

 if (c==DONE){

 input_pos=ftell(input2);

 return (-1);

 }

 else {

 input_pos=ftell(input2);

 return (input_pos);

 }

 }

 if (!reset) {

 if (c == DONE)

 break;

 if (c == FLUSH) {

 flush = 0;

 }

 if (!newpacket)

 {

 update_model2(c);

 add_character_to_model2(c , ordertime);

 }

 if (current_order == max_order)

 {

 ordertime = 0;

 orderflag = 0;

 }

 } //end reset

 //Set checkpoint and save encoder state

 if (bitsinpacket >= PACKET_SIZE - 96 && firsttime==0) {

 // if (pknum ==61)

 // i++;i--;

 firsttime=1;

 tempwrite=1;

 filepos=ftell(input2);

NATO UNCLASSIFIED
 AComP-4724

 C - 103 EDITION B VERSION 1
NATO UNCLASSIFIED

 highsave=high;

 lowsave=low;

 bipsave=bitsinpacket;

 currentordersave=current_order;

 lastordersave=lastorder;

 odfsave=order_drop_flag;

 ordertimesave=ordertime;

 orderflagsave=orderflag;

 ufbitssave=underflow_bits;

 numcharsave=numchar;

 masksave=output1->mask;

 racksave=output1->rack;

// index5save=index5;

 chaninsave=chanin;

 for(i = 0; i<20; i++){

 contextssave[i] = (int)contexts[i-2];

 }

 for (i=0;i<256;i++){

 scoreboardsave[i] = scoreboard[i];

 }

 }

 }

 return(-2);

}

/*

 * Expansion algorithm uses a fixed, memory-based PPM Context Statistical Model

and interprets binary compressed * packets into output text.

 *

 */

int ExpandFile(input2, output, argc, argv)

BIT_FILE *input2;

FILE *output;

int argc;

char *argv[];

{

 SYMBOL s;

 int c;

 int count;

 int flush = 0;

 long int esc_count = 0;

 int i = 0;

 int bitsread = 0;

 int first = 1;

 FILE *debug;

 int numleft = 0;

 int newpacket = 0;

 int lastorder = 0;

 int orderflag = 0;

 int ordertime = 0;

 int bitsin=0;

 int thresh=0;

 int numchar=0;

 //Input1 is binary model file

 //Input2 is binary compressed file to be expanded

 debug = fopen("debugexpand.dat","w");

 thresh = 0;//_set_sbh_threshold(0);

 initialize_options(argc, argv);

 fseek (input2->file , input_pos , SEEK_SET);

NATO UNCLASSIFIED
 AComP-4724

 C - 104 EDITION B VERSION 1
NATO UNCLASSIFIED

 initialize_model2();

 initialize_arithmetic_decoder1(input2,offset);

 // If first packet begin reading right away

 for(i = 0; i<20; i++)

 contexts[i-2] = (CONTEXT*)modcontexts[i];

 for(i = 0; i< 258; i++)

 totals[i] = modtotals[i];

 current_order = max_order;

 newpacket = 1;

 offset = 16;

 current_order = max_order;

 pknum++;

 bitsread = 0;

 for (; ;) {

 lastorder = current_order;

 do {

 //dont let it get below -2 as this will fail to find a symbol

 if (current_order < -2) current_order = -2;

 get_symbol_scale2(&s);

 count = get_current_count(&s);

 c = convert_symbol_to_int1(count, &s, debug);

 if (c == -10){

 printf("\n\nBit Error : Packet %d...Skipping to next

packet\n\n",pknum);

 }

 else

 {

 if (bitsread < PACKET_SIZE - 100){

 bitsread += remove_symbol_from_stream(input2, &s);

 newpacket = 0;

 }

 else {

 bitsin = bitsread;

 bitsread += remove_symbol_from_stream1(input2, &s, bitsin

);

 newpacket = 0;

 }

 }

 } while (c == ESCAPE);

 if (orderflag)

 ordertime = 1;

 if (current_order < lastorder)

 {

 orderflag = 1;

 ordertime = 0;

 }

 numchar++;

 if (c != FLUSH && c !=END_PACKET && c!=DONE && c!=-10 && c!=13){

 putc((char) c, output);

 }

 else

 ; //flush_model();

 if ((bitsread >= PACKET_SIZE - 16 + underflow_bits) || c==END_PACKET ||

c==DONE || c==-10) {

 if (c==-10){

 offset = PACKET_SIZE - bitsread + 16;

 }

 else {

NATO UNCLASSIFIED
 AComP-4724

 C - 105 EDITION B VERSION 1
NATO UNCLASSIFIED

 offset = (PACKET_SIZE - bitsread);

 }

 if (offset < 16)

 offset = 16;

 printf("Packet %d done\n",pknum);

 if (c==DONE) {

 input_pos=ftell(input2->file);

 return (-1);

 }

 else {

 input_pos=ftell(input2->file);

 // if (input_pos != (int)(pknum*PACKET_SIZE/8))

 // i++;i--;

 //input_pos=(int)(pknum*PACKET_SIZE/8);

 if (c==-10)

 input_pos = (long int)(pknum*PACKET_SIZE/8);

 return (input_pos);

 }

 }

 if (!newpacket){

 update_model2(c);

 add_character_to_model2(c , ordertime);

 }

 if (current_order == max_order){

 ordertime = 0;

 orderflag = 0;

 }

 } // end message for loop

 // If last packet is done, exit loop

} //End Compression procedures

/* Bit File I/O Procedures

 *

 * The basis of the PPM Context Statistical Model Software is the open source

Arith-N.C code of Mark Nelson and

 * Jean-loup Gailly as presented in The Data Compression Book (2nd edition).

 *

 */

#define PACIFIER_COUNT 2047

BIT_FILE *OpenOutputBitFile(name)

char *name;

{

 BIT_FILE *bit_file;

 bit_file = (BIT_FILE *) calloc(1, sizeof(BIT_FILE));

 if (bit_file == NULL)

 return(bit_file);

 bit_file->file = fopen(name, "wb");

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 bit_file->pacifier_counter = 0;

 return(bit_file);

}

BIT_FILE *OpenInputBitFile(name)

char *name;

{

 BIT_FILE *bit_file;

 bit_file = (BIT_FILE *) calloc(1, sizeof(BIT_FILE));

NATO UNCLASSIFIED
 AComP-4724

 C - 106 EDITION B VERSION 1
NATO UNCLASSIFIED

 if (bit_file == NULL)

 return(bit_file);

 bit_file->file = fopen(name, "rb");

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 bit_file->pacifier_counter = 0;

 return(bit_file);

}

void CloseOutputBitFile(bit_file)

BIT_FILE *bit_file;

{

 if (bit_file->mask != 0x80)

 if (putc(bit_file->rack, bit_file->file) != bit_file->rack)

 fatal_error("Fatal error in CloseBitFile!\n");

 fclose(bit_file->file);

 free((char *) bit_file);

}

void CloseInputBitFile(bit_file)

BIT_FILE *bit_file;

{

 fclose(bit_file->file);

 free((char *) bit_file);

}

int OutputBit(bit_file, bit, tempwrite)

BIT_FILE *bit_file;

int bit, tempwrite;

{

 int bitcount = 0;

 int boolean = 0;

 if (bit)

 bit_file->rack |= bit_file->mask;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0) {

 if (!tempwrite)

 boolean = putc(bit_file->rack, bit_file->file);

 else

 boolean = bit_file->rack;

 bitcount += 8;

 if (boolean != bit_file->rack)

 fatal_error("Fatal error in OutputBit!\n");

 else {

 if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 }

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 }

 return bitcount;

}

int OutputBits(bit_file, code, count)

BIT_FILE *bit_file;

unsigned long code;

int count;

{

 unsigned long mask;

 int bitcount = 0;

 int out = 0;

 mask = 1L << (count - 1);

 while (mask != 0) {

NATO UNCLASSIFIED
 AComP-4724

 C - 107 EDITION B VERSION 1
NATO UNCLASSIFIED

 if (mask & code)

 bit_file->rack |= bit_file->mask;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0) {

 out = putc(bit_file->rack, bit_file->file);

 bitcount += 8;

 if (out!= bit_file->rack)

 fatal_error("Fatal error in OutputBits!\n");

 else if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 }

 mask >>= 1;

 }

 return out;

}

int InputBit(bit_file)

BIT_FILE *bit_file;

{

 int value;

 if (bit_file->mask == 0x80) {

 bit_file->rack = getc(bit_file->file);

 if (bit_file->rack == EOF)

 fatal_error("Fatal error in InputBit!\n");

 if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 }

 value = bit_file->rack & bit_file->mask;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0)

 bit_file->mask = 0x80;

 return(value ? 1 : 0);

}

unsigned long InputBits(bit_file, bit_count)

BIT_FILE *bit_file;

int bit_count;

{

 unsigned long mask;

 unsigned long return_value;

 mask = 1L << (bit_count - 1);

 return_value = 0;

 while (mask != 0) {

 if (bit_file->mask == 0x80) {

 bit_file->rack = getc(bit_file->file);

 if (bit_file->rack == EOF)

 fatal_error("Fatal error in InputBit!\n");

 if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 }

 if (bit_file->rack & bit_file->mask)

 return_value |= mask;

 mask >>= 1;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0)

 bit_file->mask = 0x80;

 }

 return(return_value);

}

void FilePrintBinary(file, code, bits)

FILE *file;

unsigned int code;

NATO UNCLASSIFIED
 AComP-4724

 C - 108 EDITION B VERSION 1
NATO UNCLASSIFIED

int bits;

{

 unsigned int mask;

 mask = 1 << (bits - 1);

 while (mask != 0) {

 if (code & mask)

 fputc('1', file);

 else

 fputc('0', file);

 mask >>= 1;

 }

}

/* End BIT I/O procedures */

NATO UNCLASSIFIED
 AComP-4724

 D - 109 EDITION B VERSION 1
NATO UNCLASSIFIED

 PPM EXPANSION CODING

D.1. PPM EXPANSION CODE

The PPM expansion of message text for the NATO REM modes may be carried out using
the code defined below. When build, the expansion programme requires three files:

1. the statistical model file (STANAG4724StatisticalModel.cmp);

2. a file containing the compressed message stream;

3. an output file for the decompressed message stream.

The code below defines PACKET_SIZE. This is the size of the compressed broadcast
message stream used in each data frame. The value of PACKET_SIZE is dependent on
the type of REM coding being implemented. The following values should be used for
PACKET_SIZE when compiling the code for the REM defined in CHAPTER 3:

CODING PACKET_SIZE

RED/BLACK REM ALPHA coding PACKET_SIZE = 444 bytes

RED/BLACK REM BRAVO coding PACKET_SIZE = 672 bytes

RED REM ALPHA coding PACKET_SIZE = 484 bytes

RED REM BRAVO coding PACKET_SIZE = 681 bytes

NATO UNCLASSIFIED
 AComP-4724

 D - 110 EDITION B VERSION 1
NATO UNCLASSIFIED

/************************* Start of MAIN-E.C *************************/

/*

 *

 * Expansion Test Main (Driver)

 *

 *

 * PPM Context Statistical Model Usage for text compression into binary packets and

subsequent expansion of

 * said binary packets back into text format.

 *

 * The basis of the PPM Context Statistical Model Compression and Expansion

Software is the open source Arith-N.C code * of Mark Nelson and Jean-loup

Gailly as presented in The Data Compression Book (2nd edition).

 *

 * The software was modified, enhanced, and adapted for packet communications usage

by Technology Service Corporation * under contract to SPAWAR Systems Center

Pacific.

 *

 * Revision History of this baseline file (Apr2012):

 *

 *

 * This is the driver program used when testing expansion algorithms.

 * In order to cut back on repetitive code, this version of main is

 * used with all of the compression routines. It in order to turn into

 * a real program, it needs to have another module that supplies one

 * routine and two strings, namely:

 *

 * void ExpandFile(BIT_FILE *input2, FILE *output_

 * int argc, char *argv);

 * char *Usage;

 * char *CompressionName;

 *

 * The main() routine supplied here has the job of checking for valid

 * input and output files, opening them, and then calling the

 * compression routine. If the files are not present, or no arguments

 * are supplied, it prints out an error message, which includes the

 * Usage string supplied by the compression module. All of the

 * routines and strings needed by this routine are defined in the

 * main.h header file.

 *

 * After this is built into a compression program of any sort, the

 * program can be called like this:

 *

 * main-e infile2 outfile [options]

 *

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdarg.h>

#include <math.h>

#include <malloc.h>

typedef struct bit_file {

 FILE *file;

 unsigned char mask;

 int rack;

 int pacifier_counter;

} BIT_FILE;

#ifdef __STDC__

void usage_exit(char *prog_name);

void print_ratios(char *input, char *output);

long file_size(char *name);

long file_size_2(char *name);

NATO UNCLASSIFIED
 AComP-4724

 D - 111 EDITION B VERSION 1
NATO UNCLASSIFIED

void LoadModel(BIT_FILE *input1, int argc, char *argv[]);

int readTheStatsFile(char* filename);

void LoadStatsModel(BIT_FILE *input1, int argc, char *argv[], char *statsFilename);

int CompressMessages(FILE *input2, BIT_FILE *output1, int argc, char *argv[]);

int ExpandFile(BIT_FILE *input2, FILE *output, int argc, char *argv[]);

BIT_FILE *OpenInputBitFile(char *name);

BIT_FILE *OpenOutputBitFile(char *name);

int OutputBit(BIT_FILE *bit_file, int bit, int tempwrite);

int OutputBits(BIT_FILE *bit_file, unsigned long code, int count);

int InputBit(BIT_FILE *bit_file); //, int tempwrite);

unsigned long InputBits(BIT_FILE *bit_file, int bit_count);

void CloseInputBitFile(BIT_FILE *bit_file);

void CloseOutputBitFile(BIT_FILE *bit_file);

void FilePrintBinary(FILE *file, unsigned int code, int bits);

void fatal_error(char *fmt, ...);

#else

void usage_exit();

void print_ratios();

long file_size();

void LoadModel();

int readTheStatsFile();

void LoadStatsModel();

int CompressMessages();

int ExpandFile();

BIT_FILE *OpenInputBitFile();

BIT_FILE *OpenOutputBitFile();

int OutputBit();

int OutputBits();

int InputBit();

unsigned long InputBits();

void CloseInputBitFile();

void CloseOutputBitFile();

void FilePrintBinary();

void fatal_error();

#endif

 char *CompressionName = "Adaptive order n model with arithmetic coding";

/* Extraction procedures */

int main(argc, argv)

int argc;

char *argv[];

{

 BIT_FILE *input1, *input2;

 FILE *output;

 int status=1;

 char statsFilename[256];

 strcpy(statsFilename, "");

 setbuf(stdout, NULL);

 if (argc < 4)

 usage_exit(argv[0]);

 // Model Creating File

 input1 = OpenInputBitFile(argv[1]);

 if (input1 == NULL)

NATO UNCLASSIFIED
 AComP-4724

 D - 112 EDITION B VERSION 1
NATO UNCLASSIFIED

 fatal_error("Error opening %s for input\n", argv[1]);

 // File to be compressed/expanded

 input2 = OpenInputBitFile(argv[2]);

 if (input2 == NULL)

 fatal_error("Error opening %s for input\n", argv[2]);

 //RAW Text Output

 output = fopen(argv[3],"w");

 if (output == NULL)

 fatal_error("Error opening %s for output\n", argv[3]);

 if(argv[6] != NULL)

 strcpy(statsFilename, argv[6]);

 printf("\nExpanding %s to %s using %s as initial data\n", argv[2], argv[3],

argv[1]);

 printf("Using %s\n", CompressionName);

 if (strlen(statsFilename) > 1){

 printf("\nCompressing %s to %s using STATS %s as initial data\n",

argv[2], argv[3], argv[1]);

 //load statistics in to memory

 LoadStatsModel(input1, argc-4, argv+4, statsFilename);

 }

 else{

 printf("\nCompressing %s to %s using MODEL %s as initial data\n",

argv[2], argv[3], argv[1]);

 //Load Model into memory

 LoadModel(input1, argc-4, argv+4);

 }

 //Compress Data into Packets as long as input buffer(file) is not empty

(ended)

 while (status > 0)

 {

 status = ExpandFile(input2, output, argc -4 , argv +4);

 }

 //Check for error if last return value is not EOF indicator (-1)

 if (status != -1)

 printf("Possible Error Ending File\n");

 fclose(output);

 CloseInputBitFile(input1);

 CloseInputBitFile(input2);

 printf("Message Compression Ratio : ");

 print_ratios(argv[2], argv[3]);

 return(0);

}

/*

 * This routine just wants to print out the usage message that is

 * called for when the program is run with no parameters. The first

 * part of the Usage statement is supposed to be just the program

 * name. argv[0] generally holds the fully qualified path name

 * of the program being run. I make a half-hearted attempt to strip

 * out that path info and file extension before printing it. It should

 * get the general idea across.

 */

void usage_exit(prog_name)

char *prog_name;

{

 char *short_name;

NATO UNCLASSIFIED
 AComP-4724

 D - 113 EDITION B VERSION 1
NATO UNCLASSIFIED

 char *extension;

 char *Usage = "in-file1 in-file2 out-file [-o order][stats-in-file]\n\n";

 short_name = strrchr(prog_name, '\\');

 if (short_name == NULL)

 short_name = strrchr(prog_name, '/');

 if (short_name == NULL)

 short_name = strrchr(prog_name, ':');

 if (short_name != NULL)

 short_name++;

 else

 short_name = prog_name;

 extension = strrchr(short_name, '.');

 if (extension != NULL)

 *extension = '\0';

 printf("\nUsage: %s %s\n", short_name, Usage);

 exit(0);

}

/*

 * This routine is used by main to print out get the size of a file after

 * it has been closed. It does all the work, and returns a long. The

 * main program gets the file size for the plain text, and the size of

 * the compressed file, and prints the ratio.

 */

#ifndef SEEK_END

#define SEEK_END 2

#endif

long file_size(name)

char *name;

{

 long eof_ftell;

 FILE *file;

 file = fopen(name, "r");

 if (file == NULL)

 return(0L);

 fseek(file, 0L, SEEK_END);

 eof_ftell = ftell(file);

 fclose(file);

 return(eof_ftell);

}

/*

 * This routine prints out the compression ratios after the input

 * and output files have been closed.

 */

void print_ratios(input, output)

char *input;

char *output;

{

 long input_size;

 long output_size;

 int ratio;

 FILE *summary;

 input_size = file_size(input);

 if (input_size == 0)

 input_size = 1;

 output_size = file_size(output);

 ratio = 100 - (int) (output_size * 100L / input_size);

 printf("\nInput bytes: %ld\n", input_size);

 printf("Output bytes: %ld\n", output_size);

 if (output_size == 0)

 output_size = 1;

 //printf("Compression ratio: %d%%\n", ratio);

NATO UNCLASSIFIED
 AComP-4724

 D - 114 EDITION B VERSION 1
NATO UNCLASSIFIED

 summary = fopen("summary.out", "w");

 if (summary == NULL)

 fatal_error("Error opening summary.out for output\n");

 fprintf(summary,"Input bytes: %ld",input_size);

 fprintf(summary," Output bytes: %ld",output_size);

 fprintf(summary," Compression ratio: %d%%\n",ratio);

 fclose(summary);

}

void fatal_error(fmt)

char *fmt;

{

 va_list argptr;

 va_start(argptr, fmt);

 printf("Fatal error: ");

 vprintf(fmt, argptr);

 va_end(argptr);

 exit(-1);

}

/* Compression procedures

 * Compression and Expansion routines for use with packet communications using PPM

Context Statistical Model

 * as input.

 *

 */

/*

 * The SYMBOL structure is what is used to define a symbol in

 * arithmetic coding terms.

 */

typedef struct {

 unsigned short int low_count;

 unsigned short int high_count;

 unsigned short int scale;

} SYMBOL;

#define MAXIMUM_SCALE 16383 /* Maximum allowed frequency count */

#define ESCAPE 256 /* The escape symbol */

#define DONE (-1) /* The output stream empty symbol */

#define FLUSH (-2) /* The symbol to flush the model */

#define END_PACKET (-3)

#define PACKET_SIZE 484 /* Packet Size In Bits (RED: 484, RED/BLACK: 444) */

#define UPDATE_EXC 1 /* Update Exclusion Flag, 1 = on, 0 = off 0 */

/*

 * Function prototypes.

 */

#ifdef __STDC__

void initialize_options(int argc, char **argv);

int check_compression(FILE *input, BIT_FILE *output);

void initialize_model(void);

void initialize_model2(void);

void initialize_model_load(void);

void update_model(int symbol);

void update_model2(int symbol);

int convert_int_to_symbol(int symbol, SYMBOL *s);

int convert_int_to_symbol2(int symbol, SYMBOL *s);

void get_symbol_scale(SYMBOL *s);

void get_symbol_scale2(SYMBOL *s);

NATO UNCLASSIFIED
 AComP-4724

 D - 115 EDITION B VERSION 1
NATO UNCLASSIFIED

int convert_symbol_to_int(int count, SYMBOL *s);

int convert_symbol_to_int1(int count, SYMBOL *s, int debug);

void add_character_to_model(int c);

void add_character_to_model2(int c, int flag);

void flush_model(void);

void initialize_arithmetic_decoder(BIT_FILE *stream);

void initialize_arithmetic_decoder1(BIT_FILE *stream , int numbits);

int remove_symbol_from_stream(BIT_FILE *stream, SYMBOL *s);

int remove_symbol_from_stream1(BIT_FILE *stream, SYMBOL *s, int bits);

void initialize_arithmetic_encoder(void);

int encode_symbol1(BIT_FILE *stream, SYMBOL *s, int tempwriteflag);

void encode_symbol(BIT_FILE *stream, SYMBOL *s);

int flush_arithmetic_encoder1(BIT_FILE *stream);

void flush_arithmetic_encoder(BIT_FILE *stream);

short int get_current_count(SYMBOL *s);

void save_model(void);

void reset_model(void);

#else /* __STDC_, */

void initialize_options();

int check_compression();

void initialize_model();

void initialize_model2();

void initialize_model_load();

void update_model();

void update_model2();

int convert_int_to_symbol();

int convert_int_to_symbol2();

void get_symbol_scale();

void get_symbol_scale2();

int convert_symbol_to_int();

int convert_symbol_to_int1();

void add_character_to_model();

void add_character_to_model2();

void flush_model();

void initialize_arithmetic_decoder();

void initialize_arithmetic_decoder1();

int remove_symbol_from_stream();

int remove_symbol_from_stream1();

void initialize_arithmetic_encoder();

int encode_symbol1();

void encode_symbol();

int flush_arithmetic_encoder1();

void flush_arithmetic_encoder();

short int get_current_count();

void save_model();

void reset_model();

#endif /* __STDC__ */

int max_order = 4;

int bitsinpacket = 0; //num compressed bits in packet

int pknum = 0; //packet number

int numalloc = 0; //number of memory slots allocated

long int input_pos = 0;

int offset = 16;

void initialize_options(argc, argv)

int argc;

char *argv[];

{

 while (argc-- > 0) {

 if (strcmp(*argv, "-o") == 0) {

 argc--;

 max_order = atoi(*++argv);

 } else

NATO UNCLASSIFIED
 AComP-4724

 D - 116 EDITION B VERSION 1
NATO UNCLASSIFIED

 printf("Uknown argument on command line: %s\n", *argv);

 argc--;

 argv++;

 }

}

/*

 * This routine is called once every 256 input symbols. Its job is to

 * check to see if the compression ratio falls below 10%. If the

 * output size is 90% of the input size, it means not much compression

 * is taking place, so we probably ought to flush the statistics in the

 * model to allow for more current statistics to have greater impact.

 * This heuristic approach does seem to have some effect.

 */

int check_compression(input, output)

FILE *input;

BIT_FILE *output;

{

 static long local_input_marker = 0L;

 static long local_output_marker = 0L;

 long total_input_bytes;

 long total_output_bytes;

 int local_ratio;

 total_input_bytes = ftell(input) - local_input_marker;

 total_output_bytes = ftell(output->file);

 total_output_bytes -= local_output_marker;

 if (total_output_bytes == 0)

 total_output_bytes = 1;

 local_ratio = (int)((total_output_bytes * 100) / total_input_bytes);

 local_input_marker = ftell(input);

 local_output_marker = ftell(output->file);

 return(local_ratio > (int)90);

}

//Define context data structures

typedef struct {

 unsigned char symbol;

 unsigned char counts;

} STATS;

typedef struct {

 struct context *next;

} LINKS;

typedef struct context {

 int max_index;

 LINKS *links;

 STATS *stats;

 struct context *lesser_context;

} CONTEXT;

/*

 * *contexts[] is an array of current contexts.

 */

CONTEXT **contexts;

/*

 * current_order contains the current order of the model. It starts

 * at max_order, and is decremented every time an ESCAPE is sent. It

 * will only go down to -1 for normal symbols, but can go to -2 for

 * EOF and FLUSH.

 */

NATO UNCLASSIFIED
 AComP-4724

 D - 117 EDITION B VERSION 1
NATO UNCLASSIFIED

int current_order;

short int totals[258];

char scoreboard[256];

char tempscoreboard[256];

//Global vars now due to functionality break-up

int modtotals[258] = {0};

int modcontexts[20] = {0};

/*

 * Local procedure declarations for modeling routines.

 */

#ifdef __STDC__

void update_table(CONTEXT *table, int symbol);

void rescale_table(CONTEXT *table);

void totalize_table(CONTEXT *table);

void totalize_table2(CONTEXT *table);

CONTEXT *shift_to_next_context(CONTEXT *table, int c, int order);

CONTEXT *shift_to_next_context2(CONTEXT *table, int c, int order);

CONTEXT *shift_to_next_context3(CONTEXT *table, int c, int order);

CONTEXT *allocate_next_order_table(CONTEXT *table, int symbol, CONTEXT

*lesser_context);

void recursive_flush(CONTEXT *table);

CONTEXT* create_model(int ContextT, int Index0, int Index1, int Index2, int Index3,

int Index4, int Order, int Symbol, int Count);

#else

void update_table();

void rescale_table();

void totalize_table();

void totalize_table2();

CONTEXT *shift_to_next_context();

CONTEXT *shift_to_next_context2();

CONTEXT *shift_to_next_context3();

CONTEXT *allocate_next_order_table();

void recursive_flush();

CONTEXT* create_model();

#endif

void initialize_model()

{

 int i;

 CONTEXT *null_table;

 CONTEXT *control_table;

 current_order = max_order;

 contexts = (CONTEXT **) calloc(sizeof(CONTEXT *), 20);

 if (contexts == NULL)

 fatal_error("Failure #1: allocating context table!");

 contexts += 2;

 null_table = (CONTEXT *) calloc(sizeof(CONTEXT), 1);

 if (null_table == NULL)

 fatal_error("Failure #2: allocating null table!");

 null_table->max_index = -1;

 contexts[-1] = null_table;

 for (i = 0 ; i <= max_order ; i++)

 contexts[i] = allocate_next_order_table(contexts[i-1],0, contexts[i-1

]);

 null_table->stats =

 (STATS *) realloc((char *) null_table->stats, sizeof(STATS)*256);

 if (null_table->stats == NULL)

 fatal_error("Failure #3: allocating null table!");

NATO UNCLASSIFIED
 AComP-4724

 D - 118 EDITION B VERSION 1
NATO UNCLASSIFIED

 null_table->max_index = 255;

 for (i=0 ; i < 256 ; i++) {

 null_table->stats[i].symbol = (unsigned char) i;

 null_table->stats[i].counts = 1;

 }

 control_table = (CONTEXT *) calloc(sizeof(CONTEXT), 1);

 if (control_table == NULL)

 fatal_error("Failure #4: allocating null table!");

 control_table->stats =

 (STATS *) calloc(sizeof(STATS), 2);

 if (control_table->stats == NULL)

 fatal_error("Failure #5: allocating null table!");

 contexts[-2] = control_table;

 control_table->max_index = 2;

 control_table->stats[0].symbol = -FLUSH;

 control_table->stats[0].counts = 1;

 control_table->stats[1].symbol = -DONE;

 control_table->stats[1].counts = 1;

 control_table->stats[2].symbol = -END_PACKET;

 control_table->stats[2].counts = 1;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

CONTEXT* create_model(ContextT, Index0, Index1, Index2, Index3, Index4, Order,

Symbol, Count)

int ContextT;

int Index0;

int Index1;

int Index2;

int Index3;

int Index4;

int Order;

int Symbol;

int Count;

{

 int index = 0;

 int new_size;

 CONTEXT *lesser_context = NULL;

 CONTEXT *table = NULL;

 CONTEXT *new_table = NULL;

 struct node *ptr = NULL;

 CONTEXT *found_table = NULL;

 if (Order == -1)

 {

 if (contexts[ContextT] == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = 0;

 new_table->lesser_context = NULL;

 contexts[ContextT] = new_table;

 }

 table = contexts[ContextT];

 index = ContextT;

 table->max_index = Count;

 }

 else if (Order == 0){

NATO UNCLASSIFIED
 AComP-4724

 D - 119 EDITION B VERSION 1
NATO UNCLASSIFIED

 table = contexts[ContextT];

 index = Index0;

 if (table->stats == NULL){

 table->stats = (STATS *)calloc(1, sizeof(STATS));

 if (table->stats == NULL)

 fatal_error("Failure STATS allocating!");

 }

 if (table->links == NULL){

 table->links = (LINKS *)calloc(1, sizeof(LINKS));

 if (table->links == NULL)

 fatal_error("Failure LINKS allocating!");

 table->links->next = NULL;

 }

 }

 else if (Order == 1){

 if (contexts[ContextT]->links[Index0].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

 contexts[ContextT]->links[Index0].next = new_table;

 }

 table = contexts[ContextT]->links[Index0].next;

 index = Index1;

 }

 else if (Order == 2){

 if (contexts[ContextT]->links[Index0].next->links[Index1].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

 contexts[ContextT]->links[Index0].next->links[Index1].next =

new_table;

 }

 table = contexts[ContextT]->links[Index0].next->links[Index1].next;

 index = Index2;

 }

 else if (Order == 3){

 if (contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

NATO UNCLASSIFIED
 AComP-4724

 D - 120 EDITION B VERSION 1
NATO UNCLASSIFIED

 contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next = new_table;

 }

 table = contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next;

 index = Index3;

 }

 else if (Order == 4){

 if (contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next->links[Index3].next == NULL){

 new_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (new_table == NULL)

 fatal_error("Failure CONTEXT allocating!");

 new_table->max_index = -1;

 new_table->lesser_context = NULL;

 contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next->links[Index3].next = new_table;

 }

 table = contexts[ContextT]->links[Index0].next->links[Index1].next-

>links[Index2].next->links[Index3].next;

 index = Index4;

 }

 if (Order >= 0){

 new_size = sizeof(LINKS);

 new_size *= index + 1;

 if (Order <= max_order) {

 if (index == 0) {

 table->links = (LINKS *)calloc(1, new_size);

 }

 else {

 table->links = (LINKS *)realloc((char *)table->links,

new_size);

 }

 if (table->links == NULL)

 fatal_error("Error #9: reallocating table space!");

 table->links[index].next = NULL;

 }

 new_size = sizeof(STATS);

 new_size *= index + 1;

 if (index == 0){

 table->stats = (STATS *)calloc(1, new_size);

 }

 else {

 table->stats = (STATS *)realloc((char *)table->stats, new_size);

 }

 if (table->stats == NULL)

 fatal_error("Error #10: reallocating table space!");

 table->stats[index].symbol = '0';

 table->stats[index].counts = 0;

 }

 if (Order > -1)

NATO UNCLASSIFIED
 AComP-4724

 D - 121 EDITION B VERSION 1
NATO UNCLASSIFIED

 { //add the stats data

 table->stats[index].symbol = (unsigned char)Symbol;

 table->stats[index].counts = Count;

 if (Order > 0)

 table->max_index++;

 }

 return table;

}

void initialize_model2()

{

 int i;

 current_order = max_order;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

/*

* This routine has to get everything set up properly so that

* the model can be maintained properly. The first step is to create

* the *contexts[] array used later to find current context tables.

* The *contexts[] array indices go from -2 up to max_order, so

* the table needs to be fiddled with a little. This routine then

* has to create the special order -2 and order -1 tables by hand,

* since they aren't quite like other tables. Then the current

* context is set to \0, \0, \0, ... and the appropriate tables

* are built to support that context. The current order is set

* to max_order, the scoreboard is cleared, and the system is

* ready to go.

*/

void initialize_model_load()

{

 int i;

 CONTEXT *null_table;

 CONTEXT *control_table;

 current_order = max_order;

 contexts = (CONTEXT **)calloc(20, sizeof(CONTEXT *)); //20

 if (contexts == NULL)

 fatal_error("Failure #1: allocating context table!");

 contexts += 2;

 null_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (null_table == NULL)

 fatal_error("Failure #2: allocating null table!");

 null_table->max_index = -1;

 contexts[-1] = null_table;

 for (i = 0; i <= max_order; i++)

 contexts[i] = allocate_next_order_table(contexts[i - 1], 0, contexts[i -

1]);

 null_table->stats = (STATS *)realloc((char *)null_table->stats, sizeof(STATS)*

256);

 if (null_table->stats == NULL)

 fatal_error("Failure #3: allocating null table!");

 null_table->max_index = 255;

NATO UNCLASSIFIED
 AComP-4724

 D - 122 EDITION B VERSION 1
NATO UNCLASSIFIED

 for (i = 0; i < 256; i++) {

 null_table->stats[i].symbol = (unsigned char)i;

 null_table->stats[i].counts = 1;

 }

 control_table = (CONTEXT *)calloc(1, sizeof(CONTEXT));

 if (control_table == NULL)

 fatal_error("Failure #4: allocating null table!");

 control_table->stats = (STATS *)calloc(3, sizeof(STATS));

 if (control_table->stats == NULL)

 fatal_error("Failure #5: allocating null table!");

 contexts[-2] = control_table;

 control_table->max_index = 2;

 control_table->stats[0].symbol = -FLUSH;

 control_table->stats[0].counts = 1;

 control_table->stats[1].symbol = -DONE;

 control_table->stats[1].counts = 1;

 control_table->stats[2].symbol = -END_PACKET;

 control_table->stats[2].counts = 1;

 for (i = 0; i < 256; i++)

 scoreboard[i] = 0;

}

/*

 * This is a utility routine used to create new tables when a new

 * context is created.

 */

int num = 0;

CONTEXT *allocate_next_order_table(table, symbol, lesser_context)

CONTEXT *table;

int symbol;

CONTEXT *lesser_context;

{

 CONTEXT *new_table;

 int i;

 unsigned int new_size;

 for (i = 0 ; i <= table->max_index ; i++)

 if (table->stats[i].symbol == (unsigned char) symbol)

 break;

 if (i > table->max_index) {

 table->max_index++;

 new_size = sizeof(LINKS);

 new_size *= table->max_index + 1;

 if (table->links == NULL)

 {

 table->links = (LINKS *) calloc(new_size, 1);

 }

 else

 {

 table->links = (LINKS *)realloc((char *) table->links, new_size);

 }

 new_size *= table->max_index + 1;

 if (table->stats == NULL)

 {

 table->stats = (STATS *) calloc(new_size, 1);

 }

 else

 {

 table->stats = (STATS *)

 realloc((char *) table->stats, new_size);

NATO UNCLASSIFIED
 AComP-4724

 D - 123 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 if (table->links == NULL)

 fatal_error("Failure #6: allocating new table");

 if (table->stats == NULL)

 fatal_error("Failure #7: allocating new table");

 table->stats[i].symbol = (unsigned char) symbol;

 table->stats[i].counts = 0;

 }

 new_table = (CONTEXT *) calloc(sizeof(CONTEXT), 1);

 if (new_table == NULL)

 fatal_error("Failure #8: allocating new table");

 new_table->max_index = -1;

 table->links[i].next = new_table;

 new_table->lesser_context = lesser_context;

 return(new_table);

}

/*

 * This routine is called to increment the counts for the current

 * contexts. It is called after a character has been encoded or

 * decoded.

 */

void update_model(symbol)

int symbol;

{

 int i;

 int local_order;

 int loopstart;

 if (current_order < 0)

 local_order = 0;

 else

 local_order = current_order;

 //Determines starting point of loop based on UPDATE_EXC flag

 if (UPDATE_EXC)

 loopstart = local_order;

 else

 loopstart = 0;

 if (symbol >= 0) {

 while (loopstart <= max_order) {

 if (symbol >= 0)

 update_table(contexts[loopstart], symbol);

 loopstart++;

 }

 }

 current_order = max_order;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

void update_model2(symbol)

int symbol;

{

 int i;

 for (i = 0 ; i < 256 ; i++)

 scoreboard[i] = 0;

}

/*

 * This routine is called to update the count for a particular symbol

 * in a particular table. The table is one of the current contexts_

NATO UNCLASSIFIED
 AComP-4724

 D - 124 EDITION B VERSION 1
NATO UNCLASSIFIED

 * and the symbol is the last symbol encoded or decoded.

 */

void update_table(table, symbol)

CONTEXT *table;

int symbol;

{

 int i;

 int index;

 unsigned char temp;

 CONTEXT *temp_ptr;

 unsigned int new_size;

 index = 0;

 while (index <= table->max_index &&

 table->stats[index].symbol != (unsigned char) symbol)

 index++;

 if (index > table->max_index) {

 table->max_index++;

 new_size = sizeof(LINKS);

 new_size *= table->max_index + 1;

 if (current_order < max_order) {

 if (table->max_index == 0) {

 table->links = (LINKS *) calloc(new_size, 1);

 }

 else {

 table->links = (LINKS *)

 realloc((char *) table->links, new_size);

 }

 if (table->links == NULL)

 fatal_error("Error #9: reallocating table space!");

 table->links[index].next = NULL;

 }

 new_size = sizeof(STATS);

 new_size *= table->max_index + 1;

 if (table->max_index==0){

 table->stats = (STATS *) calloc(new_size, 1);

 }

 else {

 table->stats = (STATS *)

 realloc((char *) table->stats, new_size);

 }

 if (table->stats == NULL)

 fatal_error("Error #10: reallocating table space!");

 table->stats[index].symbol = (unsigned char) symbol;

 table->stats[index].counts = 0;

 }

 i = index;

 while (i > 0 &&

 table->stats[index].counts == table->stats[i-1].counts)

 i--;

 if (i != index) {

 temp = table->stats[index].symbol;

 table->stats[index].symbol = table->stats[i].symbol;

 table->stats[i].symbol = temp;

 if (table->links != NULL) {

 temp_ptr = table->links[index].next;

 table->links[index].next = table->links[i].next;

 table->links[i].next = temp_ptr;

 }

 index = i;

 }

 table->stats[index].counts++;

 if (table->stats[index].counts == 255)

NATO UNCLASSIFIED
 AComP-4724

 D - 125 EDITION B VERSION 1
NATO UNCLASSIFIED

 rescale_table(table);

}

/*

 * This routine is called when a given symbol needs to be encoded.

 * It is the job of this routine to find the symbol in the context

 * table associated with the current table, and return the low and

 * high counts associated with that symbol, as well as the scale.

 *

 */

int convert_int_to_symbol(c, s)

int c;

SYMBOL *s;

{

 int i;

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table(table);

 s->scale = totals[0];

 if (current_order == -2)

 c = -c;

 for (i = 0 ; i <= table->max_index ; i++) {

 if (c == (int) table->stats[i].symbol) {

 if (table->stats[i].counts == 0)

 break;

 s->low_count = totals[i+2];

 s->high_count = totals[i+1];

 return(0);

 }

 }

 s->low_count = totals[1];

 s->high_count = totals[0];

 current_order--;

 return(1);

}

int convert_int_to_symbol2(c, s)

int c;

SYMBOL *s;

{

 int i;

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table2(table);

 s->scale = totals[0];

 if (table->max_index != -1)

 {

 if (current_order == -2)

 c = -c;

 for (i = 0 ; i <= table->max_index ; i++) {

 if (c == (int) table->stats[i].symbol) {

 if (table->stats[i].counts == 0)

 break;

 s->low_count = totals[i+2];

 s->high_count = totals[i+1];

 return(0);

 }

 }

 }

 s->low_count = totals[1];

 s->high_count = totals[0];

 contexts[current_order] = NULL;

 current_order--;

 return(1);

}

NATO UNCLASSIFIED
 AComP-4724

 D - 126 EDITION B VERSION 1
NATO UNCLASSIFIED

/*

 * This routine is called when decoding an arithmetic number. In

 * order to decode the present symbol, the current scale in the

 * model must be determined.

 */

void get_symbol_scale(s)

SYMBOL *s;

{

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table(table);

 s->scale = totals[0];

}

void get_symbol_scale2(s)

SYMBOL *s;

{

 CONTEXT *table;

 table = contexts[current_order];

 totalize_table2(table);

 s->scale = totals[0];

}

/*

 * This routine is called during decoding. It is given a count that

 * came out of the arithmetic decoder, and has to find the symbol that

 * matches the count.

 */

int convert_symbol_to_int(count, s)

int count;

SYMBOL *s;

{

 int c;

 CONTEXT *table;

 table = contexts[current_order];

 for (c = 0; count < totals[c] ; c++)

 ;

 s->high_count = totals[c - 1];

 s->low_count = totals[c];

 if (c == 1) {

 current_order--;

 return(ESCAPE);

 }

 if (current_order < -1)

 return((int) -table->stats[c-2].symbol);

 else

 return(table->stats[c-2].symbol);

}

int convert_symbol_to_int1(count, s, debug)

int count;

SYMBOL *s;

int debug;

{

 int c;

 CONTEXT *table;

 table = contexts[current_order];

NATO UNCLASSIFIED
 AComP-4724

 D - 127 EDITION B VERSION 1
NATO UNCLASSIFIED

 for (c = 0; count < totals[c] ; c++)

 ;

 s->high_count = totals[c - 1];

 s->low_count = totals[c];

 if (c == 1) {

 current_order--;

 return(ESCAPE);

 }

 if (current_order < -1)

 return((int) -table->stats[c-2].symbol);

 else

 return(table->stats[c-2].symbol);

}

/*

 * After the model has been updated for a new character, this routine

 * is called to "shift" into the new context.

 */

void add_character_to_model(c)

int c;

{

 int i;

 if (max_order < 0 || c < 0)

 return;

 contexts[max_order] =

 shift_to_next_context(contexts[max_order], c, max_order);

 for (i = max_order-1 ; i > 0 ; i--)

 contexts[i] = contexts[i+1]->lesser_context;

}

void add_character_to_model2(c, flag)

int c;

int flag;

{

 int i,local_order;

 local_order = current_order;

 if (max_order < 0 || c < 0)

 return;

 // Attempt to raise order if flag is 1

 if (flag || local_order == -1)

 {

 contexts[local_order + 1] =

 shift_to_next_context3(contexts[local_order], c, local_order);

 }

 // Stay at current_order if flag is 0 or if attempt to raise order failed

 if ((!flag || (flag && contexts[local_order + 1] == NULL)) && local_order != -

1)

 {

 contexts[current_order] =

 shift_to_next_context2(contexts[current_order], c, current_order

);

 }

 for (i = current_order-1 ; i > 0 ; i--)

 contexts[i] = contexts[i+1]->lesser_context;

}

/*

 * This routine is called when adding a new character to the model. From

 * the previous example, if the current context was "ABC", and the new

 * symbol was 'D', this routine would get called with a pointer to

 * context table "ABC", and symbol 'D', with order max_order.

 */

NATO UNCLASSIFIED
 AComP-4724

 D - 128 EDITION B VERSION 1
NATO UNCLASSIFIED

CONTEXT *shift_to_next_context(table, c, order)

CONTEXT *table;

int c;

int order;

{

 int i;

 CONTEXT *new_lesser;

 table = table->lesser_context;

 if (order == 0)

 return(table->links[0].next);

 for (i = 0 ; i <= table->max_index ; i++)

 if (table->stats[i].symbol == (unsigned char) c)

 if (table->links[i].next != NULL)

 return(table->links[i].next);

 else

 break;

 new_lesser = shift_to_next_context(table, c, order-1);

 table = allocate_next_order_table(table, c, new_lesser);

 return(table);

}

CONTEXT *shift_to_next_context2(table, c, order)

CONTEXT *table;

int c;

int order;

{

 int i = 0;

 table = table->lesser_context;

 if (order < 0 || table->lesser_context == NULL)

 return(table->links[0].next);

 for (i = 0 ; i <= table->max_index ; i++){

 if (table->stats[i].symbol == (unsigned char) c)

 if (table->links[i].next != NULL)

 return(table->links[i].next);

 else

 break;

 }

 return(table);

}

CONTEXT *shift_to_next_context3(table, c, order)

CONTEXT *table;

int c;

int order;

{

 int i;

 if (order < 0){

 current_order++;

 return(table->links[0].next);

 }

 for (i = 0 ; i <= table->max_index ; i++){

 if (table->stats[i].symbol == (unsigned char) c)

 if (table->links[i].next != NULL){

 current_order++;

 return(table->links[i].next);

 }

 else

 break;

 }

 return(table = NULL);

}

NATO UNCLASSIFIED
 AComP-4724

 D - 129 EDITION B VERSION 1
NATO UNCLASSIFIED

/*

 * Rescaling the table needs to be done for one of three reasons.

 * First, if the maximum count for the table has exceeded 16383, it

 * means that arithmetic coding using 16 and 32 bit registers might

 * no longer work. Secondly, if an individual symbol count has

 * reached 255, it will no longer fit in a byte. Third, if the

 * current model isn't compressing well, the compressor program may

 * want to rescale all tables in order to give more weight to newer

 * statistics.

 */

void rescale_table(table)

CONTEXT *table;

{

 int i;

 if (table->max_index == -1)

 return;

 for (i = 0 ; i <= table->max_index ; i++)

 table->stats[i].counts /= 2;

 if (table->stats[table->max_index].counts == 0 &&

 table->links == NULL) {

 while (table->stats[table->max_index].counts == 0 &&

 table->max_index >= 0)

 table->max_index--;

 if (table->max_index == -1) {

 free((char *) table->stats);

 table->stats = NULL;

 }

 else {

 table->stats = (STATS *)

 realloc((char *) table->stats,

 sizeof(STATS) * (table->max_index + 1));

 if (table->stats == NULL)

 fatal_error("Error #11: reallocating stats space!");

 }

 }

}

/*

 * This routine has the job of creating a cumulative totals table for

 * a given context.

 */

void totalize_table(table)

CONTEXT *table;

{

 int i;

 unsigned char max;

 for (; ;) {

 max = 0;

 i = table->max_index + 2;

 totals[i] = 0;

 for (; i > 1 ; i--) {

 totals[i-1] = totals[i];

 if (table->stats[i-2].counts)

 if ((current_order == -2) ||

 scoreboard[table->stats[i-2].symbol] == 0)

 totals[i-1] += table->stats[i-2].counts;

 if (table->stats[i-2].counts > max)

 max = table->stats[i-2].counts;

 }

 if (max == 0)

 totals[0] = 1;

 else {

NATO UNCLASSIFIED
 AComP-4724

 D - 130 EDITION B VERSION 1
NATO UNCLASSIFIED

 totals[0] = (short int) (256 - table->max_index);

 totals[0] *= table->max_index;

 totals[0] /= 256;

 totals[0] /= max;

 totals[0]++;

 totals[0] += totals[1];

 }

 if (totals[0] < MAXIMUM_SCALE)

 break;

 rescale_table(table);

 }

 for (i = 0 ; i < table->max_index ; i++)

 if (table->stats[i].counts != 0)

 scoreboard[table->stats[i].symbol] = 1;

}

void totalize_table2(table)

CONTEXT *table;

{

 int i;

 unsigned char max;

 for (; ;) {

 max = 0;

 i = table->max_index + 2;

 totals[i] = 0;

 for (; i > 1 ; i--) {

 totals[i-1] = totals[i];

 if (table->stats[i-2].counts)

 if ((current_order == -2) ||

 scoreboard[table->stats[i-2].symbol] == 0)

 totals[i-1] += table->stats[i-2].counts;

 if (table->stats[i-2].counts > max)

 max = table->stats[i-2].counts;

 }

 if (max == 0)

 totals[0] = 1;

 else {

 totals[0] = (short int) (256 - table->max_index);

 totals[0] *= table->max_index;

 totals[0] /= 256;

 totals[0] /= max;

 totals[0]++;

 totals[0] += totals[1];

 }

 if (totals[0] < MAXIMUM_SCALE)

 break;

 }

 for (i = 0 ; i < table->max_index ; i++)

 if (table->stats[i].counts != 0)

 scoreboard[table->stats[i].symbol] = 1;

}

/*

 * This routine is called when the entire model is to be flushed.

 */

void recursive_flush(table)

CONTEXT *table;

{

 int i;

 if (table->links != NULL)

 for (i = 0 ; i <= table->max_index ; i++)

 if (table->links[i].next != NULL)

 recursive_flush(table->links[i].next);

NATO UNCLASSIFIED
 AComP-4724

 D - 131 EDITION B VERSION 1
NATO UNCLASSIFIED

 rescale_table(table);

}

/*

 * This routine is called to flush the whole table, which it does

 * by calling the recursive flush routine starting at the order 0

 * table.

 */

void flush_model()

{

 putc('F', stdout);

 recursive_flush(contexts[0]);

}

static unsigned short int code; /* The present input code value */

static unsigned short int low; /* Start of the current code range */

static unsigned short int high; /* End of the current code range */

long underflow_bits; /* Number of underflow bits pending */

/*

 * This routine must be called to initialize the encoding process.

 */

void initialize_arithmetic_encoder()

{

 low = 0;

 high = 0xffff;

 underflow_bits = 0;

}

/*

 * At the end of the encoding process, there are still significant

 * bits left in the high and low registers. We output two bits_

 * plus as many underflow bits as are necessary.

 */

void flush_arithmetic_encoder(stream)

BIT_FILE *stream;

{

 OutputBit(stream, low & 0x4000 , 0);

 underflow_bits++;

 while (underflow_bits-- > 0)

 OutputBit(stream, ~low & 0x4000 , 0);

 OutputBits(stream, 0L, 16);

 //low = 0;

 //high = 0xfff;

}

/* This is used at end of each packet. It flushes the encoder by

 * outputting an bits left from the last character and any underflow bits.

 * It then outputs a variable number of zeros so the decoder can sync up

 * and the next packet will start at a predictable location.

 */

int flush_arithmetic_encoder1(stream)

BIT_FILE *stream;

{

 int count = 0;

 int retval = 0;

 int bitsinstream = 0;

 int lastmask = 0;

 int zeros = 0;

 int bisorig = 0;

 int fp = 0;

 int i;

 bitsinstream = bitsinpacket;

NATO UNCLASSIFIED
 AComP-4724

 D - 132 EDITION B VERSION 1
NATO UNCLASSIFIED

 lastmask = stream->mask;

 OutputBit(stream, low & 0x4000,0);

 if (stream -> mask != lastmask){

 bitsinstream++;

 lastmask = stream->mask;

 }

 underflow_bits++;

 while (underflow_bits > 0)

 {

 OutputBit(stream, ~low & 0x4000,0);

 if (stream -> mask != lastmask)

 {

 bitsinstream++;

 lastmask = stream->mask;

 }

 underflow_bits--;

 }

 zeros = PACKET_SIZE - bitsinstream;

 for (i=0;i<zeros;i++)

 OutputBit(stream,0,0);

 return (zeros + (bitsinstream - bitsinpacket));

}

/*

 * This routine is called to encode a symbol. The symbol is passed

 * in the SYMBOL structure as a low count, a high count, and a range.

 */

void encode_symbol(stream, s)

BIT_FILE *stream;

SYMBOL *s;

{

 long range;

 range = (long) (high-low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 OutputBit(stream, high & 0x8000 , 0);

 while (underflow_bits > 0) {

 OutputBit(stream, ~high & 0x8000 , 0);

 underflow_bits--;

 }

 }

 else if ((low & 0x4000) && !(high & 0x4000)) {

 underflow_bits += 1;

 low &= 0x3fff;

 high |= 0x4000;

 }

 else

 return ;

 low <<= 1;

 high <<= 1;

 high |= 1;

 }

}

//Sames as above, but returns the number of encoded bits

int encode_symbol1(stream, s, tempwriteflag)

NATO UNCLASSIFIED
 AComP-4724

 D - 133 EDITION B VERSION 1
NATO UNCLASSIFIED

BIT_FILE *stream;

SYMBOL *s;

int tempwriteflag;

{

 long range;

 int count = 0;

 int debug = 0;

 int lastmask = 0;

 int addedbits = 0;

 range = (long) (high-low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 lastmask = stream->mask;

 debug += OutputBit(stream, high & 0x8000, tempwriteflag);

 if (stream -> mask != lastmask){

 addedbits++;

 lastmask = stream->mask;

 }

 while (underflow_bits > 0) {

 count += OutputBit(stream, ~high & 0x8000, tempwriteflag);

 if (stream -> mask != lastmask){

 addedbits++;

 lastmask = stream->mask;

 }

 underflow_bits--;

 }

 }

 else if ((low & 0x4000) && !(high & 0x4000)) {

 underflow_bits += 1;

 low &= 0x3fff;

 high |= 0x4000;

 } else

 return addedbits;

 low <<= 1;

 high <<= 1;

 high |= 1;

 }

 return addedbits;

}

/*

 * When decoding, this routine is called to figure out which symbol

 * is presently waiting to be decoded.

 */

short int get_current_count(s)

SYMBOL *s;

{

 long range;

 short int count;

 range = (long) (high - low) + 1;

 count = (short int)

 ((((long) (code - low) + 1) * s->scale-1) / range);

 return(count);

}

/*

 * This routine is called to initialize the state of the arithmetic

 * decoder.

 */

NATO UNCLASSIFIED
 AComP-4724

 D - 134 EDITION B VERSION 1
NATO UNCLASSIFIED

void initialize_arithmetic_decoder(stream)

BIT_FILE *stream;

{

 int i;

 code = 0;

 for (i = 0 ; i < 16 ; i++) {

 code <<= 1;

 code += InputBit(stream);

 }

 low = 0;

 high = 0xffff;

 underflow_bits = 0;

}

/* Starts decoder in correct spot for each new packet

 * Numbits is related to variable number of underflow bits and zeros

 * encoded at end of each packet.

 */

void initialize_arithmetic_decoder1(stream , numbits)

BIT_FILE *stream;

int numbits;

{

 int i;

 code = 0;

 for (i = 0 ; i < numbits ; i++) {

 code <<= 1;

 code += InputBit(stream);

 }

 low = 0;

 high = 0xffff;

}

int remove_symbol_from_stream(stream, s)

BIT_FILE *stream;

SYMBOL *s;

{

 long range;

 int numout = 0;

 range = (long)(high - low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 if (underflow_bits > 0)

 underflow_bits = 0;

 }

 else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0) {

 code ^= 0x4000;

 low &= 0x3fff;

 high |= 0x4000;

 underflow_bits++;

 }

 else

 return numout;

 low <<= 1;

 high <<= 1;

 high |= 1;

 code <<= 1;

 code += InputBit(stream);

NATO UNCLASSIFIED
 AComP-4724

 D - 135 EDITION B VERSION 1
NATO UNCLASSIFIED

 numout++;

 }

}

int remove_symbol_from_stream1(stream, s, bits)

BIT_FILE *stream;

SYMBOL *s;

int bits;

{

 long range;

 int numout = 0;

 range = (long)(high - low) + 1;

 high = low + (unsigned short int)

 ((range * s->high_count) / s->scale - 1);

 low = low + (unsigned short int)

 ((range * s->low_count) / s->scale);

 for (; ;) {

 if ((high & 0x8000) == (low & 0x8000)) {

 if (underflow_bits > 0)

 underflow_bits = 0;

 }

 else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0) {

 code ^= 0x4000;

 low &= 0x3fff;

 high |= 0x4000;

 underflow_bits++;

 }

 else

 return numout;

 low <<= 1;

 high <<= 1;

 high |= 1;

 code <<= 1;

 if (bits + 16 < PACKET_SIZE) {

 code += InputBit(stream);

 bits++;

 }

 else {

 code += 0;

 bits++;

 }

 numout++;

 }

}

/*

 * This function is called once at the beginning of compression or expansion

processing to access a standard_

 * compressed PPM Context Statistical Model and to generate the network realization

of this PPM Context Statistical * Model in processor memory. This memory

Model remains unchanged during subsequent calls of compression or expansion *

functions.

 *

 */

void LoadModel(input1, argc, argv)

BIT_FILE *input1;

int argc;

char *argv[];

{

 SYMBOL s;

 int c, count;

 int thresh=0;

 int i;

NATO UNCLASSIFIED
 AComP-4724

 D - 136 EDITION B VERSION 1
NATO UNCLASSIFIED

 thresh = 0;

 initialize_options(argc, argv);

 initialize_model();

 initialize_arithmetic_decoder(input1);

 for (; ;) {

 do {

 get_symbol_scale(&s);

 count = get_current_count(&s);

 c = convert_symbol_to_int(count, &s);

 remove_symbol_from_stream(input1, &s);

 } while (c == ESCAPE);

 if (c == DONE || c == END_PACKET)

 break;

 if (c != FLUSH)

 {}

 else

 ; //flush_model();

 update_model(c);

 add_character_to_model(c);

 } //end model read in for loop

 for(i = 0; i< 258; i++)

 modtotals[i] = totals[i];

 for(i = 0; i<20; i++)

 modcontexts[i] = (int)contexts[i-2];

}

int readTheStatsFile(filename)

char* filename;

{

 int Context = 0;

 int Index = 0;

 int Index0 = 0;

 int Index1 = 0;

 int Index2 = 0;

 int Index3 = 0;

 int Index4 = 0;

 int Order = 0;

 int Symbol = 0;

 int Count = 0;

 int totCount = -1;

 int totVal = 0;

 int curorder = -10;

 int totscore = -1;

 int valscore = 0;

 char ioBuffer[1024];

 char * tok;

 FILE *file;

 char parent[10];

 char lesser[10];

 int maximum_ID = -1;

 CONTEXT** lookup_table = 0;

 for (int pass = 0; pass < 2; pass++)

NATO UNCLASSIFIED
 AComP-4724

 D - 137 EDITION B VERSION 1
NATO UNCLASSIFIED

 {

 if (pass == 1)

 {

 lookup_table = (CONTEXT**) calloc(maximum_ID,

sizeof(CONTEXT*));

 lookup_table[0] = contexts[-1];

 }

 file = fopen(filename, "r");

 current_order = -10;

 if (file != NULL)

 {

 if (pass == 1)

 {

 printf("\nReading stats parameters\n");

 }

 ioBuffer[0] = ' ';

 while (!feof(file))

 {

 fgets(ioBuffer, 1024, file);

 ioBuffer[strlen(ioBuffer) - 1] = '\0';

 if ((ioBuffer[0] != '\0') && (ioBuffer[0] != '#'))

 {

 tok = strtok(ioBuffer, ",");

 while (tok != NULL)

 {

 if (strstr(tok, "C0:"))

 {

 // Receive Context

 Context = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I:"))

 {

 // Receive Order0 set

 Index = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I0:"))

 {

 // Receive Order0 set

 Index0 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I1:"))

 {

 // Receive Order1 set

 Index1 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I2:"))

 {

 // Receive Order2 set

 Index2 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I3:"))

 {

 // Receive Order3 set

 Index3 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "I4:"))

NATO UNCLASSIFIED
 AComP-4724

 D - 138 EDITION B VERSION 1
NATO UNCLASSIFIED

 {

 // Receive Order3 set

 Index4 = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "O:"))

 {

 // Order number

 Order = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "S:"))

 {

 // Character or symbol number

 Symbol = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "C:"))

 {

 // Receive count

 Count = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "P:"))

 {

 // Receive count

 strcpy(parent, strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "PL:"))

 {

 // Receive count

 strcpy(lesser, strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "totals:"))

 {

 // Receive count

 totCount = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "val:"))

 {

 // Receive count

 totVal = atoi(strchr(tok, ':') + 1);

 }

 else if (strstr(tok, "current_order:"))

 {

 // Receive count

 curorder = atoi(strchr(tok, ':') + 1);

 Context = -10;

 totscore = -1;

 valscore = -1;

 }

 tok = strtok(NULL, ",");

 }

 if (curorder > -10){

 current_order = curorder;

 curorder = -10;

 }

 else if (totCount >= 0){

 totals[totCount] = totVal;

 totCount = -1;

 if (pass==1){

 putc('.', stdout);

NATO UNCLASSIFIED
 AComP-4724

 D - 139 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 }

 else if (Context > -10){

 int parent_as_int = atoi (parent);

 if (pass == 0)

 {

 if (parent_as_int > maximum_ID)

 maximum_ID = parent_as_int;

 }

 else // pass 1

 {

 if (Context > -1){

 lookup_table[parent_as_int] =

create_model(Context, Index0, Index1, Index2, Index3, Index4, Order, Symbol,

Count);

 int lesser_as_int = atoi(lesser);

 if (lesser_as_int >= 0)

 lookup_table[parent_as_int]-

>lesser_context = lookup_table[lesser_as_int];

 else

 lookup_table[parent_as_int]-

>lesser_context = 0;

 }

 }

 }

 }

 }

 }

 else

 {

 fprintf(stderr, "Error opening statistics file %s.\n", filename);

 exit(0);

 }

 fclose(file);

 } // pass 0, 1

 return(1);

}

void LoadStatsModel(input1, argc, argv, statsFilename)

BIT_FILE *input1;

int argc;

char *argv[];

char *statsFilename;

{

 int thresh = 0;

 int j;

 thresh = 0;

 initialize_options(argc, argv);

 initialize_model_load();

 // this is not required here

 //initialize_arithmetic_decoder_load(input1);

 // populate the data model

NATO UNCLASSIFIED
 AComP-4724

 D - 140 EDITION B VERSION 1
NATO UNCLASSIFIED

 readTheStatsFile(statsFilename);

 for (j = 0; j< 258; j++)

 modtotals[j] = totals[j];

 for (j = 0; j<20; j++)

 modcontexts[j] = (int)contexts[j - 2];

 printf("\nInitialised\n");

}

/*

 *

 * CompressFile routine uses a PPM Context Statistical Model in processor memory to

compress the Input2 text file * into binary compressed packets in the output1

file.

 * Once created the model is not changed. Input2 is compressed and packetized

 * based on the static probability model. This precludes the model from adapting to

new

 * input data, but also makes synchronization between tx compression and rx

expansion much more reliable.

 *

 */

int CompressMessages(input2, output1, argc, argv)

FILE *input2;

BIT_FILE *output1;

int argc;

char *argv[];

{

 SYMBOL s;

 int c;

 int escaped;

 int flush = 0;

 long int text_count = 0;

 long int esc_count = 0;

 int i=0,j=0;

 int bitsleft = 0;

 int mem[20] = {0};

 int numchar = 0;

 int newpacket = 0;

 int lastorder = 0;

 int orderflag = 0;

 int ordertime = 0;

 int cocount = 0;

 int biplast=0;

 int order_drop_flag=0;

 long int filepos;

 int highsave, lowsave,bipsave,currentordersave,lastordersave;

 int reset=0;

 int numcharenc=0;

 int tempwrite=0;

 int endpacket=0;

 int orderflagsave, ordertimesave, odfsave;

 char scoreboardsave[256];

 int contextssave[20] = {0};

 int redo = 0;

 int numcharsave=0;

 int masksave=0;

 int racksave=0;

 int ufbitssave=0;

 int firsttime=0;

 int backtrack=0;

 int count=0;

NATO UNCLASSIFIED
 AComP-4724

 D - 141 EDITION B VERSION 1
NATO UNCLASSIFIED

 int thresh=0;

 char inact_text[]="CHANNEL INACTIVE...";

 int numtext=19;

 int index5=0;

 int index5save=0;

 int chanin=0;

 int chaninsave=0;

 FILE *packettext,*packetlength,*pkstats;

 if (input_pos==0)

 {

 packettext = fopen("packettext.dat","w");

 packetlength = fopen("packetlength.dat","w");

 pkstats = fopen("pkstats.dat","w");

 }

 else

 {

 packettext = fopen("packettext.dat","a");

 packetlength = fopen("packetlength.dat","a");

 pkstats = fopen("pkstats.dat","a");

 }

 thresh = 0;

 fprintf(pkstats,"Pknum\tUncompBits\tCompBits\tAvgOrder\n");

 esc_count = 0;

 lastorder = current_order;

 fseek (input2 , input_pos , SEEK_SET);

 newpacket = 1;

 pknum++;

 bitsinpacket = 0;

 biplast=0;

 numchar = 0;

 current_order = max_order;

 order_drop_flag=0;

 numcharenc=0;

 endpacket=0;

 tempwrite=0;

 firsttime=0;

 backtrack=0;

 bitsleft = 0;

 fprintf(packettext,"\n\n%d\n",pknum);

 cocount = 0;

 initialize_model2();

 initialize_arithmetic_encoder();

 for(i = 0; i<20; i++)

 contexts[i-2] = (CONTEXT *)modcontexts[i];

 for(i = 0; i< 258; i++)

 totals[i] = modtotals[i];

 for (; ;) {

 lastorder = current_order;

 reset=0;

// if (!flush){

 if (redo && numchar == numcharenc){

 c = END_PACKET;

 }

 else {

 if (!chanin){

 c = getc(input2);

NATO UNCLASSIFIED
 AComP-4724

 D - 142 EDITION B VERSION 1
NATO UNCLASSIFIED

 if (c==EOF)

 chanin=1;

 }

 }

// }

// else

// c = FLUSH;

 if (chanin && newpacket)

 c = DONE;

 do {

 escaped = convert_int_to_symbol2(c, &s);

 bitsinpacket += encode_symbol1(output1, &s, tempwrite);

 if (escaped) esc_count++;

 } while (escaped);

 if (orderflag)

 ordertime = 1;

 if (current_order < lastorder){

 orderflag = 1;

 ordertime = 0;

 }

 numchar++;

 cocount += current_order;

// if (pknum == 90 && numchar>=120)

// i++;i--;

 biplast=bitsinpacket;

 newpacket = 0;

 fprintf(packettext,"%c",c);

 //Prepare for End of Packet Processing

 if((bitsinpacket >= PACKET_SIZE - 16) || c==END_PACKET) {

 if (bitsinpacket + underflow_bits + 1 < PACKET_SIZE) {

 endpacket=1;

 redo=0;

 }

 //Too many bits, try with one less char and EOP

 if (!endpacket || (tempwrite && endpacket)) {

 reset=1;

 redo=1;

 backtrack++;

 if (!endpacket){

 if(numcharenc==0)

 numcharenc=numchar-2;

 else

 numcharenc--;

 }

 if (endpacket && tempwrite){

 endpacket=0;

 tempwrite=0;

 }

 //reset everything

 fseek (input2 , filepos , SEEK_SET);

 high=highsave;

 low=lowsave;

 bitsinpacket=bipsave;

NATO UNCLASSIFIED
 AComP-4724

 D - 143 EDITION B VERSION 1
NATO UNCLASSIFIED

 current_order=currentordersave;

 lastorder=lastordersave;

 order_drop_flag=odfsave;

 ordertime=ordertimesave;

 orderflag=orderflagsave;

 numchar=numcharsave;

 output1->mask=masksave;

 output1->rack=racksave;

 underflow_bits=ufbitssave;

 index5=index5save;

 chanin=chaninsave;

 for(i = 0; i<20; i++){

 contexts[i-2] = (CONTEXT*)contextssave[i];

 }

 for (i=0;i<256;i++){

 scoreboard[i] = scoreboardsave[i];

 }

 }

 } //end bip check

 //Special Case--end file while in tempwrite mode

 else if (c==DONE){

 if (tempwrite){

 reset=1;

 redo=1;

 tempwrite=0;

 //reset everything

 fseek (input2 , filepos , SEEK_SET);

 high=highsave;

 low=lowsave;

 bitsinpacket=bipsave;

 current_order=currentordersave;

 lastorder=lastordersave;

 order_drop_flag=odfsave;

 ordertime=ordertimesave;

 orderflag=orderflagsave;

 numchar=numcharsave;

 output1->mask=masksave;

 output1->rack=racksave;

 underflow_bits=ufbitssave;

 index5 = index5save;

 chanin = chaninsave;

 for(i = 0; i<20; i++){

 contexts[i-2] = (CONTEXT*)contextssave[i];

 }

 for (i=0;i<256;i++) {

 scoreboard[i] = scoreboardsave[i];

 }

 }

 else

 {

 endpacket=1;

 }

 }

 //Finalize End of Packet Processing and reset for next packet

 if (endpacket){

 fprintf(packetlength,"%d\t%d\t",pknum,bitsinpacket);

 bitsinpacket+=flush_arithmetic_encoder1(output1);

 fprintf(packetlength,"%d\n",bitsinpacket);

 printf("Packet %d done\n",pknum);

fprintf(pkstats,"%d\t\t%d\t\t%d\t\t%0.2f\n",pknum,numchar*8,bitsinpacket,(floa

t)cocount/(float)numchar);

NATO UNCLASSIFIED
 AComP-4724

 D - 144 EDITION B VERSION 1
NATO UNCLASSIFIED

 fclose(packettext);

 fclose(packetlength);

 fclose(pkstats);

 if (c==DONE){

 input_pos=ftell(input2);

 return (-1);

 }

 else {

 input_pos=ftell(input2);

 return (input_pos);

 }

 }

 if (!reset) {

 if (c == DONE)

 break;

 if (c == FLUSH) {

 flush = 0;

 }

 if (!newpacket)

 {

 update_model2(c);

 add_character_to_model2(c , ordertime);

 }

 if (current_order == max_order)

 {

 ordertime = 0;

 orderflag = 0;

 }

 } //end reset

 //Set checkpoint and save encoder state

 if (bitsinpacket >= PACKET_SIZE - 96 && firsttime==0) {

// if (pknum ==61)

// i++;i--;

 firsttime=1;

 tempwrite=1;

 filepos=ftell(input2);

 highsave=high;

 lowsave=low;

 bipsave=bitsinpacket;

 currentordersave=current_order;

 lastordersave=lastorder;

 odfsave=order_drop_flag;

 ordertimesave=ordertime;

 orderflagsave=orderflag;

 ufbitssave=underflow_bits;

 numcharsave=numchar;

 masksave=output1->mask;

 racksave=output1->rack;

 index5save=index5;

 chaninsave=chanin;

 for(i = 0; i<20; i++){

 contextssave[i] = (int)contexts[i-2];

 }

 for (i=0;i<256;i++){

 scoreboardsave[i] = scoreboard[i];

 }

 }

 }

NATO UNCLASSIFIED
 AComP-4724

 D - 145 EDITION B VERSION 1
NATO UNCLASSIFIED

 return(-2);

}

/*

 * Expansion algorithm uses a fixed, memory-based PPM Context Statistical Model and

interprets binary compressed * packets into output text.

 *

 */

int ExpandFile(input2, output, argc, argv)

BIT_FILE *input2;

FILE *output;

int argc;

char *argv[];

{

 SYMBOL s;

 int c;

 int count;

 int flush = 0;

 long int esc_count = 0;

 int i = 0;

 int bitsread = 0;

 int first = 1;

 FILE *debug;

 int numleft = 0;

 int newpacket = 0;

 int lastorder = 0;

 int orderflag = 0;

 int ordertime = 0;

 int bitsin=0;

 int thresh=0;

 int numchar=0;

 //Input1 is binary model file

 //Input2 is binary compressed file to be expanded

 debug = fopen("debugexpand.dat","w");

 thresh = 0;

 initialize_options(argc, argv);

 fseek (input2->file , input_pos , SEEK_SET);

 initialize_model2();

 initialize_arithmetic_decoder1(input2,offset);

 // If first packet begin reading right away

 for(i = 0; i<20; i++)

 contexts[i-2] = (CONTEXT*)modcontexts[i];

 for(i = 0; i< 258; i++)

 totals[i] = modtotals[i];

 current_order = max_order;

 newpacket = 1;

 offset = 16;

 current_order = max_order;

 pknum++;

 bitsread = 0;

 for (; ;) {

 lastorder = current_order;

 do {

 //dont let it get below -2 as this will fail to find a

symbol

 if (current_order < -2) current_order = -2;

NATO UNCLASSIFIED
 AComP-4724

 D - 146 EDITION B VERSION 1
NATO UNCLASSIFIED

 get_symbol_scale2(&s);

 count = get_current_count(&s);

 c = convert_symbol_to_int1(count, &s, debug);

 if (c == -10){

 printf("\n\nBit Error : Packet %d...Skipping to next

packet\n\n",pknum);

 }

 else

 {

 if (bitsread < PACKET_SIZE - 100){

 bitsread += remove_symbol_from_stream(input2, &s

);

 newpacket = 0;

 }

 else {

 bitsin = bitsread;

 bitsread += remove_symbol_from_stream1(input2, &s,

bitsin);

 newpacket = 0;

 }

 }

 } while (c == ESCAPE);

 if (orderflag)

 ordertime = 1;

 if (current_order < lastorder)

 {

 orderflag = 1;

 ordertime = 0;

 }

 numchar++;

 if (c != FLUSH && c !=END_PACKET && c!=DONE && c!=-10 && c!=13) {

 putc((char) c, output);

 }

 else

 ; //flush_model();

 if ((bitsread >= PACKET_SIZE - 16 + underflow_bits) ||

c==END_PACKET || c==DONE || c==-10) {

 if (c==-10){

 offset = PACKET_SIZE - bitsread + 16;

 }

 else {

 offset = (PACKET_SIZE - bitsread);

 }

 if (offset < 16)

 offset = 16;

 printf("Packet %d done\n",pknum);

 if (c==DONE) {

 input_pos=ftell(input2->file);

 return (-1);

 }

 else {

 input_pos=ftell(input2->file);

 // if (input_pos != (int)(pknum*PACKET_SIZE/8))

 // i++;i--;

 if (c==-10)

 input_pos = (long

int)(pknum*PACKET_SIZE/8);

 return (input_pos);

NATO UNCLASSIFIED
 AComP-4724

 D - 147 EDITION B VERSION 1
NATO UNCLASSIFIED

 }

 }

 if (!newpacket){

 update_model2(c);

 add_character_to_model2(c , ordertime);

 }

 if (current_order == max_order){

 ordertime = 0;

 orderflag = 0;

 }

 } // end message for loop

 // If last packet is done, exit loop

} //End Compression procedures

/* Bit File I/O Procedures

 *

 * The basis of the PPM Context Statistical Model Software is the open source

Arith-N.C code of Mark Nelson and

 * Jean-loup Gailly as presented in The Data Compression Book (2nd edition).

 *

 */

#define PACIFIER_COUNT 2047

BIT_FILE *OpenOutputBitFile(name)

char *name;

{

 BIT_FILE *bit_file;

 bit_file = (BIT_FILE *) calloc(1, sizeof(BIT_FILE));

 if (bit_file == NULL)

 return(bit_file);

 bit_file->file = fopen(name, "wb");

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 bit_file->pacifier_counter = 0;

 return(bit_file);

}

BIT_FILE *OpenInputBitFile(name)

char *name;

{

 BIT_FILE *bit_file;

 bit_file = (BIT_FILE *) calloc(1, sizeof(BIT_FILE));

 if (bit_file == NULL)

 return(bit_file);

 bit_file->file = fopen(name, "rb");

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 bit_file->pacifier_counter = 0;

 return(bit_file);

}

void CloseOutputBitFile(bit_file)

BIT_FILE *bit_file;

{

 if (bit_file->mask != 0x80)

 if (putc(bit_file->rack, bit_file->file) != bit_file->rack)

 fatal_error("Fatal error in CloseBitFile!\n");

 fclose(bit_file->file);

 free((char *) bit_file);

}

void CloseInputBitFile(bit_file)

NATO UNCLASSIFIED
 AComP-4724

 D - 148 EDITION B VERSION 1
NATO UNCLASSIFIED

BIT_FILE *bit_file;

{

 fclose(bit_file->file);

 free((char *) bit_file);

}

int OutputBit(bit_file, bit, tempwrite)

BIT_FILE *bit_file;

int bit, tempwrite;

{

 int bitcount = 0;

 int boolean = 0;

 if (bit)

 bit_file->rack |= bit_file->mask;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0) {

 if (!tempwrite)

 boolean = putc(bit_file->rack, bit_file->file);

 else

 boolean = bit_file->rack;

 bitcount += 8;

 if (boolean != bit_file->rack)

 fatal_error("Fatal error in OutputBit!\n");

 else {

 if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 }

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 }

 return bitcount;

}

int OutputBits(bit_file, code, count)

BIT_FILE *bit_file;

unsigned long code;

int count;

{

 unsigned long mask;

 int bitcount = 0;

 int out = 0;

 mask = 1L << (count - 1);

 while (mask != 0) {

 if (mask & code)

 bit_file->rack |= bit_file->mask;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0) {

 out = putc(bit_file->rack, bit_file->file);

 bitcount += 8;

 if (out!= bit_file->rack)

 fatal_error("Fatal error in OutputBits!\n");

 else if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 bit_file->rack = 0;

 bit_file->mask = 0x80;

 }

 mask >>= 1;

 }

 return out;

}

int InputBit(bit_file)

BIT_FILE *bit_file;

{

NATO UNCLASSIFIED
 AComP-4724

 D - 149 EDITION B VERSION 1
NATO UNCLASSIFIED

 int value;

 if (bit_file->mask == 0x80) {

 bit_file->rack = getc(bit_file->file);

 if (bit_file->rack == EOF)

 fatal_error("Fatal error in InputBit!\n");

 if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 }

 value = bit_file->rack & bit_file->mask;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0)

 bit_file->mask = 0x80;

 return(value ? 1 : 0);

}

unsigned long InputBits(bit_file, bit_count)

BIT_FILE *bit_file;

int bit_count;

{

 unsigned long mask;

 unsigned long return_value;

 mask = 1L << (bit_count - 1);

 return_value = 0;

 while (mask != 0) {

 if (bit_file->mask == 0x80) {

 bit_file->rack = getc(bit_file->file);

 if (bit_file->rack == EOF)

 fatal_error("Fatal error in InputBit!\n");

 if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)

 putc('.', stdout);

 }

 if (bit_file->rack & bit_file->mask)

 return_value |= mask;

 mask >>= 1;

 bit_file->mask >>= 1;

 if (bit_file->mask == 0)

 bit_file->mask = 0x80;

 }

 return(return_value);

}

void FilePrintBinary(file, code, bits)

FILE *file;

unsigned int code;

int bits;

{

 unsigned int mask;

 mask = 1 << (bits - 1);

 while (mask != 0) {

 if (code & mask)

 fputc('1', file);

 else

 fputc('0', file);

 mask >>= 1;

 }

}

/* End BIT I/O procedures */

NATO UNCLASSIFIED
 AComP-4724

 E - 150 EDITION B VERSION 1
NATO UNCLASSIFIED

 LDPC FEC GENERATION MATRICES

E.1. LDPC FEC GENERATOR MATRIX FORMAT

The files referenced in this appendix define the LDPC FEC generator matrices. Each file
contains entries for the required number of rows and columns for each generator matrix.
The first character in the file represents M1-1 of the generator matrix. The last character in
the file represents Ma-b of the generator matrix, where a and b are the maximum row and
column sizes of the matricies respectively.

E.2. FIBONACCI BIT PARITY FEC GENERATOR MATRIX

The files defined in Table 21 below are included with the standard and provide the matrices
for the LDPC FEC generators.

 Filename MD5 Checksum

RED/BLACK ALPHA REM rb_alpha.GEN 7734517453151bbbeb77ac1342a1972a

RED/BLACK BRAVO REM rb_bravo.GEN 9a48116c5e9b59826ba04f12edf2c28e

RED ALPHA REM r_alpha.GEN ec89abe6cf13866716731957eb0af48b

RED BRAVO REM r_bravo.GEN 1e678fe91d7f3e869efffe6bfe55561f

TABLE 21: LDPC FEC GENERATOR MATRICES.

NATO UNCLASSIFIED
 AComP-4724

 E - 151 EDITION B VERSION 1
NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

NATO UNCLASSIFIED

AComP-4724(B)(1)

