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1 AIM 

 
1.1 The principal aim of this agreement is to standardize the Six/Seven Degrees of 
Freedom (DOF) Guided Projectile Trajectory Model for exterior ballistics trajectory 
simulation of artillery projectiles for the NATO Naval and Army Forces. This will facilitate 
the development of simpler variants for use in fire control systems and the exchange of 
exterior ballistics data and fire control information. 
 
1.2 RELATED DOCUMENTS 
 
STANAG 4106 Procedures to Determine the Degree of Ballistic Performance 

Similarity of NATO Indirect Fire Ammunition and the Applicable 
Corrections to Aiming Data 
 

STANAG 4119 Adoption of a Standard Cannon Artillery Firing Table Format 
 

STANAG 4144 Dynamic Firing Technique to Determine Ballistic Data for Cannon 
Artillery Firing Tables and Associated Fire Control Equipment 
 

STANAG 4355 The Modified Point Mass and Five Degrees of Freedom Trajectory 
Models 
 

STANAG 4683 NATO Technical Sharable Software (NTSS) 
 

AOP 61 NATO Technical Sharable Software (NTSS)  - Product 
Development Standards and Guidelines 
 

ISO 2533-975(E) The ISO Standard Atmosphere 
 

STANAG 6022 Adoption of a Standard Gridded Data Meteorological Message 
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2 AGREEMENT 

 
Participating nations agree to use the Six/Seven Degrees of Freedom Guided Projectile 
Trajectory Model for exterior ballistics trajectory simulation of spin-stabilized and fin-
stabilized guided projectiles with or without rocket assist or base burn assist, as an adjunct 
to STANAG 4355. 
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3 GENERAL 

 

This agreement permits some flexibility by accommodating certain specific national 
aerodynamic conventions and ballistic data analysis procedures. 
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4 DETAILS OF THE AGREEMENT 

 

The details of the agreement are given hereunder and are divided into the following four 
parts: 
 

4.1 Elements of a Six/Seven Degrees of Freedom Simulation 

4.2 Equations of Motion 

4.3 List of Symbols 

4.5 List of Data Requirements 

4.1 Elements Of A Six/Seven Degrees Of Freedom Simulation 

 
This document sets up the STANREC for a mathematical model representing the flight of 
a spin- stabilized or fin-stabilized, conventional or guided, artillery projectile. The 6 degrees 
of freedom of a rigid body are comprised by the three components of the linear velocities 
of the center of mass (in both inertial coordinates and body coordinates) and the three 
components of the angular velocity vector   with respect to the center of mass (body 

coordinates). Sometimes a seventh degree of freedom is required to model a projectile 
which consists of two rigid bodies. The seven degrees of freedom trajectory model is 
limited to dual-spin projectiles. Thus, the two bodies are coaxial in pitch and yaw, as if a 
single body, but can spin independently. The seventh degree of freedom is defined as the 
spin of body 2 with respect to body 1. 
 
Since the equations of motion are second order, there must be two integrations for each 
degree of freedom. Since there are many aspects of projectile modeling (e.g., 
aerodynamics, inertial properties, sensor outputs) that are simplest to describe in a 
coordinate frame that rolls, pitches, and yaws with the projectile and others (e.g., gun and 
target position, GPS or global positioning system coordinates) that are more conveniently 
expressed in Earth-centered Earth-fixed (ECEF) coordinates, a hybrid approach is used 
here. There are two integration frames used, related to each other by a rotation but not a 
translation. Firstly, consider the accelerations or derivatives of the linear and angular rates 

( rq,p,U,U,U  andzyx ) in the body integration frame. These are really the ECEF 

accelerations that are resolved in the angular orientation of the body frame. They are 

integrated to obtain rq,p,UU,U and, zyx in the same body integration frame. Then the 

velocity components zyx  and UU,U are rotated (not translated) to the ECEF frame where 

a second integration is carried out to keep track of the projectile’s position in ECEF space.  
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To create a 6 or 7 degree of freedom trajectory simulation of a projectile, the following 
elements are needed. 
 

4.1.1. Rotation Matrix: Parameters are needed to characterize the relative orientation of 
the body integration frame for the equations of motion and the Earth frame and to transform 
between these frames. Quaternion parameters will be used internal to the simulation for 
the equations of motion. Euler angles will be used for input and output. A rotation matrix 
that is a function of these parameters is required. See Annex A about coordinate 
transformations. Note that this matrix rotates but does not translate coordinates. 

 

4.1.2.  Body Frame: A body frame is needed that pitches and yaws with the projectile. It 
may also either spin with the projectile (body-fixed frame) or it may not spin with the 
projectile (zero-roll frame or zero-spin frame). The coordinate system associated to this 
frame will be used to express the equations of motion of the projectile and to integrate 
them with respect to time. For convenience, this frame (and its associated coordinate 
system) will be called the body integration frame (system) or just body frame (system). 
See Annex A about reference frames and coordinate systems and section II-1 in the main 
body of this STANREC.   

 

4.1.3. Equations of Motion: We require equations of motion of the projectile to be 
expressed in whichever type of body integration system that we are using (body-fixed or 
zero-roll/spin). Newton’s Law for a rigid body will have 3 linear velocity components for the 
center of mass and 3 angular velocity components about the center of mass, for a total of 
6 equations of motion. Some guided projectiles will have forward and aft sections that are 
coaxial but can spin independently of one another. The additional spin is a seventh degree 
of freedom and adds a seventh equation of motion. The forward unit is considered primary 
since it would contain the projectile sensors and controls and would generally be roll 
stabilized. There are also needed some addition differential equations to give the time 
development of the four quaternion parameters. They are connected to the equations of 
motion of the projectile through the components of the angular velocity vector  . These 
components are conventionally called p, q and r by aerodynamicists. The treatment of the 
kinematics will be quite general. It is made specific to the projectile through the physical 
properties, mass and moments of inertia. See section II-2 in this STANREC. Initial 
conditions and other factors, e.g. thrust for some projectiles, are required. 

 

4.1.4.  Projectile Dynamics and Aerodynamics: Projectile dynamics also require models 
of any reaction motors (rockets) and the aerodynamic coefficients. The principle 
aerodynamic coefficients are the normal force, pitching and yawing moments, pitch and 
yaw damping moments, roll and roll damping moments and the axial force. If the projectile 
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is spinning rapidly, Magnus force and Magnus moment coefficients are also needed. The 
pitching moment may be obtained by multiplying the normal force and the difference 
between a center of pressure and the center of mass. This difference is the static margin. 
The aerodynamic coefficients are usually expressed as a multidimensional table with 
independent variables such as the Mach number, angle of attack, aerodynamic roll angle, 
control surface deflections and the like.  For this reason, a scheme for table look up and 
interpolation is needed. See Annex B "Projectile Aerodynamics", Annex D - "Additional 
Terms for Rocket-Assisted and Base-Burn Projectiles - Method 1" and Annex E "Additional 
Terms for Rocket-Assisted and Base-Burn Projectiles - Method 2". 

 

4.1.5.  Atmospheric Modeling: Projectile dynamics require an atmospheric model. 
Specifically the air density and the virtual temperature are needed. The virtual temperature 
takes into account the relative humidity of the air: it is the temperature that dry air would 
have if its pressure and density were equal to those of a given sample of moist air. See 
STANAG 6022. The virtual temperature is used to calculate the speed of sound, which is 
needed to find the Mach number. If rocket motors or diverters are present, the air pressure 
is needed to correct the thrust for altitudes above sea level. The standard atmospheric 
models of the atmosphere can be used but provision must also be made to utilize data 
from a “met message” from an actual test or fire control center. “Met” is an abbreviation 
for meteorological. These met data might be obtained by weather balloons and the 
treatment must be consistent with the met message format. If any two of air density, 
pressure or temperature are known, the other can be calculated, as can be other 
parameters that in some cases might be needed, such as the kinematic/dynamic 
viscosities. The met data is provided in the geodetic system. See Annex A about the 
reference coordinate systems.   

 

4.1.6.  Earth Frame: several coordinate systems can be used to represent the “Earth 
Frame”. Two systems are of main importance. The first one is the Earth-centered Earth-
fixed (ECEF) system that is located at the center of the Earth. The second one is the fire 
control system that is located at the gun position. Both systems rotate with Earth.  See 
Annex A about the reference coordinate systems and section II-1 in the main body of this 
STANREC. 

 

4.1.7.  Guidance Modeling: For guided projectiles, items such as seekers, 
accelerometers, inertial rate sensors, autopilot and GNC (guidance, navigation and 
control) algorithms and the CAS (control actuator system) are required. See Annex F - 
"Guided Projectile Modeling". 
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4.1.8.  Numerical Integration: Since these equations are too complex to be solved in 
closed or analytical form, there must be a mechanism for numerical integration of the 
equations of motion.  See Annex G - "Numerical Integration". 
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4.2 Equations Of Motion 
 

4.2.1. Frames and Coordinate Systems 

 

The fire control system is a right-handed orthonormal Cartesian coordinate system that is 
attached to the Earth-fixed frame. Its origin is located at the gun position and is needed for 
aiming. The fire control system is defined by axes 1, 2 and 3 (fig. 1). This is also the 
coordinate system used in the NABK modified point-mass model defined in STANAG 
4355. This six/seven DOF (degrees of freedom) guided projectile simulation also uses an 
Earth-Centered Earth-Fixed (ECEF) system that is conventional with the ellipsoidal Earth 
WGS-84 model (with optional geoidal corrections). See Annex A for the detailed 
description of the Earth reference frames and systems. 

 

The body system is a right-handed orthonormal Cartesian coordinate system defined by 
axes x, y and z (fig. 1) that is attached to the body frame. This frame is used to describe 
the projectile inertial properties and aerodynamics and to express and integrate the 
equations of motion. The body frame is also called the equation of motion (EOM) frame. 

 

 

Figure 1: Fire Control and Body Coordinate Systems 
 

Fire Control System 

Body System 

1 

2 

3 

x 

z 

y 
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The body frame is a rotating frame that may be the body-fixed, the zero-roll or the zero-
spin frame. Where, the roll angle of the zero-roll frame is always set to zero, keeping the 
lateral axis in a fixed plane. The spin rate of the zero-spin frame is always set to zero. It is 
customary in aerodynamics to refer to the x, y and z components of the angular velocity 
vector   as p, q and r. The body-fixed frame fully rotates with the projectile. Thus, the p, 

q and r are the same for projectile body and the frame for integrating the equations of 
motion. For zero-roll and zero-spin frames, the first component of the frame angular 
velocity is not equal to the projectile spin p. However, the second and third components of 
the angular velocity of both frames are still equal to the projectile q and r angular velocities. 
The reason for this choice of frames is that gravity appears to rotate at the rate of the 
projectile spin p in the body-fixed frame, which significantly reduces the integration time 
step for spin-stabilized projectiles. In zero-roll and zero-spin frames, the angular velocity 
of the gravity vector is either zero or very low, which significantly increases the integration 
time step and speeds up the integration process. However, to maintain the advantage of 
more efficient integration, the characteristics of the projectile that appear in the equations 
of motion (such as aerodynamic coefficients and the moment of inertia) must be 
rotationally symmetric. Spin-stabilized projectiles generally have this symmetry whereas 
fin-stabilized projectiles generally do not. See Annex A for the detailed description of the 
body frames and systems. 
 
 
4.2.2 Equations of Motion 
 
 
4.2.2.1 Translational and Rotational Equations of Motion 
 
 
We require equations of motion of the projectile to be expressed in whichever type of 
integration frame that we are using. These arise from Newton’s laws. There are 3 
equations for the components of the linear velocity of the center of mass and 3 equations 
for the components of the vector angular velocity about the center of mass. Sometimes it 
will be necessary to model a guided projectile in which the front and rear sections are 
coaxial but can roll independently of one another. The additional spin rate is the seventh 
degree of freedom and leads to an additional equation. The front section will define the 
body-fixed coordinate frame because sensors are located in this section and it is generally 
roll stabilized.  

  

Newton’s second law gives the translational equation of motion of the projectile with 
respect to the Earth-Centered Inertial (ECI) frame 
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 II U
dt

d
mgmF           (1) 

 

where F is the sum of the aerodynamic and thrust forces, Ig is the gravitational 

acceleration observed in ECI frame, m is the mass of the projectile and IU is the inertial 

velocity of the center of mass of the projectile. Note that the thrust forces must account for 
the mass variation of the system. 

 

Euler’s second law gives the rotational equation of motion of the projectile with respect to 
ECI frame 

 

  I
dt

d
M     (2) 

 

where M is the sum of the aerodynamic, thrust and jet damping moments referred to the 

center of mass of the projectile, I is the matrix of inertia of the projectile referred to the 

center of mass and   is the inertial angular velocity of the projectile.  

 

The left side of equations (1) and (2) are said to describe the dynamics and the right side 
the kinematics. These are vector equations. They can be each expressed as three scalar 
equations for a total of six equations in six unknowns. Hence there are six degrees of 
freedom. The possible seventh degree of freedom will be discussed below.  

 

The velocity of the projectile’s center of mass with respect to the Earth-Centered Earth-

Fixed (ECEF) frame is denoted by U and is given by  

 

 XUU I  E    (3) 

  

where E  is the angular velocity of the Earth with respect to ECI frame and X is the 

position of the projectile’s center of mass in ECEF frame. Using equations (1) and (3), the 
translational equation of motion is expressed in ECEF frame by 
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  
dt

Ud
m,hgmAmF  C  

 

where CA  is the Coriolis acceleration and  ,hg  is the acceleration of gravity observed in 

ECEF frame (including both the gravitational acceleration and the centrifugal acceleration 
due to the Earth’s rotation). 
 
 
It is convenient to perform the integration of the motion in a body-fixed, zero-roll or zero-
spin frame. The zero-roll/-spin frames have the same pitch and yaw motion as the body-
fixed frame.  
 
Finally, the translational and rotational equations expressed in a rotating coordinate frame 

with an angular rate Ω  are  
 

   UΩm
dt

Ud
m,hgmAmF  C   (4) 

 

and 

 

     II  Ω
dt

d
M   (5) 

 

where the matrix of inertia is defined as 

 

 

























zyzxz

yzyxy

xxyx

I

III

III

III z

  (6) 

 

The angular velocity of the projectile is denoted by T)( r,q,p  and the angular velocity 

of the rotating coordinate frame is denoted by T
x )( r,q,ΩΩ  . The second and third 

components for the coordinate frame and the second and third components for the 
projectile are equal for body-fixed, zero-roll and zero-spin coordinates since all frames 
have the same pitch and yaw motion. Thus there is no need for the notation to distinguish 
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between them. However, while the first components of both   and Ω are identical by 

definition for body-fixed coordinates, the first component of Ω  will be: 0 for zero-spin 

coordinates and –r tan for zero-roll coordinates where  is the projectile Euler pitch angle. 

Hence we denote the first component of Ω  by xΩ  so it can be specialized to the following 

values: p, 0 or –r tan. Note that CA  and g  must be rotated from the ECEF frame to the 

integration frame. In the body-fixed frame, CA  and g  are rotating. This rotation rate can 

be considerable for spin-stabilized projectiles. Zero-roll/-spin coordinates can circumvent 
this. 

 

The treatment of the equations of motion is made specific to the projectile by supplying 
the physical properties, e.g., inertia data, aerodynamic coefficients, and initial conditions. 
The position of the gun and target are given in terms of longitude, latitude and altitude 
above mean sea level in the ECEF system. The meteorological data are also provided in 
this system. The gun quadrant elevation and azimuth are provided in the geodetic or North-
East-Down (NED) system. See Annex A. The initial roll angle of the projectile in the gun is 
required, as are the initial p, q and r. For rifled barrels, p could also be computed from the 
rifling twist and muzzle velocity. The rotations between these systems are described in 
Annex A. The initial Euler angles can be used to obtain the initial rotation matrix and the 
initial conditions on the quaternion parameters can be obtained from the rotation matrix 
using the methods in Annex A.  

 

4.2.2.2 Equations of Motion in Body System 

For a 6 DOF simulation, the equations of motion consist of four blocks of vector-matrix 
equations based on the following vectors:  

- X = position of the center of mass given in the ECEF system  

-  = quaternion defining the angular position of the body frame (body fixed or zero-

roll/-spin frame) 

- U = translational velocity of the center of mass given in the body system 

- T)( r,q,p = angular velocity of the projectile given in the body system 

 

While T
x )( r,q,ΩΩ  is the angular velocity of the body frame given in the body system. 

xΩ  can be specialized to the following values: p (body-fixed frame), 0 (zero-spin frame) or 

–r tan (zero-roll frame). See Annex A, section 1.3. 

 
4.2.2.2.1 Translational Kinematics 
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The translational velocity of the center of mass is computed using the transformation 
matrix, TE/R, from system R (attached to the body frame) to system E (attached to the 
ECEF frame), as described in Annex A. 
 

 U

X

X

X

dt

Xd RE/

3

2

1

T

























 (7) 

4.2.2.2.2 Rotational Kinematics 
 
The quaternion parameters are propagated by the following equation of motion 

 Ω

λ

λ

λ

λ

dt

d
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


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    (8) 

 
4.2.2.2.3 Translational Dynamics 
 
The acceleration of the center of mass is given in the body fixed system as follows 
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
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 (9) 

 
See Annex A for the discussion about the Coriolis acceleration components (Ax, Ay, Az) 
and gravity acceleration components (gx, gy, gz). Note that the components gx, gy and gz 
are the combined action of gravitation and the centrifugal acceleration due to the rotation 
of the Earth.  
 
The applied forces FX, FY and FZ are the sum of aerodynamic and thrust forces and are 
defined in Annexes B, D and E.  
 
4.2.2.2.4 Rotational Dynamics 
 
The acceleration of the angular rate of the body is given in the body-fixed system by 
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where 
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L, M and N are the components of the total applied moment about x, y and z axes 
respectively from aerodynamics and reaction forces acting about the center of mass.  
 

A correction can be made to the applied moments for shift T)( Z,Y,X    in the center 

of mass. Looking forward from the rear, these component shifts are positive forward, 
rightward, and downward respectively.  
 

 
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


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





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M   (12) 

 

Jet damping effects for a single nozzle rocket placed on the projectile symmetry axis are 
modeled as described in STANAG 4355. 
 
 
 
 
4.2.2.3 7th Degree of Freedom – Body-fixed System 
 
The seven degrees of freedom trajectory model is limited to dual-spin projectiles which 
consist of two rigid bodies that are coaxial in pitch and yaw (i.e. coaxial about the x-axis). 
The seventh degree of freedom is defined here as the roll position of an additional body - 
called body 2 - with respect to the main body. 
 
The equation of motion of the center of mass is the same as eq. (9) for the 6 DOF body. 
The equation of the angular motion requires distinguishing between the angular velocities 
of the two bodies: p is the spin of the main body and p2 is the spin of body 2. In general, p 

 p2 but the pitch and yaw rates (q and r) are the same for both bodies. Therefore, the 
angular velocity vector of body 2 expressed in the main body system is 
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The quaternion defining the angular position of body 2 with respect to the main body is 

defined as 
T)00( 10   . The evolution of this quaternion is an additional 

rotational kinematics equation defined as follows (see eq. (8)) 
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Where xΩ is the spin of the main body frame (i.e. the body-fixed, zero-roll or zero-spin 

frame attached to the main body). 
 
Body 2 is supposed to be rotationally symmetric about the x-axis. Therefore, with respect 
to the main body frame, the inertia matrix of body 2 is diagonal and its time derivative is 

zero. Denoting the axial moment of inertia of body 2 by 2xI , the inertia matrix of the 

complete projectile referred to the center of mass can be defined by the following sum 
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The I matrix in eq. (15) takes into account the axial inertia of the main body and the 

transverse inertia of the complete projectile since the two bodies pitch and yaw as a single 
entity.  
 
The internal moment exerted by the main body on body 2 at the contact point C is to be 
considered. This moment may be due to bearing frictions or to some on-board control 
mechanism. Since the two bodies are coaxial in pitch and yaw, only the rolling component 
of this moment is to be considered  
 

 



















0

0

C

C

L

M           (16) 



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

AEP-96 

 

 1-16 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

 

 
The same goes for the external moment applied to body 2  
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Using the notations defined in the 6 DOF section and those introduced above, the 
equations of the angular motion of the two bodies are then defined in the main body system 
as follows 
 

   222

1
III 


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

CMMM
dt

d
          (18)    

 

  C

x

LL
I

p  2

2

2

1
           (19)    

 
4.2.2.4 Numerical Integration 
 
The equations of motion described in sections II-2.2 and II-2.3 are all expressed in state 
variable form as ),( tsfs   where s denotes the state. Consequently, they can readily be 

integrated using a numerical method such as the Runge-Kutta algorithm discussed in 
Annex G. 
 
4.2.3 Atmospheric Modeling 
 
This 6/7 DOF guided projectile simulation uses the standard atmospheric model used for 
the modified point-mass model in STANAG 4355. It will be compatible with any new 
STANAG regarding atmospheric modeling such as the multi-dimensional model and is 
be consistent with standard met messages. See STANAG 6022. 
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4.3 List Of Symbols 

 
Symbol 
 

Definition Unit 

CA  Coriolis acceleration vector. 

 

m/s2 

zyx A,A,A  Components of the Coriolis acceleration in EOM 
(body-fixed or zero-roll/-spin) coordinates. 

 

m/s2 

F  Vector sum of applied forces acting on projectile center of 
mass. 
 

N 

zyx F,F,F  

 

Components of total applied forces (aerodynamic, thrust) 
in EOM (body-fixed or zero-roll/-spin) coordinates.  
 

N 

 ,hg  

 

Acceleration of gravity at projectile position with respect to 

ECEF frame. It includes the combined action of gravitation and 

the centrifugal acceleration due to the rotation of the Earth. See 

Annex A. 

 

m/s2 

zyx g,g,g  Components of  ,hg  in EOM (body-fixed or zero-roll/-

spin) coordinates. 
 

m/s2 

I  Inertia tensor of the projectile rigid body. 
 

kg m2 

yzxzxy I,I,I  Products of inertia with respect to the coordinate planes. 
 

kg m2 

2x1x I,I  Axial moments of inertia of bodies 1 and 2 in 7th degree of 
freedom mode. 
 

kg m2 

N,M,L  Components of total applied moment or torque. 
 

N m 

N,M,L   Components of total applied moment or torque corrected 
for the change in position of the center of mass. 
 

N m 

2L  Axial component of external moment applied on body 2 
in 7th degree of freedom mode. 
 
 

N m 

CL  Axial component of the internal moment exerted by body 
1 on body 2 in 7th degree of freedom mode (depends on 
bearing friction and controls). 

N m 
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M  Total applied moment or torque acting on projectile with 
respect to center of mass. 
 

N m 

M   Total applied moment or torque acting on projectile 

corrected for the change   in position of the center of 
mass. 
 

N m 

2M  

 

External moment applied to body 2 in 7th degree of 
freedom mode. 
 

N m 
 
 

CM  

 

Internal moment exerted by body 1 on body 2 at contact 
point C in 7th degree of freedom mode. 
 

N m 
 
 

m Total mass of the projectile. 
 

kg 

p, q , r Components of the angular velocity of the projectile in 
EOM (body-fixed or zero-roll/-spin) coordinates. 
 

rad/s 

p1 , p2 Axial component of the angular velocity of bodies 1 and 2 
in 7th degree of freedom mode. 
 

rad/s 

t Time. 
 

s 

U  Velocity of the projectile center of mass with respect to 
ECEF frame. 
 

m/s 

zyx U,U,U  Components of U in EOM (body-fixed or zero-roll/-spin) 
coordinates. 
 

m/s 

u Speed of the projectile center of mass with respect to 
ECEF frame (ground speed). 
 

m/s 

X  Position of the projectile center of mass with respect to 
ECEF frame. 
 

m 

  Vector shift in the center of mass. 
 

m 

 Latitude of the fire control system. 
 

deg 
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  Quaternion defining the angular position of the projectile 
(EOM system) with respect to inertial system. See Annex 
A. 
 

- 

3210  ,,,  Components of quaternion . See Annex A. 
 

- 

  Quaternion defining the angular position of body 2 with 
respect to body 1 in 7th degree of freedom mode. 
 

- 

10 ,  Components of quaternion  . 

 

- 

  Pitch angle of the projectile. 
 

rad 

Ω  Angular velocity vector of the body integration (EOM) 
frame with respect to ECI frame. The x, y, z components 
are called ΩX , q and r in EOM (body-fixed or zero-roll/-
spin) coordinates. 
 

rad/s 

EΩ  Angular velocity vector of the Earth with respect to ECI 
frame. 
 

rad/s 

  Angular velocity vector of the projectile with respect to 
ECI frame. The x, y, and z components are 
conventionally called    p, q and r in EOM (body-fixed or 
zero-roll/-spin) coordinates. 
 

rad/s 

21  ,  Angular velocity vectors of bodies 1 and 2 in 7th degree 
of freedom mode. 
 

rad/s 

 Denotes differentiation with respect to time. 
 

s-1 
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4.4 LIST OF DATA REQUIREMENTS 

 

Physical Data Requirements Fin-Stabilized 
Spin- 

Stabilized 

Twist of rifling at muzzle tc tc 

Total mass of projectile m m 

Reference diameter d d 

Axial moment of inertia  Ix Ix 

Axial moment of inertia of body 2 (7th DOF) I2x I2x 

Initial axial spin rate of projectile body p0 p0 

Initial axial spin rate of  body 2 (7th DOF) 
02p  

02p  

Axial torque between two bodies at contact 
point (7th DOF) 

LC LC 

Transverse moment of inertia (x-axis 
symmetry) 

 IT 

Transverse moment of inertia about Y  IY  

Transverse moment of inertia about Z  IZ  

Center of mass (CG) from nose XCG XCG 

X component of CG shift ΔX ΔX 

Y component of CG shift ΔY ΔY 

Z component of CG shift ΔZ ΔZ 

 

Aerodynamic Requirements Fin-Stabilized Spin-Stabilized 

Axial force coefficient CX CX 

Normal force coefficient CN CN 

Side force coefficient CY  

Magnus force coefficient CYp CYp 

Pitching (overturning) moment coefficient Cm Cm 

Yawing moment coefficient Cn  

Magnus moment coefficient Cnp Cnp 

Roll moment coefficient Cl  Cl 

Pitch damping Cmq Cmq 

Yaw damping Cmr Cmr 

Roll damping moment coefficient Clp Clp 

Axial force coefficient increment ΔCX  

Normal force coefficient increment ΔCN  

Side force coefficient increment ΔCY  

Pitching (overturning) moment coefficient 
increment 

ΔCm  
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Yawing moment coefficient increment ΔCn  

Roll moment coefficient increment ΔCl   

 
 

Factors for adjusting data Fin-Stabilized 
Spin-

Stabilized 

Form factor for axial force coefficient 
fCX fCX 

Form factor for normal force coefficient fCN fCN 

Form factor for side force coefficient fCY  

Form factor for Magnus force coefficient  fCYp 

Form factor for pitching moment coefficient fCm fCm 

Form factor for yawing moment coefficient fCn  

Form factor for Magnus moment coefficient  fCnp 

Form factor for roll moment coefficient fCl fCl 

Form factor for pitch damping fCmq fCmq 

Form factor for yaw damping fCmr fCmr 

Form factor for roll damping coefficient 
fClp fClp 

Form factor for axial force increment coefficient 
fCX_D  

Form factor for normal force increment 
fCN_D  

Form factor for side force increment fCY_D  

Form factor for pitching moment increment 
coefficient 

fCm_D  

Form factor for yawing moment increment fCn_D  

Form factor for roll moment increment fCl_D  

Form factors are scaling factors for the aerodynamic coefficients. 
 

1.1.1.1.1.1.1 Initial Conditions i) Fin-Stabilized 
Spin-

Stabilized 

Initial speed of projectile with respect to ground 
(muzzle velocity) 

u0 u0 

Quadrant elevation QE QE 

Azimuth with respect to true north Az Az 

Longitude Λ Λ 

Geodetic latitude λ λ 

Altitude above average sea level (WGS-84 
model) 

hM hM 
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Azimuth angles range from 0° (north) to 360° (north), through 90° (east), 180° (south), 
270° (west). 
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5 IMPLEMENTATION OF THE AGREEMENT 

 
This STANREC is implemented when a nation has issued instructions to the agencies 
concerned to use the 6/7 Degrees of Freedom Trajectory Model for exterior ballistics 
simulation of artillery projectiles as detailed in this agreement.  
 
The source code will be treated as NATO Restricted and the executable will be treated as 
NATO Unclassified. 
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ANNEX A COORDINATE TRANSFORMATIONS, REFERENCE COORDINATE 
SYSTEMS AND ELLIPSOIDAL EARTH MODEL 

 
 

1. Coordinate Transformations, Euler Angles And Quaternions 

 
Frames and coordinate systems are to be distinguished. Frames are models of physical 
references, whereas coordinate systems establish the association with Euclidean space 
(see reference [14] in Annex H). Frames are set of points attached to physical objects such 
as the Earth or the projectile body. They are used to define the relative state of motion 
(position and velocity) of these objects. Each frame can be associated to several 
coordinate systems in order to describe the observation of the motion. Coordinate systems 
define the metric of the motion.       
 

1.1 Consider two orthogonal right-handed coordinate systems denoted as A )3,2,1( AAA  

and B )3,2,1( BBB . Let Ax][  be the components of vector x in system A and let Bx][  be the 

components of the same vector in system B. The transformation matrix ABT /][ from system 

A to system B is defined by 
 

 AABB xTx ][][][ /  (A.1) 

The matrix ABT /][ transforms the components of a vector expressed in system A to the 

vector’s components expressed in system B. The inverse transformation is denoted by
BAT /][ .  

 
The only transformations that will be considered hereafter are orthogonal rotations. If

ABT /][ is an orthogonal rotation matrix then 

 

 1)][(det / ABT  (A.2) 

 

 ABAB TT /-1/ ][)][(   (A.3) 

 
Orthogonal matrices preserve length, i.e. the norm of any vector they multiply is preserved. 
 
1.2  The matrix [T] used to rotate the components of a vector from one coordinate system 
to another may be obtained either from Euler angles or from the quaternion parameters. 
The 6/7 DOF simulation will use Euler angles for input and output for convenience. But 
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internally, the 6/7 DOF simulation uses a quaternion representation because of 
computational efficiency and to avoid singularities associated with Euler angles.  
 
The rotation from the non-rotating inertial axes (coordinate system I associated to the 
inertial frame) to the rotating body-fixed axes (coordinate system B associated to the body-
fixed frame) is represented using the standard aerospace Euler rotation sequence: a yaw 

(angle ) followed by a pitch (angle ) followed by a roll (angle ). 
 

Figure A.1 shows the yaw rotation that takes system I )3,2,1( III  to the first intermediate 

system X )3,2,1( XXX  through a positive rotation of angle  about the 3-axis. The yaw 

rotation matrix is defined by 
 

 






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
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
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100
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][)]([ / 



 IXTT  (A.4) 

 
 

Figure A.1: Yaw rotation 
 
 
 
 

Figure A.2 shows the pitch rotation that takes system X )3,2,1( XXX  to the second 

intermediate system Y )3,2,1( YYY  through a positive rotation of angle  about the 2-axis. 

The pitch rotation matrix is defined by 





 
. 

1I 
1X 

2I 
2X 

3X = 3I 
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Figure A.2: Pitch rotation 
 

Figure A.3 shows the roll rotation that takes system Y )3,2,1( YYY  to the body-fixed system 

B )3,2,1( BBB  through a positive rotation of angle  about the 1-axis. The roll rotation matrix 

is defined by 
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


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

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


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][)]([ /YBTT  (A.6) 
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3Y 

3X 

2Y = 2X 
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Figure A.3: Roll rotation 
 
 
The total rotation matrix that gives in the body-fixed system B the components of a vector 
defined in the inertial system I is the product of the three Euler rotation matrices: 
 

 )]([)]([)]([][][][][ ////  TTTTTTT IXXYYBIB    (A.7) 

 
Multiplying out (A.7) yields  
 


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 
. 1B = 1Y 

2Y 
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3B 

3Y 
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 (A.8) 
 
 

1.3 Let ][ /IB be the angular velocity vector related to the rotation matrix IBT /][ . This 

vector is defined in the body-fixed system by 
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Eq. (A.9) cannot be inverted for 2/  . The Euler angle representation suffers from 

singularities at vertical climb and dive. 
 
The zero-roll coordinate system is derived from the body-fixed system by setting

0and0    . The angular velocity of the zero-roll system is thus defined by 
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 (A.10) 

 

Note that q and r are the second and third coordinates of ][ /IB given in the zero-roll 

system. The zero-roll coordinate system cannot be defined using q and r for 2/  . 

 
The zero-spin coordinate system is derived from the body-fixed system by setting

 sin  . The angular velocity of the zero-spin system is thus defined by 
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Note that q and r are the second and third coordinates of ][ /IB given in the zero-spin 

system. 
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When using a zero-spin system, the roll Euler angle of the projectile is defined by 
 

   0ZPB  dtp  (A.12) 

 

where B  is the projectile roll angle in body-fixed coordinates, ZP   is the projectile roll 

angle in zero-spin coordinates, p is the spin rate of the projectile and 0 is the initial 

projectile roll angle. 
 
1.4 There are many ways to choose to define the Euler angles. But no matter the choice, 
there is always a singularity is some direction. Singularities can be avoided completely by 
using the four quaternion parameters with body-fixed or zero-spin coordinates. The 6/7 
DOF code will use the quaternion parameters internally to avoid the singularity for body-
fixed and zero-spin systems and also because they are computationally faster since they 
avoid the evaluation of trigonometric functions. The Euler angles will be used for input and 
output because of their familiarity.  
 

1.5 The matrix IBT /][ may also be computed from the unit quaternion. The quaternion is a 

set of four parameters 3210  and  ,, . A unit quaternion is normalized, i.e. 

12
3

2
2

2
1

2
0   . The parameter 0 is called the “scalar part” and the triplet 321  and  ,

is called the “vector part”. The quaternion was originally defined as the generalization of a 

complex number and could be written 3210 kji    where i2 = j2 = k2 = –1 and ij = k, 

jk = i, ki = j and i, j and k anti-commute. The properties of quaternions can be derived from 
these definitions. There is also a physical interpretation. Any rotation, even if it is 
composed of several sub-rotations such as roll, pitch and yaw about different intermediate 
axes can also be realized by a single rotation through a single angle about a single axes. 
It can be shown that the ‘vector part’ of a quaternion is the axis of that rotation and the 
‘scalar part’ is a trigonometric function of the rotation angle. Specifically the rotation angle 

is 0
1cos2    and the axis of rotation is kjin 321    where here k and j,i  denote the 

unit vectors along x, y and z. 
 
Using the quaternion parameters, the rotation matrix that gives in the body-fixed system B 
the components of a vector defined in the inertial system I is 
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IBT  (A.13) 

 

1.5  Method for transforming between Euler angles and quaternions using matrix IBT /][  

 
As indicated above, a quaternion is used internally in the simulation, with inputs and 
outputs expressed in Euler angles. Thus there is a requirement to transform from the Euler 
angles to the equivalent quaternion and vice versa. The algorithm proceeds as follows. 

Obtain the rotation matrix IBT /][ . The rotation matrix is numerically the same whether it is 

obtained from the Euler angles or the quaternion. Once the rotation matrix is obtained from 
either the Euler angles or from the quaternion, it is then possible to reverse the process 
and obtain either Euler angles or quaternion from the rotation matrix.   
 

The Euler angles can be obtained from IBT /][ (or directly from the quaternion parameters) 

with the following formulae 
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  312013 2sin   T     (A.15) 
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
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T

T
   < (A.16) 

  
When programming the inverse tangent, a two-parameter arctangent function (such as 
ATAN2 function which is available in FORTRAN 90/95) must be used in order to obtain ψ 

and (note  that the angle returned by ATAN2 is in the range ], +). Also, if the 
arctangent function is undefined if both arguments are zero, this needs to be trapped and 
dealt with separately. 
 
The quaternion parameters can also be obtained from the Euler angles by first obtaining 

the rotation matrix IBT /][ . See (A.8). There are four ways to obtain the results we seek 

from the rotation matrix elements. Define T00  )]([ Trace /IBT  =


3

1

ii

i

T . Compare the four 
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elements defined by (1 + 2Tii – T00) where i = 0, 1, 2, 3. Find which of these elements has 
the dominant value (i.e. the largest maximum value since these elements are all greater 
than or equal to zero).  In case of multiple occurrences of maximum values, the dominant 
element can be arbitrarily chosen as the first occurrence. The quaternion with the same 
subscript is the dominant quaternion and the subscript is the dominant subscript. Then use 
one of the following 4 recipes, where the first lambda in each of the four cases has the 
dominant subscript. This assures that the denominator always has the largest absolute 
value and improves numerical calculations. 
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)1( 00T  is dominant   (A.17) )21( 0011 TT   is dominant  (A.18) 
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1.6  Method for computing quaternions directly from Euler angles 
 
The four parameters of the unit quaternion can be directly computed using the three Euler 
angles as follows: 
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1.7   List of symbols 
 
 
Symbol 
 

Definition Unit 

p, q, r Components of the angular velocity of the projectile in 
EOM (body-fixed or zero-roll/-spin) coordinates. 
 

rad/s 

IBT /][  Transformation matrix from system I to system B. 

 
- 


 

Pitch Euler angle. 
 

rad 

0λ  

 

Scalar component of quaternion. - 

321 λ,λ,λ  Vector component of quaternion. 
 

- 


 

Roll Euler angle. 
 

rad 

B  Projectile roll angle in body-fixed coordinates. 
 

rad 

ZP  Projectile roll angle in zero-spin coordinates. 
 

rad 

0  Initial Projectile roll angle. 
 

rad 


 

Yaw Euler angle. 
 

rad 
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2. Reference Coordinate Systems 

 
 
ECI reference system 
Non-rotating, Cartesian, Earth-centered inertial system, with Z pointing northward from the 
center of the Earth, X pointing toward the sun at the vernal equinox and Y completing a 
right hand set. The origin is at the center of the Earth. See Figure A.4.  
 

ECEF reference system 
Rotating, Cartesian, Earth-centered Earth-fixed system, with Z pointing northward from the 
center of the Earth, X pointing toward the Greenwich meridian and Y completing a right 
hand set. The origin is at the center of the Earth. See Figure A.4.  
 
Geocentric reference system 
Rotating, Cartesian, Earth-fixed system, with X northward, Z toward the center of the Earth 
and Y eastward completing an orthogonal right-handed set. The origin is on the surface of 
the Earth. See Figure A.5.  
 
North-East-Down (NED) system 
Orthogonal, right-handed coordinate system fixed to Earth. The origin can be located at 
any specific point (gun, target, etc). The x-axis is pointing northward (N), the y-axis is 
pointing eastward (E) and the z-axis is pointing downward (direction of the local gravity). 
Note that the NED system can also be called the local geodetic system. See Figure A.6. 
  
Fire control system 
Orthogonal, right-handed coordinate system fixed to Earth. The origin is on the surface of 
the Earth with x-axis (coordinate 1) in the direction of the target, y-axis (coordinate 2) 
pointing upward (opposite direction of the local gravity) and z-axis (coordinate 3) pointing 
to the right in order to complete the right hand set. See Figure 1. This system complies 
with STANAG 4355.   
 
Body-fixed system 
Orthogonal, right-handed coordinate system fixed to the projectile, with the origin at the 
center of mass, consisting of the following axes: x-axis in the reference plane (plane of 
symmetry if any), y-axis normal to the reference plane and positive to starboard, z-axis 
completing the right hand set. See Figure 1. This system complies with ISO 1151.  
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Figure A.4:  ECI and ECEF Systems 
 
 

 
 

Figure A.5: Geocentric System 
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Figure A.6: NED System  
 
 
 
 

 
 

Figure A.7: Geodetic and Geocentric Latitudes 
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3. Ellipsoidal Earth Model 

 
 
3.1 The WGS-84 (World Geodetic Survey) Ellipsoidal Earth Model is appropriate to use 
because of the interest in the GPS (Global Positioning System). The ellipsoidal Earth can 
be thought of as the shape that the Earth would take if it were entirely liquid. The surface 
of this ellipsoid results from the combined action of gravitation and the centrifugal 
acceleration due to the rotation of the Earth. The normal to the local surface is defined as 
“down” and is the direction of a plumb bob at that point.   This “down” does not, in general, 
point toward the center of the Earth because of the combined effects of gravitation and the 
centrifugal acceleration from the Earth’s rotation about its axis.  The effect of the 
accelerations due to the revolution of the Earth about the sun is neglected. 
 
3.2 In the trajectory or flight simulation, the treatment of gravity and atmospheric modeling 
will have to be consistent with model used. In our case, we will use an ECEF WGS-84 
ellipsoid Earth model. Transformations of coordinates to and from the ECEF and the local 
navigation frame (geographic frame) will be necessary. Since this is essentially a 
geometric problem, the following figures will be used to define the problem and its solution. 
Recall that “down” is defined as the direction of a plumb bob. 
 
3.3  Coordinate transformations between Geodetic and ECEF reference frames 
 
We require transformations to and from the longitude Λ, geodetic latitude λ and altitude h 
of the projectile and the ECEF coordinates X, Y, Z (see Figure A.7). The geocentric latitude

' is defined by the angle between a geocentric vector (one that originates at the center of 

the Earth) and its projection on the equatorial plane. The geodetic latitude is defined by 

the angle between the vector that is normal to the local tangent plane to the reference 
ellipsoid and its projection onto the equatorial plane. The altitude h is the shortest distance 
between the projectile and the reference ellipsoid. The equatorial and polar radii of the 
ellipsoidal Earth are denoted by a and b respectively. Here a transformation is required 
between an altitude and the longitude and latitude which are angles and the Earth-
centered Earth-fixed Cartesian coordinates X, Y and Z. The altitude h is useful for 
atmospheric modeling. 
 
We will need the following quantities that define the WGS-84 ellipsoidal Earth. 
 
a is the semi-major axis of reference ellipse, equatorial radius of Earth in meters. 
b is the semi-minor axis of reference ellipse, polar radius of Earth in meters. 

2)/(1 abe   is the eccentricity.  

T)( Z,Y,Xr   is the ECEF position vector of projectile. 
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3.4  Transformation from the Geodetic to the ECEF frame: h, Λ and λ to X, Y and Z 
 
The longitude and latitude are ordinary in degrees. Care must be taken to convert to 
radians when these angles are arguments of trigonometric functions. 
 
We want to transform from the longitude Λ, geodetic latitude λ, and altitude h of the 
projectile to the ECEF coordinates X, Y, Z. From geometry the result is  
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where we define the unit vector pointing up as 
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Note that the radius of the Earth ellipsoid at this latitude can be obtained by taking the root 
sum square of (A.25) with h = 0, or 
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3.5 Transformation from the ECEF to the Geodetic reference frame: X, Y and Z to h, Λ 
and λ 
 
The following algorithm transforms from the Cartesian ECEF coordinates X, Y and Z to 
the WGS-84 ellipsoidal coordinates longitude Λ, geodetic latitude λ and altitude h.  This is 
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the typical format of a GPS receiver. The longitude is defined as zero at the prime meridian 
(through Greenwich, England). It is conventionally positive to the east and negative to the 
west. The latitude is positive in the northern hemisphere (Z > 0) and negative in the 
southern hemisphere. The algorithm is as follows.  
 
We define the quantity 
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Then we can rewrite (A.25) as  
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Squaring (A.28) and substituting the components of (A.29) yields 
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With the assumption 
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 we can rewrite (A.30) as 
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This expression can be normalized by multiplying by the denominators, yielding a 4th order 

or biquartic polynomial algebraic equation in  that can be solved exactly by well-known 

but tedious methods.  But since  has been assumed to be so close to unity, this 
polynomial lends itself to a recursive numerical solution such as Newton-Raphson. The 
iterative solution is  
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n1n   (A.33) 

  
where   
 

 





















32

22

3

22

)(

)1(
2/)(f

e

ZeYX
dd


  (A.34) 

 

If the initial solution is taken to be 0 = 1 then algorithm converges in several iterations,  2  

being accurate to the order of a millimeter.  As the 6/7 degrees of freedom simulation runs, 

convergence is achieved in fewer steps by using the value of  from the previous 

integration step for 0 (the 6/7 DOF simulation will check the iterations for convergence.) 
The solution for the WGS-84 coordinates h, Λ, and λ is now completed using the value of 

.   
 
From (A.31) the altitude above the ellipsoid above mean sea level is  
 
 )1(  h   (A.35) 

 

To use this expression,  must be evaluated from the ECEF coordinates.  From (A.29) and 

(A.31), obtain the sum of the squares of the components of the unit vector )( ZYX u,u,u  in 

terms of )( Z,Y,X . Multiplying this by  
2and using (A.30) yields 

 

 
2

22
22

e

Ze
a





  (A.36) 

 
With this last result, h can be obtained from (A.35).  
 
The longitude and latitude are obtained from the following two expressions, which are 
obtained from (A.26), (A.29) and (A.31). 
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 
















)(
sin

2

1-

e

Z


   (A.37) 

 

  







 

X

Y1tan  (A.38) 

 
3.6  Gravity Model 
 
For the gravity model, g is by definition pointing perpendicular to the local ellipsoidal 

surface and thus only has a Z component in the geodetic reference frame. Gravity includes 
the combined effects of gravitation and the centrifugal acceleration from the Earth’s 
rotation about its axis.   
 

The gravity vector is T)00( g,,g   in the geodetic reference frame.  In ECEF coordinates, 

this gives at the surface of the Earth ellipsoid 
 

 































sin

sincos

coscos

g  (A.39)  

 

where   is defined on the surface of the ellipsoid by 
 

    222
1 sin1sin1 ege    (A.40) 

 

Gravity anomalies could be added to (A.40) but will be neglected here. e is the 

acceleration of gravity at the equator of the WGS-84 ellipsoid and g1 is the second order 
gravity coefficient which is given by 
 

 11 
e

p

a

b
g




 (A.41) 

 
where:  a is the equatorial radius of the Earth reference ellipse,  
  b is the polar radius of the Earth reference ellipse, 

 p  is the acceleration of gravity at the poles of the WGS-84 ellipsoid. 

 
For use in the 6/7 DOF, (A.39) needs to be corrected for the altitude h of the projectile 
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
  (A.42) 

 

where E is the angular rate of the Earth’s rotation. 

  
3.7  Coriolis acceleration     
 
The Coriolis acceleration in the ECEF earth-fixed rotating frame is 
 

 UA  EC 2  (A.43) 

 

where E is the Earth’s angular velocity and U is the velocity of the projectile with respect 

to ECEF frame. 
 
The Earth’s angular velocity vector is defined in the fire control system by 
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 (A.44) 

 

where AZ is the azimuth with respect to north and  is the geodetic latitude. 
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3.8 List of symbols 
 
 
Symbol 
 

Definition Unit 

a Semi-major axis of reference ellipse, equatorial radius of 
Earth: 6378137.0000 meters. 
 

m 

CA  Coriolis acceleration vector. 
 

m/s2 

AZ Azimuth with respect to north. 
 

deg 

b Semi-minor axis of reference ellipse, polar radius of Earth: 
6356752.3142 meters.  
 

m 

d Reference diameter of projectile. 
 

m 

e Ellipsoidal eccentricity of the Earth: 2)/(1 abe   

 

- 

f Ellipsoidal flattening of the Earth: 1/298.257223563 
 

- 

 ,hg  Acceleration of gravity (including centrifugal acceleration 
due to Earth’s rotation) at latitude λ and altitude h in ECEF 
coordinates. 
 

m/s2 

g1 Second order gravity coefficient. 
 

- 

GM Earth’s gravitational constant: 3986004.418 x 108 
 

m3/s2 

h Altitude of projectile. Shortest distance to reference 
ellipsoid. 
 

m 

r  ECEF position vector of projectile. Components are X, Y 
and Z. 
 

m 

r  Radius of Earth WGS-84 ellipsoid at latitude . 
 

m 

U  Velocity vector of projectile with respect to ECEF frame. 
 

m/s 

X, Y, Z ECEF coordinates of projectile. 
 

m 
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e  Acceleration of gravity at the equator of the WGS-84 
ellipsoid: 9.7803267714 m/s2 
 
 

m/s2 

p  Acceleration of gravity at the poles of the WGS-84 
ellipsoid:  9.8321863685 m/s2 
 

m/s2 

t Integration time step. 
 

s 

 Geodetic latitude (positive in northern hemisphere, 
negative in southern hemisphere). 
 

deg 

' Geocentric latitude (positive in northern hemisphere, 
negative in southern hemisphere). 
 

deg 

 Celestial longitude. 
 

deg 

ZYX EEE  ,,

 

ECEF components of Earth’s angular velocity vector. 
 

rad/s 

E  Earth’s angular velocity vector. Magnitude E : 

7.292115 x 10–5 rad/s 

rad/s 
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ANNEX B PROJECTILE AERODYNAMICS 

 

1.  Introduction  

 
The following is a discussion of format for the use of aerodynamic coefficients for 
calculating the force and moment components in the 6 degrees of freedom (DOF) 
simulation. The body-fixed coordinate system is a right-handed orthonormal frame located 
at the center of mass G. Following the common convention in missile aerodynamics, x is 
positive forward looking from the rear toward the nose of the projectile, y is positive right 
and z is positive down. See Figure B.1. Roll is positive clockwise looking forward, a positive 
pitch moves the nose upward and a positive yaw moves the nose rightward. Roll is zero 
when the y-axis is pointing to the right in the horizontal plane.  

 
Figure B.1: Body-Fixed Coordinates System 

 
 

Let U be the velocity vector of the projectile’s center of mass with respect to Earth-fixed 

(ECEF) frame. Let W be the wind velocity vector at the center of mass with respect to 

ECEF frame. The air-relative velocity of the projectile is denoted by V and is defined as 

 

 WUV   (B.1) 

 

The x, y and z components of V in the body-fixed system are denoted by zyx  and VV,V  and 

the magnitude of V is denoted by V (air speed). 

 
Using the above notations, the angles of attack in the pitch and yaw planes are defined 
symmetrically as follows 

G 

x 

y 

z 
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 







 

x

z1tan
V

V
  (B.2) 

 

 







 

x

y1
y tan

V

V
   (B.3)  

The angle of sideslip is defined by 
 

 







 

V

Vy1sin  (B.4) 

 

The total angle of attack between V and the x-axis is defined by 

 

 







 

V

Vx1
tot cos    (B.5) 

 

The total angle of attack plane is defined by V and the x-axis. The aerodynamic roll 

angleA is the angle between the total angle of attack plane and the xz-plane.A is zero 

when V is pointing downward in the xz-plane and it increases clockwise as follows  

 

 






 
 

z

y1
A tan

V

V
    (B.6) 

 
The orientation of the velocity vector with respect to the body-fixed frame can thus be 

defined with any of the following pairs: (, y), (, ) or (tot, A). 
 
The aerodynamic forces and moments will be defined according to three cases: projectiles 
with rotational symmetry, isolated control surfaces and projectiles without rotational 
symmetry. 
 
In the following sections, the aerodynamic coefficients are defined in compliance with 
STANAG 4355. The arguments of these coefficients are given as usually provided from 
wind tunnel data, typically just the Mach number and angle of attack. However, the 
simulation will be flexible enough for the user to increase the number of independent 
variables. 
 



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX B to 
AEP-96 

 

 B-3 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

 

2.  Projectiles with rotational symmetry 

  
For projectiles with rotational symmetry, the aerodynamic forces and moments are defined 
according to the common convention in exterior ballistics, in compliance with STANAG 
4355. 
 
In this case, the aerodynamic coefficients are described by the general expression 
 

  tot,,CC ReM


    (B.7) 

 

where:  M  is the Mach number,  

 Re  is the Reynolds number. 

 
The derivative of the aerodynamic coefficient with respect to the total angle of attack is 

denoted by


C and is defined by 

 

 totsin


 CC     (B.8) 

 
NOTE: The aerodynamic coefficient notations used in this section comply with the symbols 
defined in Table III-1 of STANAG 4355. 
 
Aerodynamic coefficients can be changed using multiplicative and additive factors. This 
may be useful to fit an observed trajectory or to change the aerodynamic properties of the 
projectile during flight. In the following sections (2.1 to 2.9), the actual value of the 

aerodynamic coefficient is denoted by


Ĉ  and is defined by 

  

 
***

ˆ CfCfC
CC 


 

    (B.9) 

 

where:  


C  is the baseline value,  

 


C  is the (optional) increment value,  

 
*Cf and

*C
f are scale factors. 

 
2.1 The drag force is given by 
 

 VVCSDF D
ˆ

2
1    (B.10) 



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX B to 
AEP-96 

 

 B-4 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

 

 

where:  is the air density, 

 V  is the projectile velocity vector with respect to the air (V is the magnitude of 

the vector), 

 S is the projectile reference area (the default usage is S =  d2/4 where d is the 

body diameter),  

 DĈ  is the drag force coefficient. 

 
2.2 The lift force is given by 
 

   VxVCSLF L 


 ˆ
2
1  (B.11) 

 
where:  x  is the unit vector of the projectile axis of symmetry, 

 
LĈ  is the derivative of the lift force coefficient. 

 
2.3 The overturning moment is given by 
 

  xVVCdSOM M 


 ˆ
2
1  (B.12) 

 
where:  d is the projectile diameter, 

 
MĈ  is the derivative of the overturning moment coefficient. 

 
2.4 The pitch damping force is given by 
 

  xVCCdSPDF NNq
 


)( ˆˆ

2
1


 (B.13) 

 
where:    is the angular velocity of the projectile, 

  NqĈ  is the pitch damping force coefficient due to pitch and yaw motion, 

 
NĈ   is the pitch damping force coefficient due to . 

2.5 The pitch damping moment is given by 
 

   xxVCCdSPDM MMq
 


)( ˆˆ

2
1 2


 (B.14) 

 

where:  
qMĈ  is the pitch damping moment coefficient due to pitch and yaw motion,  
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MĈ   is the pitch damping moment coefficient due to . 

Note: Equations (B.13) and (B.14) are commonly used approximations of the pitch 
damping force and moment, assuming that the pitching velocity q and the rate of change 
of total angle of attack   are virtually identical in practice. 

 
2.6 The Magnus force is given by 
 

  xVVC
V

dp
SMF fmag 








 

ˆ
2
1   (B.15) 

 
where:   p   is the spin of the projectile, 

 fmagC 
ˆ  is the Magnus force coefficient. 

 
2.7 The Magnus moment is given by 
 

   xVxVC
V

dp
dSMM mmag 








 

ˆ
2
1   (B.16) 

 

where:  mmagC 
ˆ  is the Magnus moment coefficient. 

 
2.8 The rolling moment is given by 
 

 xVCdSRM lF
2ˆ

2
1


  (B.17) 

 

where:  F  is the fin cant angle, 

 
l

Ĉ  is the fin cant moment coefficient. 

 
2.9 The spin damping moment is given by 
 

 xVC
V

dp
dSSDM spin

2ˆ
2
1 








   (B.18) 

 

where:  spinĈ  is the spin damping moment coefficient. 

 

3.  Isolated control surfaces 
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Individual movable surfaces can be attached to rotationally symmetric projectiles. These 
small surfaces generate additional lift and drag forces and related moments.  
The position and the orientation of the control surface no. i is defined in the body-fixed 

frame by the position of the center of pressure and the individual cant angle
iF as 

illustrated by Figure B.2.  

Figure B.2: Position and Orientation of Control Surface no. i 
  
 
 
The aerodynamic force generated by the surface is given by 
 

   







 iiiiiiiii 2

1 VxVCVVCSF LD 
  (B.19) 

 

where:  iS   is the area of the control surface, 

 iV  is the component of the air relative velocity of the center of pressure which 

is tangent to the body surface, 

 
iDC  is the drag coefficient of the control surface, 

 
iLC   is the lift coefficient derivative of the control surface. 

 
The related moment is simply given by 
 

 iii FrM   (B.20) 
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where:  ir  is the vector defined from the projectile center of mass to the surface center of 

pressure. 
 
 

4.  Projectiles without rotational symmetry 

 
For projectiles without rotational symmetry, the aerodynamic forces and moments are 
defined according to the common convention in missile aerodynamics. 
 
In this case, the effect of the aerodynamic control surfaces of the projectile (e.g. tail fins or 
canards) is described using global control surfaces. The general expression of the 
aerodynamic coefficients is given by 
 

 )( aileronrudderelevatory δ,δ,δ,α,α,,CC ReM


  (B.21) 

 

where: elevatorδ  is the control surface deflection that produces a pitching moment, 

 rudderδ  is the control surface deflection that produces a yawing moment, 

 aileronδ  is the control surface deflection that produces a rolling moment. 

 
The exact format for dependence on independent variables, the positions of the control 

surfaces and the definitions of the control surface deflections elevatorδ , rudderδ  and aileronδ  

might vary for different projectile concepts. Two methods can be used to define the global 
deflection parameters according to the deflections of the isolated control surfaces (fins or 
canards). 
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Figure B.3: Positive Deflection of Control Surfaces (Method 1) 
 
 
Method 1. Consider the positive deflection of the isolated control surfaces defined by 
Figure B.3. In this case, the global control deflections are computed as follows:  

 

)( 312
1

elevator  δ , )( 422
1

rudder  δ , )( 43214
1

aileron  δ     (B.22) 

 
Method 2. Consider the positive deflection of the isolated control surfaces defined by 
Figure B.4. In this case, the global control deflections are computed as follows:  
 

  43214

1
 elevator ,  43214

1
 rudder ,  43214

1
 aileron    

  (B.23) 
 

Figure B.4: Positive Deflection of Control Surfaces (Method 2) 
 
 
Let X, Y and Z denote the x, y and z body-fixed frame components of the total aerodynamic 
force applied on the projectile. These components, including form factors (scale factors), 
are  
 

 rudderelevatory
2

2
1  ,,,,,CfSVX XCX ReM    (B.24) 

 

 ruddery
2

2
1  ,,,CfSVY YCY ReM    (B.25) 

 

 elevator
2

2
1  ,,,CfSVZ ZCZ ReM    (B.26) 
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Let L, M and N denote the x, y, and z body-fixed frame components of the total 
aerodynamic moment applied on the projectile. These components, including form factors 
(scale factors), are 
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The dependence on the equivalent aerodynamic control surface deflections can be 
separated from the rest of the projectile (which often has rotational symmetry) using 
specific increment coefficients denoted by C*_* in the following expressions 

 

   

 ]

[

ruddery

elevator
2

2
1





,,,Cf

,,Cf,CfSVX

R_XR_CX

E_XE_CXXCX ,

ReM

ReMReM




   (B.30) 

 
 

   

 ]

[

ruddery

elevator
2

2
1





,,,Cf

,,Cf,CfSVY

R_YR_CY

E_YE_CYYCY ,

ReM

ReMReM




 (B.31) 

   

 ]

[

ruddery

elevator
2

2
1





,,,Cf

,,Cf,CfSVZ

R_ZR_CZ

E_ZE_CZZCZ ,

ReM

ReMReM




 (B.32) 

 
 

   

  ]

[

ReM

ReMReM

,Cf
V

dp

,,Cf,CfdSVL

spinCspin

A_lA_CllCl











 aileron
2

2
1 

   (B.33) 

 
 



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX B to 
AEP-96 

 

 B-10 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 
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5.  Aerodynamic coefficients table look-up  

 
Aerodynamic coefficients are provided as tables with multiple independent variables such 
as Mach number, Reynolds number, total angle of attack and aerodynamic roll angle (or 
pitch and yaw angles of attack), control surface deflection angles. The dependency on 
Reynolds number may be expressed using a separate scale function depending on the 
altitude. 
 

These tables are used as multi-linear interpolated look up. Alternatively, the table lookups 
can be done using polynomials in powers of the angle of attack. This is the approach 
currently used in the modified point-mass model. See Table III-1 in STANAG 4355. For 
example: 

 

         tot
4

tot
2

tot sinsin
420




MMMM DDDD CCC,C     (B.36) 

 

6.   Comparison of aerodynamic symbols 

 
This STANAG document explicitly uses the quantity (pd/v). The following equivalences are 
provided to avoid confusion with the NACA aeroballistic system that uses the quantity 
(pd/2v). 
 
Cmag-f    = CNp for data nondimensionalized using pd/v (B.37) 

 = (1/2) Cyp for data nondimensionalized using pd/2v (B.38) 

    
Cmag-m   = CMp for data nondimensionalized using pd/v (B.39) 
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 = (1/2) Cnp for data nondimensionalized using pd/2v (B.40) 
   
Cspin = Clp for data nondimensionalized using pd/v (B.41) 

 = (1/2) Clp for data nondimensionalized using pd/2v (B.42) 
   

CMq     for data nondimensionalized using pd/v (B.43) 

 = (1/2) Cmq for data nondimensionalized using pd/2v (B.44) 
   

 
The aerodynamic force in the angle of attack plane can be decomposed into the sum of 
the lift and drag forces or into the sum of the normal and axial forces. See Figure B.5. 
 
 

Figure B.5: Lift, Drag, Normal and Axial Forces 
 
The drag force is defined by (B.9) and the lift force is defined by (B.10).  

 
The axial force is given by 
 

  xVCSAF X
2ˆ

2
1   (B.45) 

 
The normal force is given by  
 

xa and za are air-path 
axes x and z are body 
axes 

x 

Axial force 
 

Normal force 


 


 

z 

Lift force 

Drag force 

Aerodynamic  
force 

xa 

za 
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   VxxVCSNF N 


 ˆ
2
1  (B.46) 

 

The equivalence between the lift (CL), drag (CD), normal (CN) and axial (CX) coefficients 
is therefore defined by  
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7.   List of symbols for aerodynamics 

 
Symbol 
 

Definition Unit 


C  Generic aerodynamic coefficient (baseline value). 

 
- 


Ĉ  Generic aerodynamic coefficient (actual value). 

 
- 


C  Derivative of generic aerodynamic coefficient with respect 

to total angle of attack. 
 

- 

Cl Rolling moment coefficient. 
 

- 

Cl_A Rolling moment increment coefficient due to aileron 
deflection. 
 

- 

Cl 
Fin cant moment coefficient. 
 

- 

Clp Spin damping moment coefficient normalized using pd/2v. 
 

- 

Cm Pitching moment coefficient. 
 

- 

CM Derivative of the overturning moment coefficient. 
 

- 

Cm_E Pitching moment increment coefficient due to elevator 
deflection. 
 

- 

Cm_R Pitching moment increment coefficient due to rudder 
deflection. 
 

- 

Cmag-f Magnus force coefficient normalized using pd/v. 
 

- 

Cmag-m Magnus moment coefficient normalized using pd/v. 
 

- 

Cmq Pitch damping coefficient normalized using qd/2v. 
 

- 

CMq Pitch damping coefficient normalized using qd/v. 
 

- 

Cmr 
Yaw damping coefficient normalized using rd/2v. 
 

- 

CMr 
Yaw damping coefficient normalized using rd/v. - 
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Cn Yawing moment coefficient. - 

 

Cn_E 

 
Yawing moment increment coefficient due to elevator 
deflection. 
 

 
- 

Cn_R Yawing moment increment coefficient due to rudder 
deflection. 
 

- 

Cnp Magnus moment coefficient normalized using pd/2v. 
 

- 

CN Normal force coefficient. 
 

- 

Cspin Spin damping moment coefficient normalized using pd/v. 
 

- 

CX Axial force coefficient. 
 

- 

CX_E Axial force increment coefficient due to elevator deflection. 
 

- 

CX_R Axial force increment coefficient due to rudder deflection. 
 

- 

CY Lateral force coefficient. 
 

- 

CY_E Lateral force increment coefficient due to elevator 
deflection. 
 

- 

CY_R Lateral force increment coefficient due to rudder deflection. 
 

- 

CZ Vertical force coefficient. 
 

- 

CZ_E Vertical force increment coefficient due to elevator 
deflection. 
 

- 

CZ_R Vertical force increment coefficient due to rudder deflection. 
 

- 

CYp Magnus force coefficient normalized using pd/2v. 
 

- 

d Reference length (typically, caliber of the projectile). 
 

m 

f C*
 Scale factor for aerodynamic coefficient denoted by C*.  

 

- 
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f C*
 Scale factor for aerodynamic coefficient increment denoted 

by C*. 

 

- 

M Free stream Mach number. 
 

- 

p, q, r x, y, z components of the angular velocity vector of the 
projectile in body-fixed frame. 
 

rad/s 

Re Free stream Reynolds number. 
 

- 

S Reference area (typically, cross section of the 
projectile). 
 

m2 

U  Projectile velocity vector with respect to ECEF frame. 
 

m/s 

V  Projectile velocity vector with respect to air. 
 

m/s 

zyx , VV,V  x, y, z components of V in body-fixed frame. 

 

m/s 

W  Wind velocity vector with respect to ECEF frame. 
 

m/s 

XCG x position of the projectile’s center of mass in body-fixed 
frame. 
 

m 

XCPM
 x position of the projectile’s center of pressure for Magnus 

force in body-fixed frame. 
 

m 

XCPN
 x position of the projectile’s center of pressure for normal 

force in body-fixed frame. 
 

m 

 Angle of attack. 
 

rad 

 tot Total angle of attack. 
 

rad 

 y Yaw-like angle of attack. 
 

rad 
 

 Angle of sideslip. rad 
 


C  Generic aerodynamic coefficient increment. 

 
- 

aileron Aileron deflection. rad 
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elevator Elevator deflection. 
 

rad 

F Fin cant angle. 
 

rad 

rudder Rudder deflection. 
 

rad 

 Air density. 
 

kg/m3 

A Aerodynamic roll angle. rad 
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ANNEX C COORDINATE CONVERSION REQUIRED BY COURSE CORRECTING 
FUZES 

1.  Introduction 

 
This document describes the equations for the coordinate conversions required by course 
correcting fuzes. There are two coordinate conversions that are required to support course 
correcting fuzes: gun frame to North, East, Down (NED) and Lat/Long to Earth-Center, 
Earth-Fixed (ECEF). 
 
The gun frame to NED conversion starts with vectors oriented in a coordinate frame with 
an origin at mean sea level directly below the trunnion the weapon being fired, where the 
x1 axis is tangent to the earth’s surface at the origin and points along the gun-target line, 
the x2 axis is in the vertical plane perpendicular to the surface of the earth (or ellipsoidal 
representation of the surface), and the x3 axis is perpendicular to the plane formed by the 
other two axes so as to define a right hand Cartesian coordinate system.  The x1 axis is 
positive in the direction of target, the x2 axis is positive above the surface of the earth, and 
the x3 axis is positive to the right of the gun location when facing the target.  The gun-
target azimuth is the clockwise angular measure between true north and the gun-target 
line taken at the gun.  The transformation converts to a reference frame where the vectors 
are represented with the origin of the coordinate frame located at the target, and the axes 
of the system pointing northward, eastward, and downward.  The North-East plane is 
tangent to the WGS84 ellipsoid at the target.  Thus the downward axis is perpendicular to 
the WGS84 ellipsoid at the target.  The North axis is positive north of the target, the East 
axis is positive east of the target, and the Down axis is positive for points below the target. 
 

The Lat/Long to ECEF conversion, used in the gun frame to NED transformation, converts 
coordinates given in terms of latitude, longitude, and altitude with respect to the WGS84 
ellipsoid to a coordinate system where the origin is the mass center of the earth and the 
axes are: out through the intersection of the equator and the prime meridian, the rotational 
axis of the earth, and the final axis is perpendicular to the plane formed by the other two 
axes so as to satisfy the right-hand rule.  The earth is modeled as an ellipsoid as described 
in the earth model WGS84. 
 
 

2.  Gun Frame To NED Conversion 

 
A.  Inputs 
 
The following data are required as input: 
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1. Gun-target azimuth, gtAz (radians) clockwise with respect to true north 

2. Projectile position with respect to gun frame (wrt/ MSL), x  (m) 

3. Projectile velocity components with respect to gun frame, u  (m/s) 

4. Latitude of target, etargt  (radians) 

5. Latitude of gun, gun  (radians) 

6. Longitude of target, etargt  (radians) 

7. Longitude of gun, gun  (radians) 

8. Height of target above WGS84 ellipsoid, etargth  (m) 

9. Height of gun above WGS84 ellipsoid, ungh  (m) 

10. Height of gun above mean sea level, ungalt  (m)  

 
B.  Known Values 
 
From the WGS84 model: 
 

  

901410066943799011

563298.257223

1

meters3716,378

22

equator

.)f(e

f

,R







 

 
C.  Determine ECEF Coordinates 
 
Compute the ECEF coordinates such that the z-axis points northward along the Earth's 
rotation axis, the x-axis points outward along the intersection of the Earth's equatorial 
plane and prime meridian, and the y-axis points into the eastward quadrant, perpendicular 
to the x-z plane so as to satisfy the right-hand rule.  
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Where the subscript L can be either the gun or target location. 
 
D.  Computation of Direction Cosine Matrix 
 
The direction cosine matrix (DCM) used to transform ECEF coordinates to the NED frame 
is:  
 

   
























)(sin)(sin)(cos)(cos)(cos

0)(cos)(sin

)(cos)(sin)(sin)(cos)(sin

DCM

LLLLL

LL

LLLLL

L





λλ
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 (C.3) 

 
Again the subscript L is either the gun or target location. 
 
E. Determine the Projectile Location in a Gun-Centered NED Frame 
 
This is accomplished by rotating about the opposite of the gun-target azimuth about the 
x2/Down axis. 
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  (C.4) 

 
 
F. Determine the ECEF Vector Components from Gun-to-Projectile 
 
Transform the projectile NED vector into a vector oriented in the ECEF frame using the 
gun’s DCM. 
 

   
gunNEDgungun xX DCM   (C.5) 

 

Note: Solve for gunX  

 
G.  Calculate the ECEF Vector Components from Target-to-Projectile 
 
This is done by, first, finding the vector from the center of the ellipsoid to the projectile. 
This vector is simply the sum of the gun ECEF vector and the gun-to-projectile ECEF 
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vector. Then by subtracting from this center-of-ellipsoid-to-projectile vector the target 
ECEF vector. 
 

  targetgunguntarget rXrX   (C.6) 

 
H.  Obtain the Position of the Projectile in the NED Target-Centered Frame 
 
Transform the target-to-projectile ECEF vector into a vector oriented in the target’s NED 
frame using the target’s DCM. 
 

    targettargetNED X DCMx    (C.7) 

 
 
I. Obtain the Velocity of the Projectile in the NED Target-Centered Frame 
 
This transformation is similar to the steps above. 
 
1) Determine the Projectile Velocity in a Gun-Centered NED Frame 
 
This is accomplished by rotating about the opposite of the azimuth to target about the 
x2/Down axis. 
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2) Determine the ECEF Vector Components of the Projectile Velocity 
 
Transform the projectile NED vector into a vector oriented in the ECEF frame using the 
gun’s DCM. 
 

   
gunNEDgun uU DCM    (C.9) 

 

Note: Solve for U  
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3) Obtain the Velocity of the Projectile in the NED Target-Centered Frame 
 

Transform the projectile ECEF vector into a vector oriented in the target’s NED frame using 
the target’s DCM. 
 

   U DCMu targetNED    (C.10)  

  
 

3.  Computation Of Euler Angles In The Ned Frame 

 
The Euler angles (ψ, θ) of the projectile velocity in the NED frame are: 
 

   
N

E1tan
u

u      (C.11) 
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uu
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22

    (C.12) 

 

Where Eu , Nu and Du are, respectively, the eastward, northward and downward 

components of projectile velocity in the target-centered NED frame. 
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4. List of Symbols 

 
 
Symbol 
 

Definition Unit 

gunalt  altitude of the gun wrt/ mean sea level 
 

m 

gtAz  gun-target azimuth 
 

rad 

DCM  direction cosine matrix 
 

- 

gunDCM  direction cosine matrix to convert ECEF to NED for the gun 
 

- 

targetDCM  direction cosine matrix to convert ECEF to NED for the 
target 
 

- 

e eccentricity 
 

- 

ECEF earth-centered, earth-fixed coordinate system 
 

- 

f flattening of the earth  
 

- 

h height above WGS84 ellipsoid 
 

m 

gunh  height of gun above WGS84 ellipsoid 
 

m 

targeth  height of target above WGS84 ellipsoid 
 

m 

MSL mean sea level 
 

- 

N distance from surface of ellipsoid to polar axis along line 
normal to the ellipsoid surface 
 

m 

equatorR  equatorial radius of the earth 
 

m 

gunr  ECEF position vector of gun 
 

m 

targetr  ECEF position vector of target 
 
 

m 

u  projectile  velocity vector in the gun frame m/s 
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321 u,u,u  

 

components of projectile velocity in the gun frame 
 

m/s 

NEDu  projectile velocity vector in target-centered NED frame 
 

m/s 

DEN u,u,u  northward, eastward and downward components of 
projectile velocity in target-centered NED frame 
 

m/s 

gunNEDu  projectile velocity vector in gun-centered NED frame 
 

m/s 

U  projectile velocity vector in earth-centered, earth-fixed 
coordinate system 
 

m/s 

x1 axis axis which runs from the gun to the target 
 

- 

x2 axis axis oriented perpendicular to the WGS84 model’s surface 
of the earth  
 

- 

x3 axis axis oriented perpendicular to the x1-x2 plane so as to 
satisfy the right-hand rule 
 

- 

x  
 

projectile position vector in the gun frame 
 

m 

321 x,x,x  

 

components of projectile position in the gun frame 
(x2 component given wrt/ mean sea level) 
 

m 

NEDx  projectile position vector in target-centered NED frame 
 

m 

gunNEDx  projectile position vector in gun-centered NED frame 
 

m 

gunX  gun-to-projectile vector in earth-centered, earth-fixed 
coordinate system 
 

m 

targetX  target-to-projectile vector in earth-centered, earth-fixed 
coordinate system 
 

m 

targetNEDX  projectile position vector in target-centered NED frame 
 

m 

  longitude 
 

rad 

gun  longitude of gun rad 
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target  longitude of target 
 

rad 

  geodetic latitude 
 

rad 

gun  geodetic latitude of gun 
 

rad 

target  geodetic latitude of target 
 

rad 
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ANNEX D       ADDITIONAL TERMS FOR ROCKET-ASSISTED AND BASE-BURN 
PROJECTILES METHOD 1 

 
1. Introduction 
 

This annex provides the equations required to simulate the flight of rocket-assisted 
projectiles and the specific equations required to simulate the flight of base-burn 
projectiles. This method is fully defined in ANNEX C to STANAG 4355. The differences 
are due to the use of body-fixed axes in the 6/7 DOF simulation rather than wind axes. 
That is, the body-fixed axes coordinates are X forward along body rotational symmetry 
axis, Y rightward, and the third axis Z completes a right hand set.  
 
 
2. Equations I 
 
2.1. Additional Terms for Spin-Stabilized Rocket-Assisted Projectiles 

 

Add the thrust term *T  to the equation of motion of the center of mass of the projectile. 

*T  is added to FX in the projectile’s body-fixed or zero-p frame. The components FY and 
FZ in the body-fixed frame are unaffected. The rest of this section is unchanged. 

 

a. Thrust during the burning phase (tDI  t  tB) is as follows: 
 

  ,* erRT APPTfT   (D.1) 

   where: 

   ,/ BDIBDISTR ttttTT
STST

  (D.2) 
 

   and 

     
STSTST DIBDIBDIDI tttttttt  ][ /*  (D.3) 

 
    

b. Zero yaw drag coefficient during the burning phase (tDI  t  tB) is CDoT
. 

 
c. Mass of the projectile is given by: 

 

mass at t = 0 is m = m0 (D.4) 
 

   for t < tDI 

DIDI tmm /  (D.5) 

  

 mass at  t = tDI  is  m = m0 – mDI – mDOB (D.6) 
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   for tDI  t < tB 

SPR ITm /  (D.7) 

   

   for t  tB 

0m  (D.8) 

Bmm   (D.9) 

     
   

   where: 

fDOBDIB mmmmm  0  (D.10) 

 
 

2.2. Additional Terms for Spin-Stabilized Base-Burn Projectiles 
 

a. The change in acceleration due to the base drag reduction of a base-burn motor, BB, 

during burning (tDI  t and m  mB) is added to FX/m in the equation (8) or (12) for the 
center of mass of the projectile: 

   




























m

MTifIfCvd

BB

BBX BB
,

8

22


 
(D.11) 

 

  
 

FY and FZ in the 6/7 DOF body-fixed frame are unchanged. 
 
 

 b. The coefficient 
BBxC is the drag reduction coefficient during the burning phase.  As with 

other aerodynamic coefficients, values of this coefficient are given by polynomial functions 
of Mach number of fourth degree or less. 

 
 

c. The characteristic flow rate function of the base-burn motor is given as follows: 
 

f(I) = I/I0   If I  I0 

 
(D.12) 

f(I) = 1       If I  I0 (D.13) 
 

 where: I is the base-burn motor fuel injection parameter 
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,
4

2
vd

m
I

b

f




  (D.14) 

 

and I0 is the injection parameter permitting optimum efficiency of the base-burn motor.  It 

is given as a function of Mach number.   

 
NOTE:  The function f(I) = I/I0  is principally used for emptying phase and eventually at the 

start of the burning phase. 

 

d. The coefficient iBB is a fitting factor which can be used, if necessary, to adjust the drag 
reduction.  

 
e.   Mass of the projectile is given by: 
 

    for 0  t < tDI 
m = m0 – mCB0

 (D.15) 

   

 for  tDI   t  and  m  mB 

 

fmm    (D.16) 

 CBCpCf mSVm   (D.17) 

  where: 
mB = m0 - mf 

  
(D.18) 

mCB = m0 - m  (D.19) 
 

mCB0   is the mass of fuel burnt in the barrel; 

VC  is the combustion rate; 

p  is the density of fuel; 

      SC (mCB)  is the area of combustion at time t and will be expressed in the 
form of a function of the mass of fuel burnt: 

 

;CBiiC mbaS   (D.20) 

 

 for 
1


ii CBCBCB mmm  

ia  and bi are defined over regions of mCB, from mCBi
 = 0 up to and including mCBi

 = n
. 
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The combustion rate is given by: 
 

     pKPgMTfVV CC 0
  (D.21) 

 
where: 
 
VC0

 is the combustion rate obtained on the strand burner at standard pressure and 

temperature 
 
MT is the motor fuel temperature 
 

   21 MTeMTf   (D.22) 

  
P is the local atmospheric air pressure 
 

  nPkPg   (D.23) 

 
p is the axial spin of the projectile 

K(p) is determined from experiments to take into account the influence of axial spin on the 

combustion rate, K(p) is a linear function of spin for each charge. 

The time of motor burnout, tB, is the time for which m = mB and it is a program output. 
 
 
 
3. Equations II 

 
1. The location of the center of mass for base burn and rocket-assisted projectiles is given 
by: 
 

  














B

CGCG

CGCG
mm

mmXX
XX B

0

00

0
 (D.24) 

  

2. Common Equations for base burn and rocket-assisted projectiles: 
 

a.  The overturning moment coefficient of the munition is given by: 
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  







 


d

CCXX
CC

LDCGCG

MM




00*
 (D.25) 

 

 where: *

MC  is determined for the initial munition configuration and, when tDI  t < tB, 

then CD0
 equals CD0T

 for rocket-assisted projectiles and fin-stabilized rockets. 

 
 
b.  The cubic overturning moment coefficient of the munition is given by: 

 

  












 


d

CCCXX
CC

LDLCGCG

MM





2/1
230

33

*
 (D.26) 

  

 where: *

3
MC  is determined for the initial munition configuration. 

 
c.  The axial moment of inertia of the munition is given by: 

 

  














B

xx

xx
mm

mmII
II B

0

00

0
 (D.27) 

 

3. The location of the center of mass, motor nozzle exit, motor nozzle throat, and 
transverse moment of inertia for fin-stabilized rockets.  

 
a.  The location of the center of mass is given by: 

 

  











 


m

mmXX
XX

BCGCG

CGCG

Bf

B

0  (D.28) 

 where: 

   
)(

)(

0

00

0

B

CGCG

CGCG
mm

mXX
XX B

Bf 


  

b.  The location of the motor nozzle exit from the center of the mass is given by: 

CGe Xr    (D.29) 

 
c.  The location of the motor nozzle throat from the center of mass is given by: 



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX D to 
AEP-96 

 

 D-6 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

 

ttet rrr   (D.30) 

 
d.  The transverse moment of inertia of a fin-stabilized rocket is given by: 

 
22

0
2

0

0
00


















 CGCGCGCGfYY XXmXXmrmmII

f
f

 (D.31) 

where: fr  is the radius of gyration of the fuel mass. 

 
 

Figure D.1 illustrates the distances used for the determination of the transverse moment 

of inertia of the rocket or projectile during motor burning. 

 

 
 
 
 
 
 
 
 

 
Figure D.1: Distances Used for the Determination of the Transverse Moment of Inertia 

+ 
+ 

 

 + + 
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4. List of Symbols 
 
 

Symbol Definition  Unit 
 
Ae Exit area of jet m2 
 
ai Coefficient (constant) - 
 
bi Coefficient (constant) - 
 
 Acceleration due to drag reduction of base-burn motor m/s2 

 

CD0T
 Zero yaw drag coefficient (thrust on) - 

 

 Overturning moment coefficient for initial projectile         - 

 configuration 
 
Cxbb

 Drag reduction coefficient during base-burn motor burning - 

 
d Reference diameter of projectile m 
 
db Diameter of projectile base m 
 
e Base of natural logarithms - 
 
f(iBB, MT) Base-burn factor - 
 
f(I) Function I - 
 
f(MT) Combustion rate as a function of motor fuel temperature - 
 
fT Thrust Factor - 
 
g(P) Combustion rate as a function of atmospheric air pressure - 
 
iBB Fitting factor to adjust the drag reduction as a function - 
 of quadrant elevation 
 
I Base-burn motor fuel injection parameter - 

BB

*

MC
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I0 Base-burn motor fuel injection parameter for optimum - 
 efficiency 
 
ISP Specific impulse Ns/kg 
 
Ix Axial moment of inertia of the projectile kg m2 

 

Ix0
 Initial axial moment of inertia kg m2 

 
IxB

 Axial moment of inertia at burnout kg m2 

 

Iy Transverse moment of inertia kg m2 

 

Iy0
 Initial transverse moment of inertia kg m2 

 

k Constant in burning rate versus pressure formula - 
 

K(p) Axial spin burning rate factor -  
 
  Distance of the motor nozzle exit from nose  m 
 
m0 Initial fuzed projectile mass kg 
 
mB Fuzed projectile mass at burnout kg 
 
mCB Mass of motor fuel burnt kg 
 
mCB0

 Mass of motor fuel burnt in the barrel kg 

 

mDI Ignition delay element mass kg 
 

mDOB Delay obturator mass kg 
 
mf Projectile fuel mass kg 
 
 Mass flow rate of the motor fuel kg/s 
 

MT Temperature of motor fuel C 
 
n Exponent in burning rate versus pressure formula - 

fm
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P Air pressure Pa 
 
Pr Reference air pressure for standard thrust Pa 
 
re Distance from the body center-of-mass to the motor nozzle m 
 exit 
 
 

fr  Radius of gyration of the motor fuel mass m 

 
rt Distance from the body center-of-mass to the motor nozzle m 
 throat 
 
rt-t Distance of the motor nozzle exit from the motor nozzle m 
 throat 
 
SC Area of combustion at time t m2 

 

t Computed time of flight s 
 

t* Pseudo-computed time for mapping of thrust s 
 at nonstandard conditions 
 

tB Time of rocket motor burnout s 
 

tBST
 Standard time of rocket motor burnout s 

 

tDI Time of rocket motor ignition delay s 
 

tDIST
 Standard time of rocket motor ignition delay s 

 

TR Thrust produced by rocket motor at time t N 

 

TST Standard thrust as function of burning time N 
 

T* Effective thrust N 
 

VC Combustion rate of base-burn fuel m/s 
 

VC0
 Combustion rate of base-burn fuel on strand burner m/s 

 

XCG Distance of center of mass from nose at time t m 
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XCG0
 Initial distance of center of mass from nose m 

 

XCGB
 Distance of center of mass from nose at burnout m 

 

 Distance of center-of-mass of the rocket motor fuel from  m 

 nose, initially 
 

 Base-burn motor temperature fuel burning coefficient - 
 

p Density of base-burn motor fuel kg/m3 

  

0f
CGX
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5. Additional Data Requirements 
 

Additional Data Requirements for Rocket-Assisted and Base-Burn Projectiles 
 

 

(1)  Physical Data Symbol 

Exit area of jet Ae 

Reference diameter of projectile d 

Axial moment of inertia of the projectile Ix 

Initial axial moment of inertia of the projectile Ix0
 

Axial moment of inertia of the projectile at motor burnout  IxB
 

Transverse moment of inertia of the rocket, initially IY0
 

Distance of the motor nozzle exit from nose   

Fuzed projectile mass at burnout mB 

Initial mass of fuzed projectile m0 

Radius of gyration of motor fuel mass  rf 

Distance of the motor nozzle exit from the motor nozzle 
throat 

rt-t 

Initial distance of center of mass from nose XCG0
 

Distance of center of mass from nose at burnout XCGB
 

 
 

(2)  Aerodynamic Data  Symbol 

Zero Yaw drag coefficient (thrust on) CD0T
 

Overturning moment coefficient for initial fuzed projectile 
*

MC  

Drag reduction coefficient during base-burn motor burning CxBB
 

 
 

 (3)  Motor Data – Rocket-Assisted Symbol 

Specific impulse ISP 

Ignition delay element mass mDI 

Delay obturator mass mdob 

Mass of rocket motor fuel mf 

Reference air pressure for standard thrust Pr 

Time of rocket motor burnout tB 

Standard time of motor burnout tBST
 

Time of rocket motor ignition delay tDI 

Standard time of rocket motor ignition delay tDIST
 

Standard thrust as function of pseudo-time TST 

 
 

 (4)  Motor Data – Base-Burn Symbol 

Base-burn motor fuel injection parameter for optimum efficiency I0 
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Mass of fuel burnt in the barrel mCB0
 

Mass of motor fuel mf
 

Area of combustion expression in the form of a function 
of the mass of fuel burnt 

SC = ai + bi mCB; for mCBi
 < mCB  mCBi+1 

 ai and bi are defined over regions of mCB, from 
  mCBi=0

 up to and including mCBi=n
 

SC
 

Combustion rate of base-burn fuel on strand burner VC0
 

Base-burn motor temperature fuel burning coefficient  

Exponent in burning rate versus pressure formula n 

Density of base-burn motor fuel p 

Constant in burning rate versus pressure formula k 
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ANNEX E  ADDITIONAL TERMS FOR ROCKET-ASSISTED AND BASE-BURN 
PROJECTILES-METHOD 2 

 

1. Introduction 
 

This annex provides the equations required to simulate the flight of rocket-assisted 
projectiles and the specific equations required to simulate the flight of base-burn 
projectiles. This method is fully defined in ANNEX D to STANAG 4355. Basically, the 
differences are due to the use of body-fixed axes in the 6/7 DOF simulation rather than 
wind axes. That is, the body-fixed axes coordinates are X forward along body rotational 
symmetry axis, Y rightward, and the third axis Z completes a right hand set.  
 
 
2. Equations I 

 
 

1. The acceleration due to thrust of the rocket motor, *T  , during burning (tDI  t  tB) is 
added to the FX/m term in the projectile’s body-fixed or zero-p frame in the equation of 
motion of the center of mass of the unassisted projectile. The components FY and FZ in 
the body-fixed frame are unaffected. 
 

 







 


m

APPImf
T

erSPfT 
*  (E.1) 

 

During rocket motor burning, if Pf mm    then (Pr – P) Ae = 0. The aerodynamic zero-yaw 

coefficient is changed to
TDC 0 during rocket motor burning. This is accomplished by having 

a new stage in the simulation and reading in a new table for this aerodynamic coefficient. 
 

2. The base drag reduction due to a base-burn motor during burning (tDI  t  tB) is added 
to the FX/m term in the projectile’s body-fixed or zero-p frame in the equation of motion of 
the center of mass of the unassisted projectile. The components FY and FZ in the body-
fixed frame are unaffected. 
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where: 

2

4

b

f

dv

m
I




  (E.3) 

 
3. Equations II 
 

1. Common Equations for base-burn and rocket-assisted, spin-stabilized projectiles, 
and fin-stabilized rockets. 

 
a.  The mass flow for spin-stabilized projectiles and fin-stabilized rockets is given 

by: 
 
  at t = 0 

0mm   (E.4) 

0m  (E.5) 

    
  for  0 < t < tDI 
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m
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  for tDI  t < tB 
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  and at tDI 
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  (Time-of-motor burnout as a function of tDI) 
 
   pr = Reference axial spin rate for motor mass flow 
   p(tDI)

 = Actual spin rate for motor mass flow at tDI 

   Pr = Standard atmospheric air pressure 
   P(tDI)

  = Actual atmospheric air pressure at tDI 

 

 for t  tB 

mB = m0 – mDI – mf 

 

(E.16) 

0m  (E.17) 

b. The location of the center of mass of the munition is given by: 
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   where: 
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c.  The location of the motor nozzle exit from the center of the mass is given by: 

 

CGe Xr    

 
(E.20) 
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d. The location of the motor nozzle throat from the center of mass is given by: 
 

ttet rrr   (E.21) 

 
e. The overturning moment coefficient of the munition is given by: 
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  where: *

MC  is determined for the initial munition configuration and, when 

tDI  t < tB , then CD0
 equals CD0T

 for rocket-assisted projectiles and 

fin-stabilized rockets. The aerodynamic coefficients are considered 
to be dimensionless, with unit = 1,  in this formulation. 

 
f.  The cubic overturning moment coefficient of the munition is given by: 
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  where: *

3
MC  is determined for the initial munition configuration.  

The aerodynamic coefficients are considered to be dimensionless, 
with unit=1, in this formulation. 

 
g.  The axial moment of inertia of the munition is given by: 
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   h.  The transverse moment of inertia of a fin-stabilized rocket is given by: 
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Figure E.1 illustrates the distances used for the determination of the transverse moment 

of inertia of the rocket during motor burning. 

 
 
 
 
 
 
 
 
 
 
Figure E.1: Distances Used for the Determination of the Transverse Moment of Inertia  
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4. List of  Symbols 
 
 
Symbol Definition  Unit 
 
Ab Area of projectile base m2 

 
Ae Exit area of the motor jet m2 
 
CD

0
 Zero yaw drag coefficient - 

 
CD0T

 Zero yaw drag coefficient during rocket motor burning - 

 
 Overturning moment coefficient for initial fuzed munition - 
 

*
3

M
C  Cubic overturning moment coefficient for initial fuzed 1/rad2 

 munition  
 

db Diameter of projectile base m 
 
fT  Thrust factor   - 
 
f(iBB, MT) Base-burn factor - 
 
fBTp

 Base-burn motor spin rate burning-time factor - 

 
fBTP

 Base-burn motor atmospheric air pressure burning-time  - 

 factor 
 
I Base-burn motor fuel injection parameter - 
 
iBB Fitting factor to adjust the drag reduction as a function of - 
 quadrant elevation 
 
Ix Axial moment of inertia of the munition at time t kg m2 

 
Ix0

 Axial moment of inertia of the munition, initially kg m2 

 

IxB
 Axial moment of inertia of the munition at motor burnout kg m2 

*

MC
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YI  Transverse moment of inertia of the rocket at time t kg m2 

 

0YI  Transverse moment of inertia of the rocket, initially kg m2 

 
  Distance of the motor nozzle exit from nose m 
 
m0 Fuzed munition mass, initially kg 
 
mB Fuzed munition mass at burnout kg 
 
mDI Mass of ignition delay element kg 
 
mf Mass of motor fuel kg 
 
 Reference mass flow rate of the motor fuel as a function kg/s 
 of t* pseudo-time-of-motor burning 
 
 Minimum mass flow rate of the motor fuel for air kg/s 
 pressure term 
 

MT Temperature of motor fuel C 
 
p Axial spin rate of projectile rad/s 
 
pr Reference axial spin rate for motor mass flow rad/s 
 
re Distance from the body center-of-mass to the motor nozzle m 
 exit 
 

fr  Radius of gyration of the motor fuel mass m 

 
rt Distance from the body center-of-mass to the motor nozzle m 
 throat 
 
rt-t Distance of the motor nozzle exit from the motor nozzle m 
 throat 
 
t* Pseudo-time-of-motor burning s 
 
tB Time-of-motor burnout s 

*
fm

Pm
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*
Bt  Reference time-of-motor burnout      s 

 
tDI Time-of-motor ignition delay s 
 
 Reference time-of-motor ignition delay s 
 
XCG Distance of center of mass of the munition from nose m 
 at time t  
XCG0

 Distance of center of mass of the munition from nose m 

 at time t0  
 
XCGB

 Distance of center of mass of the munition from nose m 

 at time tB 
 

0f
CGX  Distance of center-of-mass of the rocket motor fuel from m 

 nose at time t0 

 
 Change in non-dimensional base pressure for a change in - 
 the base-burn motor injection parameter 
 
 Rate of change of atmospheric air pressure as seen by Pa/s 
 the munition 
 
 
 

*
DIt

I

BP





t

P




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5. Additional Data Requirements 
 

 

Physical data Symbol 

Area of projectile base Ab 

Exit area of motor jet Ae 

Diameter of projectile base db 

Axial moment of inertia of the munition, initially Ix0
 

Axial moment of inertia of the munition at motor burnout IxB
 

Transverse moment of inertia of the rocket, initially IY0
 

Distance of the motor nozzle exit from nose   

Fuzed munition mass, initially m0 

Fuzed munition mass at burnout mB 

Mass of ignition delay element mDI 

Mass of motor fuel mf 

Minimum mass flow rate of the fuel for air pressure term  

Radius of gyration of motor fuel mass  rf 

Distance of the motor nozzle exit from the motor nozzle throat rt-t 

Distance of center of mass of the munition from nose, initially XCG0
 

Distance of center of mass of the munition from nose at motor 
burnout 

XCGB
 

 
 

Aerodynamic data Symbol 

Zero yaw drag coefficient during rocket motor burning CD0T
 

Overturning moment coefficient for initial fuzed munition 
*

MC  

Nonlinear overturning moment coefficient for initial fuzed munition 
*

3
MC  

 
 
 
 
 
 
 

pm



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX E to 
AEP-96 

 

 E-10 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

 

 
 
 
 
 

Motor data Symbol 

Reference mass flow rate of the motor fuel as a function of 
pseudo-time-of motor burning, t* 

2*

2

*

10

* tataam f  ; for 
*

1
**

 ii ttt  

a0 and a1 are defined over regions of t*, from t*i=0 
up to and including t*i=n 

*
fm  

Reference axial spin rate for motor mass flow pr 

Standard atmospheric air pressure at sea level Pr 

Time-of-motor burnout tB 

Reference time-of-motor burnout *
Bt  

Time-of-motor ignition delay tDI 

Reference time-of-motor ignition delay *
DIt  

Specific impulse of motor fuel ISP 

Change in non-dimensional base pressure for a change in the 
base-burn motor injection parameter as a function of Mach 
number and injection parameter  

I

BP




 

Thrust factor  fT 



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX F to 
AEP-96 

 

 F-1 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

 

 

ANNEX F GUIDED PROJECTILE MODELING 

 
1.  Simulation Architecture 

Although any part of a simulation source code may be subject to modification, it is expected 
that basic 6/7 DOF code will be stable and a simulation would adapt to different projectiles 
by input data files. This stable part of the simulation is shown in blue in Figure F.1.  
Experience has shown that the part of the code that describes the guidance, navigation 
and control (GNC) capabilities of the projectile cannot just be written generically but needs 
to be tailored to various designs. This part is shown in yellow in Figure F.1.  

 

 

 

Figure F.1: Overall simulation architecture 
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Basic 6/7 DOF trajectory code should be usable as a standalone application to compute 
either unguided trajectories or open-loop controlled trajectories. 

 
 

A library of models should be made available for GNC blocks: models for sensors and 
actuators to simulate projectile hardware and models for guidance capabilities. These 
models should be linked to the 6/7 DOF simulation code by means of a generic application 
interface. The definition of this interface is part of this Annex. 
 
 
2. Generic Closed-Loop Architecture 

 
Figure F.2 describes a generic closed-loop architecture where the blocks represent the 
main functions and the arrows indicate the data flow (dotted arrows are optional data flow). 
At each cycle of the flight path integration process, the trajectory model must forward the 
true system state to the GNC block and requests an update of the projectile parameters 
related to the embedded actuators. 

 
Figure F.2: Generic closed-loop architecture 

 
The outer loop (or guidance loop) controls the translational kinematics of the projectile in 
order to reach the target. The optional inner loop(s) may control the rotational kinematics 
of the projectile so that it remains stable. See section 7 about autopilots. 
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3. Generic Interface 
 
The generic interface described hereafter is the minimum set of data that should be 
transferred between the trajectory model and the GNC model. This set should be extended 
according to the evolution of the guided ammunition design.  
 

3.1 Data transferred from Trajectory Model to GNC Model 

 

Data Dim Unit 

Time of flight 1 s 

Rotation matrix: body system to fire control system 3x3 - 

Rotation matrix: fire control system to ECEF system 3x3 - 

Position of projectile w.r.t. fire position in fire control system 3 m 

Position of projectile w.r.t. fire position in surface system 3 m 

Position of projectile w.r.t. Earth center in ECEF 3 m 

Attitude of body frame w.r.t. fire control system: Quaternion 4 - 

Attitude of body frame w.r.t. fire control system: Euler angles (yaw, pitch, roll) 3 rad 

Attitude of body frame w.r.t. ECEF: Quaternion 4 - 

Attitude of body frame w.r.t. ECEF: Euler angles (yaw, pitch, roll) 3 rad 

Velocity of projectile w.r.t. ECEF in fire control system 3 m/s 

Angular velocity of body frame w.r.t. ECEF in body system 3 rad/s 

Angular velocity of body frame w.r.t. ECI in body system 3 rad/s 

Time derivative of angular velocity of body frame w.r.t. ECI in body system 3 rad/s2 

Wind in fire control system 3 m/s 

Air density 1 kg/m3 

Speed of sound 1 m/s 

Gravity in fire control system 3 m/s2 

Sum of aerodynamic and thrust forces in fire control system 3 N 

Sum of aerodynamic, thrust and jet damping moments in fire control system 3 N m 

Projectile caliber 1 m 

Projectile mass 1 kg 

Projectile M.O.I. in body system 3x3 kg m2 

Number of fins attached to main body (NF) 1 - 

Number of thrusters attached to main body (NT) 1 - 
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3.2 Data transferred from GNC Model to Trajectory Model 

 

Data Dim Unit 

Projectile mass 1 kg 

Projectile M.O.I. in body system 3x3 kg m2 

Deflection of fins attached to main body NF rad 

Area of fins attached to main body NF m2 

Thrust amplitude due to thrusters attached to main body NT N 

Contact moment between main body and body 2 (7 DOF model) 1 N m 

 
 

4  Weapon Fire Control System 

 
The input of the Weapon Fire Control model consists of targeting information:  
- Target position; 
- Target velocity (in case of moving targets). 
 
The output of the Weapon Fire Control model should be structured into: 
- Gun aiming output: 

o Commanded azimuth 
o Commanded elevation (in case of elevation trainable systems) 

- Projectile navigation output: 
o Target initialization data 

 Coordinates with respect to a Reference Point 
o Navigation initialization data: 

 Coordinates of the weapon with respect to a Reference Point 
 Initial attitude 

o Guidance initialization 
 Additional data used by the guidance system (e.g. activation time of a 

drag brake, or terminal approach angle) 

5 Navigation 
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The navigation block includes models of body-fixed sensors such as accelerometers, 
gyrometers or magnetometers (these are IMU sensors) as well as models of external 
tracking systems such as the GPS. 

 
5.1 Accelerometer 
 
Let us consider an ideal 3-axis accelerometer fixed to the projectile body frame and 

displaced from the center of gravity by R . It is assumed that the 3 axes of the 
accelerometer are perfectly parallel to the x, y, and z body-axes of the projectile. The 

sensed acceleration SA is given by 

  

  RR
dt

d

m

F
AS  


 (F.1) 

 

where F is the sum of the aerodynamic and thrust forces, m is the mass of the projectile 
and  is the angular velocity of the projectile. Note that an accelerometer senses all 

accelerations except the acceleration of gravity. 
 
Limiters may be used to represent saturation of the output of the sensors. Axis 
misalignments, noise, biases, scale factors, cross-axis coupling and other noise sources 
are ignored in this idealization. These errors can be handled by specific models.  
 
5.2 Gyrometer 
 
An ideal 3-axis rate gyro is modeled simply as sensing the p, q, and r components of the 
angular velocity of the projectile given in the body-fixed frame. Limiters may be used to 
represent saturation of the output of the sensors.  Gyro errors can be handled by specific 
models. 

 
5.3 Magnetometer 

 
An ideal 3-axis magnetometer is modeled simply as sensing the three components of the 
Earth magnetic field given in the body-fixed frame. Limiters may be used to represent 
saturation of the output of the sensors.  Magnetometers errors can be handled by specific 
models. 
 

6 Guidance 
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Guidance refers to a variety of methods of guiding a vehicle to its intended target. Within 
the frame of this STANAG, the guidance system described by Figure F.2 takes input from 
the navigation system and uses targeting information to send signals to the flight control 
system (i.e. the autopilot and actuator blocks) that will allow the projectile to reach its 
destination. 
 
Proportional navigation (PN) and its variants are some of the most widely used missile 
guidance laws in the literature. These guidance laws are easy to implement and have 
shown good performance against non-maneuvering and moderately maneuvering targets.  
 
The basic two dimensional (2D) engagement scheme of proportional navigation is shown 
in Figure F.3. The amplitude of the lateral acceleration command applied to the projectile 
is defined by  
    

 BC VNA   (F.2) 

 
 

where N is the navigation ratio, VB is the projectile velocity and   is the time derivative of 

the projectile-to-target line of sight (LOS) angle . The form of PN called pure PN is 
characterized by the fact that the lateral acceleration command is normal to the projectile 
velocity vector. 

 

 
Figure F.3: Proportional navigation scheme 

 
The extension of the 2D PN scheme to the 3D case requires defining the LOS angular 

velocity vector LOSω as follows 

AC

VB

Inertial Axis


VT

XB

XT

Projectile

Target



NATO UNCLASSIFIED 

Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 

ANNEX F to 
AEP-96 

 

 F-7 Edition A Version 1 
   

NATO/PFP UNCLASSIFIED 
Releasable to PFP, Australia, Japan, Republic of Korea, New Zealand 
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BT

BTBTLOS

XX

VVXX
ω




  (F.3) 

 
Finally, taking into account the influence of the gravity, the acceleration command is given 
by 
  

 NB
LOS

C gVNA    (F.4) 

 

where Ng is the component of the gravity vector that is normal to the projectile velocity 

vector. 
 
 

7 Autopilot 

 
The role of the autopilot depends on the type of projectile. For example, in the case of a 
roll stabilized frame the autopilot will realize the roll stabilization. In any case, the autopilot 
translates the commanded lateral acceleration computed by the guidance algorithms to 
actuation commands for the steering system. In some cases, the autopilot uses inertial 
measurements of the rotational and translational dynamics of the airframe as an inner loop 
in the GNC system (as illustrated in Figure F.2). An autopilot using an inner loop may be 
used to stabilize the frame and to make the response of the airframe to guidance 
commands less sensitive to flight conditions, and thus improve the performance of the 
guided projectile. There are however cases in which this latter function is not required and 
the airframe is steered without the help of the inner loop.  
 
There are several types of autopilots in use for various aerospace applications (see [14] 
for a general overview). For guided artillery shells, the most relevant types are: lateral 
acceleration command tracking autopilots, attitude hold autopilots (e.g. roll autopilot), and 
course following autopilots (for gliding flight). 
 
7.1. Roll Autopilot 
 
For a fin stabilized projectile or missile, the main functionality of the roll autopilot is to roll-
stabilize the projectile. Figure F.4 shows a stripped down version of a roll-angle hold 
autopilot.  
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Figure F.4: Simple roll autopilot 

The airframe can be described by the second order transfer function 
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 (F.5) 

 

where 


 lCSdq is the roll moment generated by the deflection of the control surfaces.  

 
A generic model of actuator is described in section 8. A lead block has been added for 
loop shaping purposes. An alternative approach is to include feedback from a roll-rate 
gyro. The transfer function for the lead block is given by 
 

 
0

0)(
ps

zs
sH




  (F.6) 

 

where z0 and p0 are the zeros and poles of the transfer function. Together with the gain 

K0, desired gain and stability margins can be achieved. 

 
 

7.2.2 Three-Loop Autopilot 
 
The three-loop autopilot is a classical controller topology used in missile flight control 
systems, in particular for control of acceleration in the pitch and yaw planes of skid-to-turn 
operated missiles or fin stabilized projectiles. 
 
7.2.1. Equations of Motion 
 
Consider a fin stabilized projectile in standard configuration (slender, essentially cylinder 
symmetric with tail fins or canard control) with a body frame B with standard orientation. 
For this case it is customary to set the roll rate p to 0 in the Newton-Euler equations (NE) 

and linearize around zero angle of attack , sideslip angle and control surface deflections 
δ. By doing this, and performing various other simplifications based on qualitative and 

K Lead Actuator Airframe
C +

-

C 
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quantitative aspects of the aerodynamic forces and moments, the NE equations decouple 
into two systems of equations of the same form for the pitch and yaw plane dynamics. It 
is therefore sufficient to consider only the resulting pitch plane dynamics. 
 
7.2.1.1. Simplified linear pitch plane model 
 

The simplified pitch plane dynamics for q can be written 
 

 
mV

F
q

V

Z

V

Z bz )0,0(,
    (F.7) 

 

   MqMMq q   (F.8) 

 

where V is the (magnitude of the) airspeed, m is the mass of the projectile and  is the 
control surface deflection angle.  

The quantities Z ,Z,M,Mq ,M are normalized force and moment (derivative) terms  
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derived from the force bzF ,  along the body z-axis and the moment byM ,  around the body 

y-axis, where yyI  is the moment of inertia about the y-axis. The term )0,0(,bzF  contains the 

force due to gravity. 
 
7.2.1.2.  Acceleration 
 

The normal acceleration bza ,  (along the z-axis) in B is defined as  

 

 
m

F
a

bz

bz

),(,

,


  (F.14) 

  
and the linearized version of (F.14) reads 
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F
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,     (F.15) 

 
7.2.1.3. Dynamics 
 
The linearized acceleration dynamics are easily derived from (F.7) and (F.15) as  
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If the projectile flies with a slowly varying Euler pitch angle it is reasonable to neglect the 
rightmost term in (F.16). For equation (F.8) one obtains similarly  
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where 0

~
  and 0 is defined by 
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i.e. 0  yields equilibrium (“trim”) in (F.8) when expressed in terms of acceleration and pitch 

rate. 
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7.2.2 Three-Loop Autopilot Topology and Transfer function 
 
The three-loop autopilot topology is used in many practical implementations of missile 
autopilots (not only for acceleration control). In its standard (acceleration control) 
formulation it employs linear acceleration and angular rate measurements to implement, 
effectively, a pole placement controller with an extra degree of freedom which can be used 
to increase robustness. A basic variant of the three-loop controller is depicted in Figure 
F.5 where the three loops and variables are named. 
 

 
Figure F.5: Three-loop autopilot based on acceleration and angular velocity 

measurements 
 

The transfer function G1 represents the bare airframe dynamics, G2 is the transfer function 

from acceleration to measured pitch rate and G3 is the transfer function from acceleration 
to measured acceleration. The three loops are called the rate damping loop (innermost, 

with error e3 and gain Kr), synthetic stability loop (middle, with error e2 and integrator with 

gain Ki) and accelerometer loop (outermost, with error e1 and gain Ka). The control signal 

u is the control surface deflection  or the differential deflection 0

~
   relative to a 

reference deflection 0 . 

 
From Figure F.5, one obtains the following relations 
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7.2.2.1 Closed loop transfer function 
 
By eliminating variables in (F19)–(F25) the closed loop transfer function H for the three-
loop autopilot is obtained as 
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Assuming that ideal measurements are used so that bz
m
bz aa ,
)(

,  and qq m )( then 

1)(2 sG and H can be written on the form 
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  (F.27)  

where A is a second degree polynomial. The four constants Kdc, Ka, Ki, Kr can be selected so as 

to give H the desired pole locations (a real pole and a complex conjugate pole pair) as well as the 
desired static gain H(0).  

 
7.2.2.2 Vanishing control surface force contribution 
 

In the limiting case of vanishing Z  (which is a good approximation for many tail or canard 

controlled missiles and projectiles), it is easy to see how to shape the closed loop response 

H. In this case ZMsA )( and it follows from (F.16), (F.17) and (F.26), (F.27) that 
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The static gain becomes 
 

 

V
K

K
KH

a

a
dc 1

)0(


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Desired values of b2, b1, b0 and H(0) can be obtained (recursively) selecting Kdc, Ka, Ki, 

Kr. It is then worth noting that the gain crossover angular frequency cr of the innermost 
loop, the rate damping loop, is approximately  
 

  MKrcr   (F.32) 

  
 

8. Actuator 

 

A generic actuator can be modeled using a second order differential equation including 
the possibility to limit the rate and response of the system. Thus, the actuator system is 
equivalent to a damped harmonic oscillator.  Figure F.6 depicts the second order block 
diagram of a generic fin actuator system. 

 
Figure F.6: Block diagram of fin actuator 
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The transfer function is 
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The corresponding response in the time-domain can be computed using the following 
integration scheme 
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The one step integration method used in (F.34) is crude but the response is quite 
reasonable if the system time constant is one or two magnitudes larger than the time step 

t. 
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9. List of Symbols 

 
 
Symbol 
 

Definition Unit 

CA  Lateral acceleration command m/s2 

 

SA  Sensed acceleration m/s2 

 

bza ,  Acceleration along z-axis in body-fixed system 
 

m/s2 

)(
,
c
bza  Acceleration command along z-axis in body-fixed 

system 
 

m/s2 

)(
,
m
bza  Measured acceleration along z-axis in body-fixed 

system 
 

m/s2 

Cl 
Fin cant moment coefficient 
 

- 

Clp Spin damping moment coefficient 
 

- 

d Caliber of the projectile 
 

m 

1e , 2e , 3e  Errors (three-loop autopilot) 
 

- 

F  Sum of aerodynamic and thrust forces N 
 

1G , 2G , 3G  Transfer functions (three-loop autopilot) 
 

- 

H Closed loop transfer function 
 

- 

Ng  Component of the gravity vector that is normal to 
the projectile velocity vector 
 

m/s2 

Ix Moment of inertia about x-axis of the projectile 
 

kg m2 

Iyy Moment of inertia about y-axis 
 
 

kg m2 

Kdc , Ka ,  

Ki , Kr  

Gain constants (three-loop autopilot) 
 

- 
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m Mass of the projectile 

 
kg 

 Navigation ratio - 

   

p Spin rate 
 

rad/s 

q Pitch rate rad/s 
   

)(mq  Measured pitch rate 
 

rad/s 

q  Dynamic pressure 
 

Pa 

R  Displacement w.r.t. the projectile center of gravity 
 

m 

S Cross section of the projectile 
 

m2 

s Frequency variable (Laplace transform) 
 

1/s 

V Airspeed m/s 
 

BV  Velocity of the projectile m/s 
 

TV  Velocity of the target m/s 

   

BX  Position of the projectile m/s 
 

TX  Position of the target m/s 

   

 Pitch angle 
 

rad 

 Fin deflection 
 

rad 

C Fin deflection command 
 

rad 

t Time step s 

 Projectile-to-target line of sight (LOS) angle 
 

rad 

 Roll angle 
 

rad 
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C Roll angle command 
 

rad 

z System damping ratio 
 

- 

  Angular velocity of the projectile 
 

rad/s 

LOS  LOS angular velocity rad/s 

   

N System natural angular frequency rad/s 
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ANNEX G NUMERICAL INTEGRATION 

 
A numerical integration scheme is required because the equations described in this 
STANREC are too complex for analytical or closed form solution. A 7th order Runge-Kutta-
Fehlberg scheme with 8th order error estimation will be used. See selected bibliography in 
Annex H. 
 
As far as the integration time step is concerned, two methods are available: either keeping 
the time step constant or adjusting the time step by means of the error estimation.  
Adjusting the time step is useful to keep down computer run time. 
 
As far as the integration of the quaternion is concerned, no renormalization of the 
quaternion should be applied. As a matter of fact, checking the evolution of the norm gives 
some insight of the quality of the integration process.    
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