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1 Executive Overview 
Software and programmable logic devices1 play an increasingly important role in the operation 

and control of hazardous, safety-related2 functions.  Software first played a role in performing 

complex ballistic computations for ordnance, a safety-related function.  However, applications 

still required people in the process, providing assurance of the validity, and hence, the safety of 

the results.  In decades since the engineering community has relinquished human control of 

hazardous operations.  This change is primarily due to the ability of software to perform critical 

control tasks reliably at speeds unmatched by its human counterparts.  Other factors influencing 

this transition are our ever-growing need and desire for increased versatility, greater 

performance, higher efficiency, and decreased life cycle cost.  In most instances, software can 

meet all of the above attributes when properly designed, developed, tested, and integrated.  

Increasingly the human operator is being taken out of the control loop as software logic can be 

designed to make accurate decisions without emotion or doubt. 

There is a critical need to perform system safety engineering on safety-related systems to not 

only reduce the potential safety risk in all aspects of a program, but also to accurately assess the 

safety risks attributed to software.  Software System Safety (SSS) activities involve the 

specification, design, code, test, Verification and Validation (V&V), operation and maintenance, 

and change control functions of the software engineering development process.  The definition of 

system safety engineering, which includes SSS, is: 

“The application of engineering and management principles, criteria, and techniques to 

optimize all aspects of safety within the constraints of operational effectiveness, time, and cost 

throughout all phases of the system life cycle.” 

The ultimate responsibility for the development of a “safe system” rests with program 

management and the system development team.  The commitment to provide qualified people 

and an adequate budget and schedule for a software development program begins with the 

program director or Program Manager (PM).  Top management must be a strong voice of safety 

advocacy and must communicate this personal commitment to each level of program and 

technical management.  The PM must support the integrated safety process between systems 

engineering, software engineering, and safety engineering in the design, development, test, and 

operation of the system software.  The purpose of this document is as follows: 

Provide management and engineering guidelines to achieve an acceptable level of assurance 

that software will execute within the system context and operational environment with an 

acceptable level of safety risk. 

                                                 
1 Software-like devices include programmable logic devices and similar hardware 
2 The term “safety-related” encompasses both safety critical and safety significant 
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2 Introduction to the AOP 

2.1 Introduction 

The system development team should read this section of this Allied Ordnance Publication 

(AOP).  This section discusses the following major subjects: 

 The major purpose for writing this AOP 

 The scope of the subject matter that this AOP will present 

 How this AOP is organized and the best procedure for you to use, to gain its full benefit 

The individual responsible for System Safety (generally a System Safety Engineer) is a key billet 

and is crucial to the design, development, testing and redesign of modern systems.  Whether a 

hardware engineer, software engineer, “safety specialist,” or safety manager, it is his/her 

responsibility to ensure that an acceptable level of safety risk is achieved and maintained 

throughout the life cycle of the system(s) being developed.  This AOP provides a rigorous and 

pragmatic process of SSS planning and analysis to be used by the System Safety Engineer. 

SSS cannot function independent of the total effort nor can it be ignored.  Systems, both 

“simple” and highly integrated multiple subsystems and systems of systems, are experiencing an 

extraordinary growth in the use of computers, software, and software-like devices to monitor 

and/or control safety-related subsystems and functions.  A software specification error, design 

flaw, or the lack of initial safety-design requirements can contribute to or cause a system failure 

or erroneous human decision.  Preventable death, injury, loss of the system, equipment damage, 

or environmental damage can result.  To achieve an acceptable level of safety for software and 

software-like devices used in critical applications, software safety engineering must have 

primary emphasis early in the requirements definition and system conceptual design process.  

Safety-related software must then receive a continuous emphasis from management as well as a 

continuing engineering analysis throughout the development and operational life cycles of the 

system. 

The process described in this AOP, which is an application of System Safety Engineering to 

software design, development, testing and maintenance, is also applicable to the safety 

assessment of software-like devices including programmable logic devices used in weapons and 

related systems. Like software, the application of these devices in safety-related roles is 

increasing. There are finite differences in the process when applied to these devices that will be 

noted in the subsequent sections of the AOP. 

To summarize, this AOP is a “how-to” guide for use in the understanding of SSS and the 

contribution of each functional discipline to the overall goal.  It is applicable to all types of 

weapons and related systems in all types of operational uses. 

2.2 Purpose 

The purpose of the AOP is to provide management and engineering guidelines to achieve a 

reasonable level of assurance that the software and software-like devices will execute within the 

system context and operational environment with an acceptable level of safety risk. 
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2.3 Scope 

This AOP is both a reference document and management tool for aiding managers and engineers 

at all levels, in any government or industrial organization.  It documents “how to” in the 

development and implementation of an effective SSS process.  Effective implementation should 

minimize system hazards caused by software in safety-related applications. 

The primary responsibility for management of the SSS process lies with the system safety 

manager/ engineer in both the supplier and acquirer’s organizations.  However, nearly every 

functional discipline has a vital role and must be intimately involved in the SSS process.  The 

SSS tasks, techniques, and processes outlined in this AOP are basic enough to apply to any 

system that uses software or software-like devices in critical areas.  It serves the need for all 

contributing disciplines to understand and apply qualitative and quantitative analysis techniques 

to ensure the safety of hardware systems controlled by software. 

This AOP is a guideline and is not intended to supersede any National Government or Agency 

policy, standard, or guidance pertaining to system safety (e.g., US MIL-STD-882 series, UK 

Def-Stan 00-56) or software engineering and development standards.  It is written to clarify the 

SSS requirements and tasks specified in governmental and commercial standards and guideline 

documents.  This AOP is not a compliance document but a reference document.  It provides the 

program management, especially the system safety manager and the software development 

manager with sufficient information to perform the following: 

 Properly scope the SSS effort 

 Identify the data needed to effectively monitor the developer’s compliance with system 

safety requirements 

 Evaluate the residual risk associated with the software or software-like devices in the 

overall system context 

The AOP is not a tutorial on software engineering.  However, it does address some technical 

aspects of software function and design to assist with understanding software safety.  It is an 

objective of this AOP to provide each member of the SSS team with a basic understanding of 

sound systems and software safety practices, processes, and techniques.  Another objective is to 

demonstrate the importance of the interaction between technical and managerial disciplines in 

defining software safety requirements (SSR) for the safety-related software components of the 

system.  A final objective is to show where the team can design safety features into the software 

to eliminate or control identified hazards. 

2.4 AOP Overview 

2.4.1 Introduction to the “Systems” Approach 

System safety engineering demonstrated the benefits of a “systems” approach to safety risk 

analysis and mitigation in numerous systems.  When conducting a hazard analysis on a hardware 

subsystem as a separate entity, System Safety identifies a set of unique hazards applicable only 

to that subsystem.  However, when they analyze that same subsystem in the context of its 

interfaces with the rest of the “system components,” the analysis produces numerous other 

hazards not discovered by the original analysis.  Conversely, the results of a system-level 

analysis may demonstrate that hazards identified in the subsystem analysis are either reduced or 
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eliminated by other components of the system.  Regardless, the identification of critical 

subsystem interfaces (such as software) with their associated hazards is a vital aspect of safety 

risk minimization for the total system. 

The systems approach should be applied when analyzing software that performs, and/or controls, 

safety-related functions within a system.  The success of a software safety program is predicated 

on it.  Software is a key component of the safety risk potential of systems being developed and 

fielded.  Not only are the internal interfaces of the system important to safety, but also are the 

external interfaces. 

Figure 2-1 depicts specific software internal interfaces within the “system” block (within the 

ovals) and external software interfaces to the system.  Each identified software interface may 

possess safety risk potential to the operators, maintainers, environment, or the system itself.  The 

acquisition and development process must consider these interfaces during the design of both the 

hardware and software systems.  To accomplish this, the hardware and software development life 

cycles must be fully understood and integrated by the design team. 

 

Figure 2-1:  Example of Internal System Interfaces 

2.4.1.1 The Hardware Development Life Cycle 

The typical hardware development life cycle (shown in Figure 2-2) varies from country to 

country and occasionally from program to program.  A proven acquisition model that produces 

the desired engineering results in the design, development, manufacturing, fabrication, and test 

activities is essential to ensuring the operational capabilities and maintainability of the system 

throughout its life cycle.  In general, different elements of the system will be in different phases 

of development until the project is complete.  Between each phase, an assessment of the system 

design and program status should occur before proceeding into subsequent phases of the 

development or deployment life cycle. 
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Figure 2-2:  Weapon System Life Cycle 

2.4.1.2 The Software Development Life Cycle 

The system safety team must be fully aware of the software life cycle used by the development 

activity.  Software Engineering teams have developed numerous life cycle models that system 

supplier’s use in some capacity on a variety of development programs.  This AOP will not enter 

into a discussion as to the merits and limitations of different life cycle process models. From a 

software engineering perspective, the software engineering team must choose the life cycle 

model best suited for the individual development.  The important issue is for the system safety 

team to recognize and understand which model the Software Engineering Team is using, and 

how they should correlate and integrate safety activities with the chosen model to achieve the 

desired outcomes and safety goals. Appendix C of this AOP presents several different models to 

introduce examples to the reader and discuss the integration of the SSS process into those 

models. 

2.4.1.3 The Integration of Hardware and Software Life Cycles 

The life cycle process of system development was instituted so managers would not be forced to 

make snap decisions.  A structured life cycle, complete with controls, audits, reviews, and key 

decision points, provides a basis for sound decision making based on knowledge, experience, and 

training.  It is a logical flow of events representing an orderly progression from a “user need” to 

finalize activation, deployment, and support. 

The “systems approach” to software safety engineering supports a structured, well-disciplined, 

and adequately documented system acquisition life cycle model that incorporates both the system 

development model and the software development model.  Program plans must describe in detail 

how each engineering discipline will interface and perform within the development life cycle.  

Providing graphical representations of the life cycle model of choice for a given development 

activity during the planning processes will aid in the planning and implementation processes of 

software safety engineering.  It allows for the integration of safety-related requirements and 
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guidelines into the design and code phases of software development.  It also assists in the timely 

identification of safety-specific test and verification requirements to prove the intended 

implement of the original design requirements. Further, it allows the incorporation of safety 

inputs to the prototyping activities in order to demonstrate safety concepts. 



AOP-52 

3-1 
Edition B Version 1 

 

3 
Software Safety 

Engineering 

3.4 
Software Safety 

Risk 

Assessment 

3.5 
Safety Assessment 

Report/Safety 
Case 

3.3 
Software Safety 

Task 

Implementation 

3.2 
Software Safety 

Planning 
Management 

3.1 
Introduction 

3 Software Safety Engineering 

3.1 Introduction 

This section of the AOP introduces the managerial process and the technical methods and 

techniques inherent in the performance of software safety tasks within the context of a systems 

safety engineering and software development program.  It will include detailed tasks and 

techniques for the performance of safety analysis, and for the traceability of Software Safety 

Requirements (SSRs) from design to test.  It will also provide the current “best practices” which 

may apply as one considers the necessary steps in establishing a credible and cost-effective SSS 

program (Figure 3-1). 

 

Figure 3-1:  Chapter Contents 

 

This chapter applies to all managerial and technical disciplines.  It describes the processes, tools, 

and techniques used to reduce the safety risk of software operating in safety-related systems. 

Its primary purposes are as follows: 

 To establish the relationship between software safety and the overall system safety 

 Define a software safety engineering best practice 

 Describe essential tasks required of each professional discipline assigned to the SSS 

Team 

 Identify interface relationships between professional disciplines and the individual tasks 

assigned to the SSS Team 

 Identify “best practices” to complete the software safety process and describe each of its 

subprocesses 
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 Recommend “tailoring” actions to the software safety process to accommodate specific 

requirements such as different software engineering methodologies 

This document assumes a novice’s understanding of software safety engineering within the 

context of system safety and software engineering.  Note that many topics of discussion within 

this section are constructs within basic system safety engineering.  This is because it is 

impossible to discuss software safety outside of the domain of system safety engineering and 

management, systems engineering, software development, and program management. 

3.1.1 Section Format 

This section presents both graphical and textual descriptions of the managerial and technical 

tasks required for a successful software safety-engineering program. The format of each 

managerial process task and technical task, method, or technique will provide the following: 

 Graphical representation of the process step or technical method 

 Introductory and supporting text 

 Prerequisite (input) requirements for task initiation 

 Activities required to perform the task (including interdisciplinary interfaces) 

 Associated subordinate tasks 

 Critical task interfaces 

 A description of required task output(s) and/or product(s) 

This particular format helps to explain the inputs, activities, and outputs for the successful 

accomplishment of activities to meet the goals and objectives of the software safety program.  

For those that desire additional information, Appendices provide supplemental information to the 

main sections of this document. 

3.1.2 Process Charts 

The process charts in Appendix F graphically depict the process from a high, system-level safety 

assessment process to details regarding individual steps and tasks in the process.  The intent of 

these charts is to complement the content of AOP-15: the system-level process both provides the 

basis for the Software Systems Safety Process and shows the inherent cohesiveness of the 

Software Systems Safety Process with the System Safety Process.  Therefore, the system-level 

charts are essential to the overall process description.  Following the process charts, the reader 

can gain an understanding of the process and the various steps involved in each task within the 

process. 

Each system and software safety-engineering task has a supporting, intermediate level process 

chart.  Each intermediate level process chart provides the software safety analyst with a list of 

the inputs required to perform the overall process, the sub-processes involved in completing the 

process, the expected outputs from the process, the personnel involved, and the entry and exit 

criteria for the task 
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3.1.3 Software Safety Engineering Products 

The specific products produced by the software safety engineering tasks are difficult to segregate 

from those developed within the context of the System Safety Program (SSP).  It is likely, within 

individual programs, that supplemental software safety documents and products will be produced 

to support the system safety effort.  These may include supplemental analysis, Data Flow 

Diagrams (DFD), functional flow analysis, and software requirements specifications (SRS) and 

the development of Software Analysis Folders (SAF).  This AOP will identify and describe the 

documents and products that the software safety tasks will either influence or generate.  Specific 

documents include the following: 

 System Safety Program Plan (SSPP) 

 Software Safety Program Plan Appendix to SSPP (SwSPP) 

 Generic Software Safety Requirements List (GSSRL) 

 Safety-Related  Functions List (SRFL) 

 Preliminary Hazard List (PHL) 

 Preliminary Hazard Analysis (PHA) 

 Subsystem Hazard Analysis (SSHA) 

 Safety Requirements Criteria Analysis (SRCA) 

 System Hazard Analysis (SHA) 

 Operating and Support Hazard Analysis (O&SHA) 

 Safety Assessment Report (SAR) 

3.2 Software Safety Planning Management 

Inadequately specified safety requirements in the system-level specification documents generally 

lead to program schedule and cost impacts later when safety issues arise and the necessary 

system safety engineering is not complete.  Program planning precedes all other phases of the 

SSS program and is perhaps the single most important step in the overall safety process.  The 

software safety program must be integrated with and parallel to both the System Safety Program 

and the software development program.  The software safety analyses must provide the 

necessary input to software development. These inputs to engineering processes include: 

 Safety design requirements 

 Safety design changes 

 Safety tests 

The software aspects of system safety tend to be more problematic since the risk associated with 

the software is often ignored or poorly understood until late in the system design.  Establishing 

the safety program and/or performing the necessary safety analyses later in the program results in 

delays, cost increases, and a less effective safety program. 

The history of software-related safety issues, as derived from lessons learned, re-enforces the 

need for a practical, logical, and disciplined approach to reducing the safety risk of software 
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performing safety-related functions within a system.  Establishing this managerial and 

engineering discipline “up front” is essential as is including it in the planning activities that both 

describe and document the breadth and depth of the program.  Detailed planning ensures the 

identification of critical program interfaces and support and establishes formal lines of 

communication between disciplines and among engineering functions.  The potential for 

program success increases through sound planning activities that identify and formalize the 

managerial and technical interfaces of the program. 

This section is applicable to all members of the SSS Team.  It assumes a minimal understanding 

and experience with safety engineering programs.  The topics include the following: 

 Identification of managerial and technical program interfaces required by the SSS Team 

 Definition of user and supplier contractual relationships to ensure that the SSS Team 

implements the tasks, and produces the products, required to meet contractual 

requirements 

 Identification of programmatic and technical meetings and reviews normally supported 

by the SSS Team 

 Identification and allocation of critical resources to establish a SSS Team and conduct a 

software safety program 

 Definition of planning requirements for the execution of an effective program 

 

The planning for an effective SSP and software safety program requires extensive forethought 

from both the supplier and the acquirer.  Although they both envision a perfect SSP, there are 

subtle differences associated with the identification, preparation, and execution of a successful 

safety program from these two perspectives, which must be understood by both.    The contents 

of Figure 3-2 and  

Figure 3-3 represent the primary differences between agencies that both must understand before 

considering the software safety planning and coordinating activities.  These differences will be 

discussed in section 3.2.1 

3.2.1 Planning 

Comprehensive planning for the software safety program requires an initial assessment of the 

degree of software involvement in the system design and the associated hazards.  The 

development and safety teams know little about the system other than operational requirements 

during the early planning stages.  Therefore, the contractual safety requirements must encompass 

all possible designs.  This generally results in a generic set of requirements that will require later 

tailoring of a SSS program to the system design and implementation.  Having third party 

certification (e.g. CMM, CMMI, DO-178B, ISO 9001) alone does not guarantee that safety 

concerns will be properly addressed.   

Figure 3-2 represents the basic inputs, outputs, tasks, and critical interfaces associated with the 

planning requirements associated with the procuring office or agency (acquirer).  Planning and 

budgeting for all these billets and functions result in proper execution and success of the safety 

program.  Failure to do so should be captured as program risk and safety risk and reported at 

program reviews. 
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Figure 3-2:  Software Safety Planning Viewpoint of the Procuring Authority 

 

For the acquirer, software safety program planning begins as soon as they identify the need for 

the system.  The acquirer must identify points of contact within the organization and define the 

interfaces between various engineering disciplines, administrative support organizations, 

program management, contracting group, and Integrated Product Teams (IPT) within the 

acquirer to develop the necessary requirements and specifications documents.  The acquirer must 

incorporate the necessary language into any contractual documents to ensure that the system 

under development will meet the safety goals and objectives. 

Acquirer safety program planning continues through contract award and may require periodic 

updating during initial system development and as the development proceeds through various 

phases.  However, management of the overall SSP continues through system delivery and 

acceptance and throughout the system’s life cycle.  After deployment, the acquirer must continue 

to track system hazards and risks and monitor the system in the field for safety concerns 

identified by the user.  The acquirer must also make provisions for safety program planning and 

management for any upgrades, product improvements, maintenance, technology refreshment, 

and other follow-on efforts to the system. 

The major milestones affecting the acquirer’s safety and software safety program planning 

include release of contract requests for proposals or quotes, proposal evaluation, major program 

milestones, system acceptance testing and evaluation, production contract award, initial 

operational capability (release to the users), and system upgrades or product improvements. 

Acquisition Policy 

High-level system 

requirements 

Proposal WBS 

Safety Policy 

Generic Requirements and 
Lessons Learned 

Preliminary Hazards List 

Laws and Regulations 

Standards Cost Estimates 

 

Co 

Software Safety 

Program Planning 

Procuring Agency 

(Customer) 

Input to contractual docs 

Safety Management Plan 

and Milestones for Software 
Safety 

System Safety Program Plan 
addressing Software Safety  

SSWG Charter 

Inputs to Software 

Documents, Testing 
Documents and plans 

Work Breakdown Structures 

Primary Task 

Interpretation of Contract Requirements 
Resource Requirements Determination 

Establish System Safety Program 

Develop Software Safety Program Plan  

Program Management 

Contracts personnel 

Systems and Software engineering 
Support Engineering Disciplines 

Safety Certification Authority 

Interfacing system design teams 

Primary sub-Tasks Critical Interfaces 

Iterative Loop 

Inputs  Outputs 



AOP-52 

3-6 
Edition B Version 1 

 

Although the supplier’s software safety program planning begins after receipt of a contract 

request for proposals or quotes, the supplier can significantly enhance his/her ability to establish 

an effective program through prior planning (see  

Figure 3-3).  Prior planning includes establishing effective systems engineering and software 

engineering processes that fully integrate system and software systems safety.  Corporate 

engineering standards and practices documents that incorporate the tenets of system safety 

provide a strong baseline from which to build a successful SSP even though the contract may not 

contain specific language regarding the safety effort. 

 

Figure 3-3:  Software Safety Planning Viewpoint of the Developing Agency 

 

Many acquisition reform initiatives recommend that the respective governments take a more 

interactive and/or proactive approach to system development without interfering with that 

development.  The interactive aspect is to participate as a member of the supplier’s Integrated 

Product Teams (IPTs) as an advisor without hindering development.  This requires a careful 

balance on the part of the government participants.  From the system safety and SSS perspective, 

that includes active participation in the appropriate IPTs by providing the government 

perspective on recommendations and decisions made in those forums.  This also requires the 

government representative to alert the supplier to hazards known to the government but not to 

the supplier. 

Often, contract language is non-specific and does not provide detailed requirements, especially 

safety requirements for the system.  Therefore, the supplier must define a comprehensive SSP 
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that ensures the delivered system provides a level of safety risk to the acquirer that is as low as 

reasonably practicable (ALARP), not only for the acquirer’s benefit, but for the supplier’s 

benefit as well.  At the same time, the supplier must remain competitive and reduce safety 

program costs to the lowest practicable level consistent with ensuring the delivery of a system 

with the lowest risk practicable.  This (residual) risk has to be a documented agreement between 

acquirer and supplier.  Although the preceding discussion focused on the interaction between the 

Government acquirer and the supplier, the same tenets apply to any contractual relationship, 

especially between prime and subcontractors. 

The supplier’s software safety planning continues after contract award and requires periodic 

updates as the system proceeds through various phases of development.  These updates should be 

in concert with the acquirer’s software safety plans.  However, management of the overall 

system and SSS programs continues from contract award through system delivery and 

acceptance and may extend throughout the system life cycle, depending on the type of contract.  

If the contract requires that the supplier perform routine maintenance, technology refreshments, 

or system upgrades, the software safety program management and engineering must continue 

throughout the system’s life cycle.  Thus, the supplier must make provisions for safety program 

planning and management for these phases and other follow-on efforts on the system. 

The major milestones affecting the supplier’s safety and software safety program planning 

include the receipt of contract requests for proposals or quotes, contract award, major program 

milestones, system acceptance testing and evaluation, production contract award, release to the 

acquirer, system upgrades, and product improvements. 

While the software safety planning objectives of the acquirer and supplier may be similar, the 

planning and coordination required to meet these objectives may come from different 

perspectives (in terms of specific tasks and their implementation), but they must be in concert.   

Regardless, both agencies must work together to meet the safety objectives of the program.  In 

terms of planning, this includes the following: 

 Establishment of a SSP 

 Definition of acceptable levels of safety risk 

 Definition of critical program, management, and engineering interfaces 

 Definition of contract deliverables 

 Development of a Software Hazard Criticality Matrix (SHCM) (see Section 3.2.1.5) 

3.2.1.1 Establish the System Safety Program 

The acquirer must establish the safety program as early as practical in the development of the 

system.  The project manager should identify a safety manager early in the program to serve as 

the single point of contact for all safety-related matters on the system.  The project manager 

should budget for, and the safety manager should establish and chair, a Software Systems Safety 

Working Group (SwSSWG) or SSS Team.  The safety manager will interface with safety review 

authorities, the supplier safety team, acquirer and supplier program management, the safety 

engineering team, and other groups as required ensuring that the safety program is effective and 

efficient.  For large system developments where software is likely to be a major portion of the 

development, a safety engineer for software may also be identified who reports directly to the 
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overall system safety manager.  The size of the safety organization will depend on the 

complexity of the system under development, and the inherent safety risks.  Another factor 

influencing the size of the project manager’s safety team is the degree of interaction with the 

acquirer and supplier and the other engineering and program disciplines.  If the development 

approach is a team effort with a high degree of interaction between the organizations, the safety 

organization may require additional personnel to provide adequate support. 

The acquirer should prepare a System Safety Management Plan (SSMP) describing the overall 

safety effort within the acquirer’s organization and the interface between the acquirer safety 

organization and the supplier’s system safety organization.  The SSMP is similar to the SSPP in 

that it describes the roles and responsibilities of the program office individuals with respect to 

the overall safety effort.  The safety manager or project manager should coordinate the SSMP 

with the supplier’s SSPP to ensure that the tasks and responsibilities are complete and will 

provide the desired risk assessment.  The SSMP differs from the SSPP in that it does not describe 

the details of the safety program, such as analysis tasks, contained in the SSPP. 

The acquirer must specify the software safety program for programs where software and 

software-like devices (e.g. PLDs) performs or influences safety-related functions of the system.  

The acquirer must establish IPTs in accordance with contractual requirements, managerial and 

technical interfaces and agreements, and the results of all planning activities discussed in 

previous sections of this AOP.  Proper and detailed planning will increase the probability of 

program success.  The tasks and activities associated with the establishment of the SSP are 

applicable to both the supplier and the acquirer.  Unfortunately, the degree of influence of the 

software on safety-related functions in the system may be unknown until the design progresses to 

the point of functional allocation of requirements at the system level. 

The project manager must predicate the software safety program on the goals and objectives of 

the system safety and the software development disciplines of the proposed program.  The safety 

program must focus on the identification and tracking (from design, code, and test) of both initial 

SSRs and guidelines, and those requirements derived from system-specific, functional hazards 

analyses.  A common deficiency in software safety programs is the lack of a team approach in 

addressing both the initial and the functional SSRs of a system.  The software development 

community has a tendency to focus on only the initial SSRs while the system safety community 

may focus primarily on the functional SSRs derived through hazard analyses.  A sound SSS 

program traces both sets of requirements through test and requirements verification activities.  

The ability to identify (in total) all applicable SSRs is essential for any given program. 

3.2.1.2 Defining Acceptable Levels of Risk 

One of the key elements in safety program planning is the identification of the acceptable level 

of risk for the system.  AOP-15 provides the guidelines for defining levels of risk.  The acquirer 

must also provide the suppliers with risk acceptance authorities and reporting requirements.  The 

supplier must provide the acquirer supporting documentation for the risk acceptance. 

3.2.1.3 Program Interfaces 

The system safety engineer is responsible for the coordination, initiation, and implementation of 

the Software Systems Safety engineering program.  While they cannot delegate this 

responsibility to any other engineering discipline within the development team, software safety 
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can (and must) assign specific tasks to the domain engineers with the appropriate expertise.  

Historically, system safety engineering performs the engineering necessary to identify, assess, 

and eliminate or reduce the safety risk of hazards associated with complex systems.  Now, as 

software becomes a major aspect of the system, software safety engineering must establish and 

perform the required tasks and establish the technical interfaces required to fulfill the goals and 

objectives of the system safety (and software safety) program.  However, the SSS Team cannot 

accomplish this independently without the inter-communication and support from other 

managerial and technical functions.  Many product development agencies use the IPTs structure 

to ensure the success of the design, manufacture, fabrication, test, and deployment of weapon 

systems.  These IPTs formally establish the accountability and responsibility between functions 

and among team members.  This accountability and responsibility is both from the top down 

(management-to-engineer) and from the bottom up (engineer-to-management). 

The establishment of a credible SSS activity within an organization requires this same rigor in 

the identification of team members, the definition of program interfaces, and the establishment of 

lines of communication.  Establishing formal and defined interfaces allows program and 

engineering managers to assign required expertise for the performance of the identified tasks of 

the software safety engineering process.  Figure 3-4 shows the common interfaces necessary to 

support an SwSSP.  It includes management interfaces, technical interfaces, and contractual 

interfaces. 
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Figure 3-4:  Software Safety Program Interfaces 

3.2.1.3.1 Management Interfaces 

The Project Manager: 

 Coordinates the activities of each professional discipline for the entire program, 

 Allocates program resources, 

 Approves the programs’ planning documents, including the SSPP, and 

 Reviews safety analyses; accepts impact on system for Critical and higher category 

hazards (based upon acceptable levels of risk); and submits finding to senior acquisition 

personnel for acceptance of unmitigated, unacceptable hazards. 
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It is the project manager’s responsibility to ensure that processes are in place within a program 

that meet, not only the programmatic, technical, and safety objectives, but also the functional and 

system specifications and requirements of the acquirer.  The project manager must allocate 

critical resources within the program to reduce the sociopolitical, managerial, financial, 

technical, and safety risk of the product.  Therefore, management support is essential to the 

success of the SSS program. 

The project manager ensures that the safety team develops a practical process and implements 

the necessary tasks required to: 

 Identify system hazards 

 Categorize hazards in terms of severity and likelihood 

 Perform causal factor analysis 

 Derive hardware and software design requirements to eliminate and/or control the 

hazards 

 Provide evidence for the implementation of hardware and software safety design 

requirements 

 Analyze and assess the residual safety risk of any hazards that remain in the design at the 

time of system deployment and operation 

 Report the residual safety risk and hazards associated with the fielded system to the 

appropriate acceptance authority 

The safety manager and the software engineering manager depend on program management for 

the allocation of necessary resources (time, tools, training, money, and personnel) for the 

successful completion of the required tasks. 

3.2.1.3.2 Technical Interfaces 

The engineering disciplines associated with system development must also provide technical 

support to the SSS Team (Figure 3-5).  Engineering management, design engineers, systems 

engineers, software development engineers, Integrated Logistics Support (ILS), and other 

domain engineers supply this essential engineering support.  Other domain engineers include 

reliability, human factors, quality assurance (QA), test and evaluation, verification and 

validation, maintainability, survivability, and supportability.  Each member of the engineering 

team must provide timely support to the defined processes of the SSS Team to accomplish the 

safety analyses and for specific design influence activities that eliminate, reduce, or control 

hazard risk.  This includes the traceability of SSRs from design-to-test (and test results) with its 

associated and documented evidence of implementation. 

A sure way for the software safety activity to fail is to fail to secure software engineering 

acceptance and support of the software safety process, functions, and implementation tasks.  One 

must recognize that most formal education and training for software engineers and suppliers does 

not present, teach, or rationalize system safety.  The system safety process relating to the 

derivation of functional SSR through hazard analyses is foreign to most software suppliers.  In 

fact, the concept that software can be a causal factor to a hazard is foreign to many software 

engineers. 
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Figure 3-5:  Proposed SSS Team Membership 

 

Without the historical experience of cultivating technical interfaces between software 

development and system safety engineering, several issues may need resolution.  They include: 

 Software engineers may feel threatened that system safety has the responsibility for 

activities considered part of the software engineering realm  

 Software suppliers are confident enough in their own methods of error detection, error 

correction, and error removal, that they ignore the system safety inputs to the design 

process.  This is normally in support of initial SSRs 

 There is insufficient communication and resource allocation between software 

development and system safety engineering to identify, analyze, categorize, prioritize, 

and implement both generic and derived SSRs 

A successful SSS effort requires the establishment of a technical SSS Team approach.  The SSP 

Manager, in concert with the systems engineer and software engineering team leaders must 

define the individual tasks and specific team expertise required and assigns responsibility and 

accountability for the accomplishment of these tasks.  The SwSPP must include the identification 

and definition of the required expertise and tasks in the software safety portion or appendix.  The 

team must identify both the generic SSRs and guidelines and the functional safety design 

requirements derived from system hazards and failure modes that have specific software input or 

influence.  Once the team identifies these hazards and failure modes they can identify specific 

safety design requirements through an integrated effort.  All SSRs must be traceable to test and 

be correct, complete, and testable where possible.  The Requirements Traceability Matrix (RTM) 

within the Safety Requirements Criteria Analysis (SRCA) is a mechanism to this traceability.  

The implemented requirements must eliminate, control, or reduce the safety risk ALARP while 

meeting the user requirements within operational constraints.   

3.2.1.3.3 Contractual Interfaces 

Management planning for the SSS function includes the identification of contractual interfaces 

and obligations.  Each program has the potential to present unique challenges to the system 
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safety and software development managers.  These may include a request for procurement 

document that does not specifically address the safety of the system, to contract deliverables that 

are extremely costly to develop.  Regardless of the challenges, the tasks needed to accomplish a 

SSS program must be planned to meet both the system and user specifications and requirements 

and the safety goals of the program. 

3.2.1.4 Contract Deliverables 

The contract tasking defines the deliverable documents and products desired by the acquirer.  

The SSPP should address deliverable documents and include the necessary activities and process 

steps required for its production.  Completion of contract deliverable documentation may have 

links to the acquisition life cycle of the system and the program milestones identified in any 

systems engineering management plan.  The planning required by the system safety manager 

ensures that the system safety and software safety processes provide the necessary data and 

output for the successful accomplishment of the plans and analysis.  The system safety schedule 

should track closely to the systems engineering management plan and be proactive and 

responsive to both the acquirer and the design team.  The safety master schedule and the SSPP 

should address contractually required documentation whether these documents are contractually 

deliverable or internal documents required supporting the development effort. 

The procuring agency must also specify the content and format of each deliverable item.  As 

existing government standards transition to commercial standards and guidance, the safety 

manager must ensure that the team does sufficient planning to specify the breadth, depth, and 

timeline of each deliverable document.  The breadth and depth of the deliverable documents 

must provide the necessary audit trail to ensure that acceptable levels of risk are achieved (and 

are visible) during development, test, support transition, and maintenance in the out-years.  The 

deliverables must also provide the necessary evidence or audit trail for validation and 

verification of SSRs.  The primary method of maintaining a sufficient audit trail is the utilization 

of a supplier’s safety data library (SDL).  This library would be the repository for all safety 

documentation. 

3.2.1.5 Developing a Software Safety Criticality Index Matrix 

A Software Safety Criticality Index (SSCI) matrix is a table used to assign levels of criticality for 

software functions dependent on the severity of the hazard that a fault in the software function 

could cause and the autonomy of the software which could cause the hazard.  The supplier’s 

safety team may use this type of matrix or may propose an alternate matrix if one more 

appropriate to the system under development exists.  The purpose of a SSCI matrix is to enable 

the safety engineer to assess and assign levels of rigor to the development process for software 

functions when the proposed autonomy of the software is known and the severity of any hazard 

linked to the software has been established.  See section 3.4 for guidelines on levels of 

autonomy, SSCI’s and levels of rigor. 

3.2.2 Management 

Effective management of the safety program is essential to the effective and efficient reduction 

of system risk.  This section discusses the managerial aspects of the software safety tasks and 

provides guidance in establishing and managing an effective software safety program.  

Establishing a software safety program includes establishing a Software System Safety Working 
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Group (SwSSWG).  This is normally a sub-group of the SSWG and chaired by the safety 

manager.  The SwSSWG has overall responsibility for the following: 

 Monitoring and control of the software safety program 

 Coordinating with the national safety review authority to ensure the adequacy of the 

planned software safety process 

 Identifying and resolving hazards with software causal factors 

 Interfacing with the other IPTs 

 Performing final safety assessment of the system design 

In the early planning phases, the specific design configuration of the system and the degree of 

interaction of the software with the potential hazards in the system are largely unknown.  

However, knowledge from previous, similar systems and lessons learned can provide significant 

information and insight to aid safety planning.  The higher the degree of software involvement, 

the greater the resources required to perform the assessment.  To an extent, the software safety 

program manager can use the early analyses of the design, participation in the functional 

allocation, and high-level software design process to minimize the amount of safety-related 

software.  If the architecture distributes safety-related functions throughout the system and its 

related software, then the software safety program must encompass a much larger portion of the 

software.  However, if the safety-related functions are associated with as few software modules 

as practical, the level of effort may be significantly reduced. 

Effective planning and integration of the software safety efforts into the other IPTs will 

significantly reduce the software safety-related tasks performed by the SSS Team.  Incorporating 

the generic SSRs into the plans developed by the other IPTs allows them to assume 

responsibility for their assessment, performance, and/or evaluation.  For example, if the SSS 

Team provides the quality assurance generic SSRs to the Software Quality Assurance (SQA) 

IPT, they will perform compliance assessments with requirements, not just for safety, but also 

for all aspects of the software engineering process.  In addition, if the SQA IPT “buys-into” the 

software safety program and its processes, it significantly supplements the efforts of the software 

safety engineering team, reduces their workload, and avoids duplication of effort.  The same is 

true of the other IPTs such as CM and Software Test and Evaluation.  In identifying and 

allocating resources to the software safety program, the software safety program manager can 

perform advance planning, establish necessary interfaces with the other IPTs, and identify 

individuals to act as software safety representatives on those IPTs 

Identifying the number of analyses and the level of detail required to adequately assess the 

software involves a number of processes.  The process begins with the identification of the 

system-level hazards in the PHL.  This provides an initial idea of the concerns that must be 

assessed in the overall safety program.  From the system specification review process, the 

functional allocation of requirements results in a high-level distribution of safety-related 

functions and system-level safety requirements to the design architecture.  The safety-related 

functions and requirements are thus known in general terms.  Software functions that have a high 

safety-criticality (e.g., warhead arming and firing) will require a significant analysis effort that 

may include code-level analysis.  Safety Team’s early involvement in the design process can 

reduce the amount of software that requires analysis; however, the software safety manager must 
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still identify and allocate resources to perform these tasks.  Those safety requirements that 

conflict with others (e.g., reliability) require trade-off studies to achieve a balance between 

desirable attributes. 

The software control categories discussed in Section 3.2.1.5 provide a useful tool for identifying 

software that requires in depth analysis and testing.  Obviously, the more critical the software, 

the higher the level of effort necessary to analyze, test, and assess the risk associated with the 

software.  In the planning activities, the SwSSWG identifies the analyses necessary to assess the 

safety of specific modules of code.  One of the most important aspects of software safety 

program management is monitoring the activities of the safety program throughout system 

development to ensure that tasks are on schedule and within cost, and to identify potential 

problem areas that could affect the safety or software development activities.  The software 

safety manager must: 

 Monitor the status and progress of the software and system development effort to ensure 

that the software safety program schedule and milestones reflect program schedule 

changes 

 Monitor the progress of the various development teams and ensure that the safety 

interface to each is working effectively.  When problems are detected, either through 

feedback from the software safety representative or other sources, the software safety 

manager must take the necessary action to mitigate the problem 

 Monitor and receive updates regarding the status of analyses, open hazards and other 

safety activities on a regular basis.  The SwSSWG should discuss significant hazards at 

each meeting and update the status as required 

 Periodically provide updates and discuss the status and progress of the software safety 

program with the appropriate safety review authority; obtain recommendations for 

adjustments to the software safety program to ensure a smooth completion 

 

The system safety manager must identify the appropriate review authorities and adjust the 

schedule during the development process to accommodate these reviews.  These reviews 

generally involve significant effort outside of the other software safety tasks.  The supplier must 

determine the level of effort required for each review and the support that will be required during 

the review, incorporate these into the SwSPP, and coordinate with the SwSSWG.  Complex 

systems generally require multiple reviews to update and satisfy the requirements of the 

appropriate review authorities. 

3.2.3 Configuration Control 

Configuration control must be established as soon as practical in the system development 

process.  Prior to their implementation, the Software Configuration Control Board must approve 

all software changes occurring after an initial baseline has been established.  A member of the 

system safety engineering team must be a member of the Board and tasked with the evaluation of 

all software changes for their potential safety impact.  A member of the hardware Configuration 

Control Board must be a member of the software Board and vice versa to keep members apprised 

of hardware changes and to ensure that software changes do not conflict with or introduce 

potential safety hazards due to hardware incompatibilities. 
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There have been many instances where the “wrong version” of a component has accidentally 

been introduced into a deployed system and as a result caused unexpected failures or at least 

presented a potential hazard. 

 Does the Software Development Plan (SDP) describe a thorough CM process that 

includes version identification, access control, change audits, and the ability to restore 

previous revisions of the system? 

 Does the CM process rely entirely on manual compliance, or is it supported and enforced 

by tools? 

 Does the CM process include the ability to audit the version of specific components (e.g., 

through the introduction of version identifiers in the source code that are carried through 

into the executable object code)? If not, how is process enforcement audited (i.e., for a 

given executable image, how can the versions of the components be determined)? 

 Is there evidence in the design and source code that the CM process is being adhered to 

(e.g., Are version identifiers present in the source code if this is part of the CM process 

described)? 

 During formal testing, do any problems with inconsistent or unexpected versions happen? 

 

A second issue that affects confidence of correlation between the artifacts analyzed and those 

deployed is “tool integrity.” Software tools (i.e., computer programs used to analyze, transform, 

or otherwise measure or manipulate products of a software development effort) clearly can have 

an impact on the level of confidence placed in critical software.  All of the analysis of source 

code performed can easily be undermined if we discover that the compiler used on the project is 

very buggy, for example.  In many situations where this is a potential issue (e.g., the certification 

of digital avionics), a distinction is drawn between two classes of tools: 

 Those that transform the programs or data used in the operational system; (and can 

therefore actively introduce unexpected behavior into the system) 

 Those used to evaluate the system (and therefore can at worst contribute to not detecting 

a defect) 

3.2.4 Software Quality Assurance Program  

Suppliers of systems having safety-related computing system functions should establish a SQA 

program guided by an approved SQA plan.  The SQA plan should identify and define the 

interface between the Software Quality Assurance team and the System Safety Engineering 

team.  The System Safety Engineering Team should review the SQA plan and provide 

recommendations for ensuring that the SQA plan adequately covers likely safety concerns, 

including the applicable generic requirements and guidelines of this section.   The System Safety 

Engineering Team should evaluate the results of SQA evaluations to ensure that they evaluated 

safety concerns and that the development team followed safety-related quality assurance 

guidelines. 
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3.3 Software Safety Task Implementation 

This section of the AOP describes the primary task implementation steps required for a baseline 

SSS engineering program.  It presents the necessary tasks required for the integration of software 

safety activities into the functional areas of system and software development.  Remember, 

software systems safety (or software safety) is a subset of both the system safety engineering 

process and the software engineering and development process. 

As the AOP introduces the software safety engineering process, it will identify the inputs to the 

described tasks and the products that the specific process step produces.  Each program and 

engineering interface tied to software safety engineering must agree with the processes, tasks, 

and products of the software safety program and must agree with the timing and scope of effort 

to verify that it is in concert with the objectives and requirements of each interfacing discipline.  

If other program disciplines do not agree or do not see the functional utility of the effort, they 

will usually default to a “non-support” mode. 

Figure 3-6 provides a graphical depiction of the software safety activities required for the 

implementation of a credible SSS program.  Remember that the process steps identified in this 

AOP represent a baseline program that has a historical lessons learned base and includes the best 

practices from successful programs.  Each procurement, software acquisition, or development 

has the potential and probability to be uniquely diverse: the safety manager must use this section 

as a guide only.  The safety manager should analyze each of the following steps and identify 

where minor changes are required or warranted for the software development program proposed.  

If these tasks, with the implementation of minor changes, are incorporated in the system 

acquisition life cycle, the SSS effort has a very high likelihood of success. 
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Figure 3-6:  Software Safety Task Implementation 

 

The credibility of software safety engineering activities within the hardware and software 

development project depends on the credibility of the individual(s) performing the managerial 

and technical safety tasks.  It also depends on the identification of a logical, practical, and cost 

effective process that produces the safety products to meet the safety objectives of the program.  

The primary safety products include hazard analyses, initial safety design requirements, 

functionally derived safety design requirements (based on hazard causes), test requirements to 

produce evidence for the elimination and/or control of the safety hazards, and the identification 

of safety requirements pertaining to operations and support of the product.  The managerial and 

technical interfaces must agree that the software safety tasks defined in this section will provide 

the documented evidence for the resolution of identified hazards and failure modes in design, 

manufacture (code in software), fabrication, test, deployment, and support activities.  It must also 

thoroughly define and communicate residual safety risk to program management at any point in 

time during each phase of the development life cycle. 

3.3.1 Software Safety Planning and Program Milestones 

Planning for the software safety must include: 

 Identification of the organizations, key personnel roles and responsibilities for assuring 

the effective implementation and execution of the software safety process 

 Reference to competence records (qualifications/training/experience), or reference to a 

competence management system covering the individuals who will be involved with the 

assurance of the safety related software 

 A description of the safety management interfaces including those with the procurement 

manager, system design authority, software design authority and subcontractors 
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 Details of adequate resource planning, including, but not limited to, finance, personnel, 

equipment and tools 

 A list and table of contents of the expected software safety products and documents to be 

produced 

 Safety management processes including scheduling of safety audits and safety reviews 

 Details of the certification, regulatory, approval or acquirer acceptance process 

 Identification, scheduling, and production of safety assurance deliverables 

 Metrics to be collected to monitor the effectiveness of the safety management processes 

Each system procurement is unique and will have subtle differences associated with managerial 

and technical interfaces, timelines, processes and milestones. Program planning must integrate 

program-specific differences into the schedule and support the practical assumptions and 

limitations of the program. 

The software safety efforts, hazard analysis development, and safety review schedules must 

support program milestones, for example: 

 Software safety requirements resulting from generic requirements tailoring should be 

available as early as practical in the design process for integration into design, software 

development, and system safety 

 Specific safety requirements from the PHA and an initial set of safety design 

requirements should be available prior to early design reviews for integration into the 

design documents 

 System safety and software safety must participate in the system specification reviews 

and provide recommendations during the functional allocation of system requirements to 

hardware, software, operation, and maintenance.  This activity requires an analysis of 

proposed system and software architectures with the goal of providing recommendations 

for architectures and functional allocations that best support desirable safety attributes 

After functional allocation is complete, the high-level software requirements will be developed. 

At this point, the preliminary software safety assessment should be completed, with hazards 

identified and initial software safety criticality indices created. The safety design requirements 

(hardware, software, and human interfaces) must be complete prior to the milestone at which 

Software Engineering freezes the requirements (e.g., Critical Design Review). Requirements 

added after this can have a major impact on program schedule and cost. 

During the development of the high-level software requirements, the preliminary software design 

is analyzed from a safety viewpoint and the system and software architecture assessed to provide 

design recommendations to reduce the associated risk. These recommendations should be 

entered in the safety assessment folder and addressed as the design progresses. Further analysis 

of the design of each module containing safety-related functions and the software architecture 

will continue throughout development; in the case of safety-critical software, the analysis will 

extend to the source code to ensure that the intent of the software safety requirements has been 

met. 
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Throughout the development, the software safety organization must ensure that the test plans and 

procedures will provide the desired validation of software safety requirements, demonstrating 

that they meet the intent of the requirement3. Detailed safety tests are derived from the hazard 

analyses, causal factor analysis, and the definition of software hazard mitigation requirements in 

order to validate the software safety requirements. 

3.3.2 Preliminary Hazard List Development 

This process step ensures that the project manager, systems and design engineers, in addition to 

the software suppliers and engineers, are aware of each safety-related function in the design.  It 

also ensures that software documentation designates each individual module of code that 

performs these functions as “safety critical” or “safety significant” which mandates defined 

levels of design and code analysis and testing.  Figure 3-7 provides an example of possible 

safety-related functions of a tactical aircraft. 

There are two benefits to identifying the safety-related functions of a system.  First, the 

identification assists the SSS Team in the categorization and prioritization of safety requirements 

for the software architecture early in the design life cycle.  If the software performs or influences 

the safety-related function(s), that module of code becomes safety-related.  This is true at all 

levels of complexity from programmable logic devices and microcontrollers to complex systems 

of systems.  Second, it reduces the level of activity and resource allocations to software not 

identified as safety-related: the benefit is cost avoidance. 

At this phase of the program, specific ties from the PHL to the software design are immature.  At 

this point in the development, the safety team cannot define many specific hazard causal factors 

in the software.  However, there may be identified hazards, which have preliminary ties to 

safety-related functions with functional links to the preliminary software architecture.  If this is 

the case, the safety team should document this functional link in the safety analysis for further 

development and analysis.  At the same time, there are likely to be specific “generic” SSRs 

applicable to the system.  These requirements are available from multiple sources and must be 

specifically tailored to the program as they apply to the system and software architecture. 

 

                                                 
3 English Language and other specifications may have multiple interpretations: implementing the 

intent of a requirement ensures that the software designers properly interpret and implement 

the desired safety requirements. 
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Figure 3-7:  An Example of Safety-related Functions in a Tactical Aircraft 

3.3.3 Tailoring Generic Safety-Related Requirements 

Figure 3-8 depicts a process for tailoring the Generic Software Safety Requirements (GSSR).  

GSSR are those design features, design constraints, development processes, “best practices,” 

coding standards and techniques, and other general requirements levied on a system containing 

safety-related software, regardless of the functionality of the application.  GSSR are not safety 

specific (i.e., not tied to a specific system hazard).  They are, however, based on lessons learned 

from previous systems where failures or errors occurred that either resulted in a mishap or a 

potential mishap.  The PHL and initial software safety analyses may help determine the 

disposition or applicability of many individual generic requirements.   

Chapter 4 of this AOP contains a set of GSSR. GSSR should be tailored for each specific 

program. The requirement to implement a tailored set of GSSR may be one of the safety tasks in 

the Request for Proposal (RFP) or Statement of Work (SOW). Tailoring GSSR is coordination 

between the Acquiring and Supplier to maximize implementation of GSSR within the overall 

program system and safety objectives, cost and schedule. Tailoring agreements should be 

documented, signed by Acquirer and Supplier management, and incorporated into applicable 

software development (e.g. Software Development Plan) and safety documentation.  

Documentation of tailoring agreements is important to both the Acquirer and Supplier. There is 

typically significant management and personnel turnover over the life of a system development. 

The tailoring agreement should be valid over the life of the system and changes to the agreement 

must be accompanied by the commensurate change in cost and schedule to implement, or the 

potential safety risk of removal of one or more tailored requirements. 
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Figure 3-8:  Tailoring the Generic Safety Requirements 

 

Tailoring should be performed as early in the program as possible. If the Acquirer can implement 

some level of tailoring the GSSR prior to Supplier selection, then there may be savings in terms 

of Supplier cost. Generally, the tailoring effort is performed after a Supplier has been selected. 

Tailoring GSSR should be the priority activity of the SwSSWG after a Supplier has been 

selected. Tailoring GSSR should be accomplished during the System Concept and Software 

Requirements and Architecture Development phases. Tailoring GSSR after the supplier has 

implemented software development processes, initiated coding, and selected Previously 

Developed Software (PDS) suppliers is difficult and has cost/schedule impact. The SwSSWG 

developed GSSR tailoring must be coordinated with the SSWG and program management, and 

approved by the Acquirer. 

GSSR can be levied against PDS suppliers, but are generally not implementable in PDS. 

However, the PDS supplier can be requested to provide a GSSR compliance matrix and evidence 

of GSSR that are complied with as a result of the PDS supplier software development processes. 

This PDS compliance matrix, or lack thereof, should be identified as a safety risk area and 

provided as an input artifact to the safety case.  

Tailoring is not solely a system safety responsibility and the project team should be involved in 

tailoring safety requirements.  The tailoring effort could involve the Software Development 

Lead, SQA, CM, V&V, and HFI SwSSWG representatives. The Supplier’s software 

development and safety processes are reviewed and assessed to determine compliance with the 

GSSR in this AOP, or to identify new GSSR that may need to be levied based upon Supplier 

unique processes.  A preliminary compliance checklist, indicating GSSR compliance results (Y, 

N, N/A), should be developed. These results provide the basis for tailoring of GSSR.  The 

SwSSWG uses the preliminary compliance assessment, initial safety analyses and PHL to 

determine the additional GSSR necessary. The SwSSWG will develop a recommended complete 

set of tailored GSSR, with the understanding that the tailoring recommendation will be the basis 
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for the contractually binding GSSR to be levied on the software developer.  The recommended 

set of tailored GSSR is provided to the SSWG. The SSWG will provide management with the 

tailored set of GSSR and the rationale for GSSR not already levied on the Supplier. The 

SwSSWG will support the SSWG in change control actions required. 

The results of the tailoring discussions are documented and preserved in the appropriate program 

artifacts.  The Acquirer approved version of the tailored GSSR will be signed and maintained 

under Configuration Control.  The following artifacts may reflect GSSR tailoring agreements: 

 Prime Contract 

 Subcontracts 

 System Safety Management Plan 

 System Safety Program Plan 

 Software System Safety Program Plan 

 Software Development Plan 

 

An evaluation of safety risk must be made for tailored GSSR non-compliances. The safety risk 

evaluation is input data to Acquirer and Supplier management decisions on whether to apply the 

resources to comply with the GSSR or to incur the potential safety risks of continued non-

compliance. For example, a GSSR non-compliance that has a low safety risk assessment, but 

high cost and schedule impact for implementation, may be acceptable to management. However, 

a GSSR non-compliance assessed as medium or high with an acceptable level of cost and 

schedule impact (i.e. resources available, little or no schedule slip to comply) may be an 

unacceptable risk. 

Table 3-1 is an example of a worksheet form used to track generic SSR implementation.  The 

EVIDENCE block describes whether the program is complying with the requirement, the 

location of the requirement and its implementation and the location of the evidence of 

implementation.  If the program is not complying with the requirement (e.g., too late in the 

development to impose a safety kernel) or the requirement is not applicable (e.g., an Ada 

requirement when developing in assembly language), the RATIONALE block must include a 

statement of explanation.  It should also describe an alternative mitigation of the source risk that 

the requirement addresses, possibly pointing to another generic requirement on the list. 

Generally, the “going in” position for GSSR is to levy the entire set on the Supplier, prior to 

tailoring. A caution regarding the “blanket” approach of establishing the entire list of guidelines 

or requirements for a program: each requirement will cost the program critical resources; people 

to assess and implement; budget for the design, code, and testing activities; and program 

schedule.  Unnecessary requirements will affect these factors and result in a more costly product 

with little or no benefit. Additionally, each GSSR levied on the Supplier may spawn one or more 

lower level SRS requirements in order to effectively implement.  Thus, the SwSSWG, in 

cooperation with systems engineering and software engineering, must assess and prioritize GSSR 

according to the applicability to the development effort.  Inappropriate or unnecessary 

requirements should be tailored out.  The SwSSWG must assess each requirement individually 

and introduce only those that may apply to the development program. 

Tailored GSSR must be verified by one or more of the accepted methods (I, A, D, T). Some 

requirements only necessitate a sampling of evidence to provide implementation (e.g., no 

conditional GO-TO statements).  Others may be verified by audit and inspection. HMI 
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requirements are typically demonstrated. The Supplier’s SwSSWG software developer or quality 

assurance team member will often be the appropriate individual to gather the implementation 

evidence of the generic SSRs.  The Supplier may assign Software Quality Assurance (SQA), 

Configuration Management (CM), Verification and Validation (V&V), human factors, software 

designers, or systems designers to fill out individual worksheets.  The SwSSWG should provide 

approval recommendations for the entire tailored list of completed forms, include it in the SDL, 

and refer to it in the SAR.  The Acquirer representative on the SwSSWG must approve Supplier 

compliance recommendations and present them to Acquirer management for formal approval. 

This provides the desirable evidence of generic SSR implementation. 

 

 

GENERIC SOFTWARE SAFETY REQUIREMENTS 

INTENDED 

COMPLIANCE 

IMPLEMENTATION  

YES 

 

NO N/A 

Item:  Program Patch Prohibition 

Are patches prohibited throughout the development 

process? 

 

X 

 

 

 

Acquirer: (Indicate Acquirer POC, Date, Acceptance, 

Rejection or assessed Risk Factor for non-compliance) 

Risk – N/A 

(H, M, L) 

Rationale:  (If NO or N/A, describe the rationale for the decision and resulting 

risk.) 

SW changes coded in source language, SW build under CM control, re-compiled & 

V&V’d prior to release  (discussed at checklist review 1/11/08) 

Evidence:  Inspection (If YES, describe the kind of evidence that will be provided.  

Note: Specify sampling percentage per SwSPP, if applicable.) 

Reqts. In SDP, SQA audit of SDP, peer review checklists, Audit of CM plan 

Action:  (State the Functional area with responsibility.) 

Software Development POC: Herman Glutz, Lead Software Developer 

 

Table 3-1:  Generic Software Safety Requirements Tracking Worksheet Example 

 

The SwSSWG should ensure that the tailored list of GSSR is integrated into the appropriate 

software artifacts and that the software development team understands their responsibility in 

implementing GSSR. Compliance assessments of GSSR should be performed as a part of each 

significant software development milestone review. If any GSSR non-compliances are 

discovered as a result of these assessments, then a safety risk assessment of the non-compliances 

must be performed, documented in the appropriate safety artifacts, and brought to Acquirer and 

Supplier management attention. 

 

3.3.4 Preliminary Hazard Analysis Development  

The Preliminary Hazards Analysis (PHA) is a safety engineering and software safety engineering 

analysis performed to identify and prioritize hazards and their causal factors in the system under 
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development.  AOP-15 provides guidance on performing the PHA at the system level.  Figure 

3-9 depicts the safety engineering process for the PHA.  There is nothing unique about the 

software aspects other than the identification of the software causal factors in the PHA.  Many 

safety-engineering texts provide guidance for developing the PHA therefore, this AOP will not 

describe the processes.  Many techniques provide an effective means of identifying system 

hazards and the determination of their causal factors. 

 

 

Figure 3-9:  Preliminary Hazard Analysis 

 

The PHA provides input to trade-off studies through the early stages of development.  The trade-

off studies offer alternative considerations for performance, producability, testability, 

survivability, compatibility, supportability, reliability, and system safety during each phase of the 

development life cycle.  In the early phases of the development many of these tradeoff studies 

will address system and software architectures and the allocation of system-level functions to the 

hardware, software and/or operator. 

After developing the prioritized list of preliminary hazards, the analysts determine the potential 

hardware, software, and human interface causal factors to the individual hazards as shown in 

Figure 3-10.  The safety team should use the identified hazard causal factors as a basis to support 

recommendations for, or against, certain architectures, implementations, and/or functional 

allocations. 
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Figure 3-10:  Hazard Analysis Segment 

 

This differentiation of hazard causal factors assists in the separation and derivation of specific 

design requirements for implementation in software.  For example, as the analysis progresses, the 

analyst may determine that software or hardware could contribute to a hardware casual factor.  A 

hardware component failure may cause the software to react in an undesired manner leading to a 

hardware-influenced software causal factor.  The analyst must consider all paths to ensure 

coverage of the software safety analysis. 

Although this tree diagram can represent the entire system, software safety is particularly 

concerned with the software causal factors linked to individual hazards in addition to ensuring 

that the mitigation of each causal factor is traceable from requirements to design to code, and 

ultimately to test procedures that verify its implementation.  These preliminary analyses and 

subsequent system and software safety analyses identify when software is a potential cause or 

contributor to a hazard, or will support the control of a hazard. 

Requirements designed to mitigate the hazard causal factors do not have to be one-to-one, i.e., 

one software hazard causal factor does not necessarily yield one software safety control 

requirement.  Safety requirements can be one-to-one, one-to-many, or many-to-one in terms of 

controlling hazard causal factors to acceptable levels of safety risk.  In many instances, 

designers can use software to compensate for hardware design deficiencies or where hardware 

alternatives are impractical.  As software is considered cheaper to change than hardware, 

software safety design requirements may control specific hardware hazard causal factors.  In 

other instances, one design requirement (hardware or software) may eliminate or control 

numerous hazard causal factors (e.g., some generic requirements).  This emphasizes the 

importance of performing the hardware safety analysis and software safety analysis at the same 

time, in consultation with each other.  A system level or subsystem-level hazard may have a 

single causal factor or a combination of many causal factors.  The safety analyst must consider 

all aspects of what causes the hazard and what is required to eliminate or control the hazard.  

Hardware, software, and human factors cannot be segregated from the hazard and cannot be 

analyzed separately except in rare instances.  Safety requirements must address how the system 

will react safely to operator errors, component failures, functional software faults, 

hardware/software interface failures, and data transfer errors.  As detailed design progresses, the 

system safety team will develop derived software requirements and mature them to address 

specific hazard causal factors and failure pathways to hazardous conditions or events. 
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During the PHA activities, the system safety team must establish the link from the software 

hazard causal factors to the system-level requirements.  If there are causal factors that the team 

cannot link to a requirement, they should report these to the SSWG for additional consideration: 

the SSWG may have to develop and incorporate additional requirements into the system-level 

specifications or recommend different implementations. 

3.3.5 Software Safety Requirements 

3.3.5.1 Introduction 

Safety is a property of the overall system rather than any given sub-component.  The safety 

requirements should be identified by system-level hazard analysis and as well as functional 

behavior, may include timing behavior or capacity, fail-safety, maintainability, modifiability, 

security and usability.  These system safety requirements should be mapped onto a set of 

functional and non-functional software safety requirements that have to be implemented to a 

given level of safety integrity. 

In defining software safety requirements it is important to consider both positive and negative 

safety requirements (e.g. “the angle of rotation of the barrel shall be kept within the following 

limits” and “this function shall be inoperative during the loading process”). 

Safety functions could be part of the normal, safe operation of the system (e.g. functions of a 

safety related control or information system), or they could to be functions that are performed in 

exceptional circumstances (e.g. if the software is part of a protection or emergency system).  The 

software safety requirements should specify only those functions and mitigations that are 

necessary for safety. 

When the safety requirements are applied to individual subsystems (typically as a result of 

applying hazard analysis methods), a set of derived requirements should be produced for the 

subsystems that are necessary to support the top-level safety goal.  These derived requirements 

can be represented by attributes of the subsystems that can affect system safety. 

For safety related software, it is important that safety requirements are fully and unambiguously 

defined.  Even in the case of an existing, in-service, legacy system, for which none of the 

original design documentation exists, it is not acceptable from a safety perspective to assume that 

‘it does what it does’.  While it may not be necessary to define detailed functional requirements, 

it is important that those properties and functions that are essential to safety are defined. 

It should also be borne in mind that safety has to be maintained over the lifetime of the 

equipment.  So the system design and the associated safety arguments should consider potential 

“attacks” on the design integrity over its lifetime (e.g. through normal operation, maintenance, 

product improvements, upgrades and replacement). 

The system supplier needs to specify any assumptions and pre-requisites applicable to the 

software.  Before proceeding with the specification and development of the safety related 

software, it is necessary to verify that: 

 Sufficient information about the system level hazards is available to enable the generation 

of the safety assurance arguments 
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 Software safety requirements be complete4, self-consistent, unambiguous and consistent 

with the other (non-safety-related) software requirements 

 

Where safety is dependent on the safety related function fully meeting all of its requirements, 

demonstrating safety is equivalent to demonstrating correctness with respect to the software 

requirements.  In other cases, safety may be dependent on the safety related software behaving in 

accordance with a smaller identifiable set of safety requirements and satisfying the safety 

integrity requirements.  Because of the difficulties of separating safety characteristics from the 

other behavioral characteristics of the safety related software and the need to demonstrate 

adequate partitioning between these characteristics, many projects will choose to treat all 

requirements as being safety related, with associated level of rigor. 

The specification of the software safety requirements should include the following: 

 All functional and all non-functional requirements and constraints (e.g. timing resource 

usage) should be explicitly detailed 

 All safety functions and safety attributes should be explicitly identified as derived safety 

requirements 

 Validity and integrity requirements are specified for all safety-related data 

3.3.5.2 Safety Integrity Requirements 

Safety integrity requirements define the required confidence in the evidence including types of 

evidence, rigor and extent of safety assurance evidence.  The software safety requirements define 

what the software is required to do but as no software is perfect, it is also necessary to define a 

tolerable system failure rate.  This has to be at a system level as there are currently no accepted 

methods for measuring failure rates for software, particularly for specific functions in a software 

configuration.  Safety integrity requirements may also specify how the software should meet the 

safety requirements in terms of timing requirements, use of resources and/or robustness. 

The software may be involved in more than one system level hazard and there may be more than 

one failure mode of the software that contributes to each of the hazards.  A safety related 

software system may provide several safety related services, and different tolerable failure rates 

may be applicable to these services.   In practice, there may be a whole set of safety requirements 

and safety integrity requirements with which the software must comply. 

3.3.5.2.1 Failure Rates 

A failure rate is a probabilistic value given to something based on its likely failure in some sort 

of random or at least complex/non repeatable manner.  Usually this is a figure based on the 

average of a distribution of failures from a large sample.  Software and software-like devices 

have no random behavior in this sense. For example, given a certain routine with inputs in a 

certain combination it will always fail, conversely in a different configuration with another set of 

inputs it will never fail.  This repeatability with a lack of degradation due to time or use 

demonstrates that software fails systematically. 

                                                 
4 Complete in this context means that there are safety requirements identified that mitigate each 

software related hazard causal factor. 
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But software always contains faults and the more faults there are then the greater the likelihood 

that a fault will be exercised whilst the software is running. Whether the fault causes an error 

severe enough to lead to a failure is another thing. The Safety Integrity Requirements are 

intended to reduce the number of faults by putting greater emphasis on the development process. 

However, there is no absolute closed loop measure to say how many faults there are remaining. 

3.3.5.2.2 Failure Handling 

A failure handling strategy should be defined at the system level and be included in the 

hardware/software specifications.  This will be a design decision in the system documentation 

and should be defined appropriately in the safety requirements allocated to software.  This will 

be a key safety requirement and should be stated in the software safety plan.  It is also possible 

for the software supplier to identify opportunities to improve failure handling.  These should be 

fed back as derived software safety requirements. 

Differences in safety integrity requirements may affect the software design as well as the failure 

handling strategy.  For example if overall availability requirements are less onerous than 

reliability requirements, the software could shut down in the event of detecting possible 

corruption to prevent a hazard. 

3.3.5.2.3 Confidence 

Safety integrity requirements have an additional dimension in the form of the confidence 

necessary for assurance that safety requirements have been met.  For software, confidence would 

be stated qualitatively in the form of the type, extent, and rigor of the evidence necessary to 

support the arguments for the software safety claims. 

3.3.5.3 Safety Integrity Level Schemes 

While many standards implicitly treat confidence qualitatively by specifying different sets of 

processes for various integrity levels, it is recommended that an evidence-based approach be 

used.  This requires that evidence is produced to show that the requirement is met, and also that 

the quantity and quality of the evidence is commensurate with the risk. 

There are a number of safety integrity level schemes offered by other standards.  However, 

where a safety integrity level scheme is required by a project any scheme to be used should be 

agreed by all interested parties. 

3.3.5.4 Derived Safety Requirements 

The arguments for the safety of the software should start with the system architecture.  The 

safety argument should demonstrate why the system architecture implements desirable safety 

features.  The architectural safety argument will support the claim that the safety requirements 

will be satisfied if correctly5 implemented in the hardware and software components. 

When safety attributes are implemented in a system design, the hardware and software elements 

must not be considered in isolation.  In order to implement the safety attributes, the derived 

safety requirements will impose additional requirements to the software and hardware 

components.  For example, in order to maintain the overall integrity of the system, the software 

                                                 
5 The term “correctly” is not synonymous with the software engineering term “correctness”.  
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may rely on separate checking hardware (such as external watchdogs), while the hardware status 

might be monitored using software. 

However complete the software requirements, there will be times when the choice of 

implementation leads to additional derived requirements.  For example, the division of the 

software system into smaller subsystems would result in interface requirements; the choice of a 

particular microprocessor and memory unit will result in specific timing and capacity 

requirements; the decision to write defensive code may result in the source code having a need to 

report particular failures via failure codes. 

The non-functional attributes at the system architecture level can lead to requirements for 

additional functionality within the software.  These can be a major source of complexity for the 

software.  In many projects the software required for the actual core communication, 

information, control and protection functions can be quite modest compared with the code 

needed to implement these additional functions. 

The safety requirements at the software level consist primarily of functional requirements (e.g. to 

provide control functions, process information, implement required hardware diagnostics, or to 

service a watchdog) but some attributes may simply be targets to be achieved by the software 

design (e.g. tolerable failure rates, worst case time response, or security levels).  Since attributes 

at high level of design can be changed into functional requirements as the design proceeds, it is 

important to maintain traceability of all safety requirements between the various levels of the 

overall Safety Case. 

Safety requirements that evolve during the course of the development of the software (derived 

safety requirements) should be fed back to the system design process for incorporation into the 

higher-level system requirements or software safety requirements in accordance with project 

processes.  The Software Design Authority should ensure that the eventual users and maintainers 

of the software have visibility of relevant safety requirements. 

3.3.6 Establishing System Safety Software Requirements 

The safety team derives safety-related SSRs from known safety-related functions, tailored 

generic SSRs, and hazard causal factors determined from previous activities.   

Figure 3-11 identifies the software safety engineering process for developing the SRCA. 
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Figure 3-11:  Derive Safety-Specific Software Requirements 

 

Safety requirement specifications identify the specifics and the decisions made, based upon the 

level of safety risk, desired level of safety assurance, and the visibility of software safety within 

the supplier organization.  Methods for doing so are dependent upon the quality, breadth, and 

depth of initial hazard and failure mode analyses and on lessons learned and/or derived from 

similar systems.  As stated previously, the generic list of requirements and guidelines establishes 

the starting point, which initiates the system-specific SSR identification process.  Identification 

of system-specific software requirements is the direct result of a complete hazard analysis 

methodology (see Figure 3-12). 

The safety team derives SSRs from four sources: generic lists, analysis of the system 

functionality (safety design requirements), causal factor analysis, and from implementation of 

hazard controls.  The analysis of system functionality identifies those functions in the system 

that, if not properly executed, can result in an identified system hazard.  Therefore, the correct 

operation of the function related to the safety design requirements is critical to the safety of the 

system making them safety-related as well.  The software causal factor analysis identifies lower-

level design requirements that, based on their relationship to safety-related functions or the 

context of the failure pathway of the hazard make them safety-related as well.  Finally, design 

requirements developed to mitigate other system-level hazards (e.g., monitors on safety-related 

functions in the hardware) are also SSRs. 

The Software Safety Engineer must present the SSRs to the acquirer via the SwSSWG for 

concurrence with the assessment as to whether they eliminate or resolve the hazardous condition 

to acceptable levels of safety risk prior to their implementation.  For most SSRs, there must be a 

direct link between the requirement and a system-level hazard.  The following paragraphs 

provide additional guidance on developing SSRs other than the generics. 
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Figure 3-12:  Software Safety Requirements Derivation 

 

3.3.6.1 Preliminary Software Safety Requirements 

The initial attempt to identify system-specific SSRs evolves from the PHA performed in the 

early phase of the development program.  As previously discussed, the PHL/PHA hazards are a 

product of the information reviewed pertaining to systems specifications, lessons learned, 

analyses from similar systems, common sense, and preliminary design activities.  The analyst 

ties the identified hazards to functions in the system (e.g., inadvertent rocket motor ignition to 

the rocket motor ARM and FIRE functions in the system software).  The analyst flags these 

functions and their associated design requirements as safety-related and enters them into the 

Requirements Traceability Matrix (RTM) within the SRCA.  The analyst should develop or 

ensure that the system documentation contains appropriate safety requirements for these safety-

related functions (e.g., ensure that all safety interlocks are satisfied prior to issuing the ARM 

command or the FIRE command).  Lower levels of the specification will include specific safety 

interlock requirements satisfying these preliminary SSRs.  These types of requirements are safety 

design requirements. 

The safety engineer also analyzes the hazards identified in the PHA to determine the potential 

contribution by the software.  For example, a system design requires the operator to actually 

commit a missile to launch; however, the software provides the operator a recommendation to 

fire the missile.  This software is also safety-related and must be designated as such and included 

in the RTM.  Other safety-related interactions may not be as obvious and will require more in-

depth analysis of the system design.  The analyst must also analyze the hazards identified in the 
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PHA and develop preliminary design recommendations to mitigate other hazards in the system.  

Many of these design recommendations will include software thus making that software safety-

related as well.  During the early design phases, the safety analyst identifies these requirements 

to design engineering for consideration and inclusion.  This is the beginning of the identification 

of the functionally derived SSRs. 

These design considerations, along with the generic SSRs, represent the preliminary SSRs of the 

system, subsystems, and their interfaces (if known).  The safety team must accurately define 

these preliminary SSRs in the hazard tracking database for extraction when reporting the 

requirements to the design engineering team. 

3.3.6.2 Matured Software Safety Requirements 

As the system and subsystem designs mature, the requirements unique to each subsystem also 

mature via the SSHA.  The safety engineer, during this phase of the program, identifies and 

defines the subsystem hazards.  The safety engineer documents the identified hazards in the 

hazard tracking database and analyzes the hazard causal factors. When using fault trees as the 

functional hazard analysis methodology, the causal factors leading to the root hazard determine 

the derived safety-related functional requirements.  At this point in the design, the safety 

formalizes and defines preliminary design considerations or eliminates them if they no longer 

apply with the current design concepts.  The SSRs mature through analysis of the design 

architecture to connect the root hazard to the causal factors.  The analyst continues the causal 

factors’ analysis to the lowest level necessary for ease of mitigation. 

This helps mature the functional analysis started during preliminary SSR identification.  The 

deeper into the design that the analysis progresses, the more simplistic (usually) and cost 

effective the mitigation requirements tend to become.  The safety team may also derive 

additional SSRs from the implementation of hazard controls (i.e., monitor functions, alerts to 

hazardous conditions outside of software, unsafe system states, etc.).  The PHA phase of the 

program should define causes to the lowest level practical in the software for the stage of 

development whereas the SSHA and SHA should analyze the causes to the algorithm level for 

areas designated as safety-related. 

3.3.6.3 Subsystem Hazard Analysis 

The subsystem analysis begins during concept exploration and continues through the detailed 

design until design requirements are “frozen”.  The safety analyst must ensure that the safety 

analyses keep pace with the design.  As the design team makes design decisions and defines 

implementations, the safety analyst must reevaluate and update the affected hazard records. 

3.3.6.4 Documenting Software Safety Requirements 

The SRCA should document all identified SSRs.  The objective of the SRCA is to ensure that the 

implementation of the requirements in the system software meets the intent of the SSRs and that 

the SSRs eliminate, mitigate, and/or control the identified causal factors.  Mitigating and/or 

controlling the causal factors reduce the probability of occurrence of the hazards identified in the 

PHA.  The SRCA also provides the means for the safety engineer to trace each SSR from the 

system level specification, to the design specifications, to individual test procedures and test 

results’ analysis.  The safety engineer uses this traceability, known as a RTM, to verify that all 

SSRs can be traced from system level specifications to design to test.  The safety engineer should 
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also identify all safety-critical SSRs to distinguish them from safety-significant SSRs in the 

RTM.  Safety-critical SSRs are those that directly influence a safety-critical function (software 

control categories 1 and 2), while safety-significant SSRs are those that indirectly influence 

safety-critical functions or directly influence safety-significant functions.  The RTM provides a 

useful tool to the software development group.  They will be immediately aware of the safety-

critical and safety-significant functions and requirements in the system.  This will also alert them 

when making modifications to safety-critical software configuration items and modules that may 

affect SSRs.  The SRCA is a “living” document that the analyst constantly updates throughout 

the system development. 

3.3.6.5 Software Analysis Folders 

At this stage of the analysis process, it is also a good practice to start the development of Safety 

Analysis Folders (SAFs).  The purpose of a SAF is to serve as a repository for all of the analysis 

data generated on a particular software configuration item.  The safety team should develop 

SAFs on a software configuration item basis and make them available to the entire SSS Team 

during the software analysis process.  Items to be included within the SAFs include, but are not 

limited to: 

 Purpose and functionality of the software configuration item, source code listings 

annotated by the safety engineer 

 Safety-Related Functions (SRF) and SSRs pertaining to the software configuration item 

under analysis, SSR traceability results 

 Test procedures and test results pertaining to the software configuration item 

 Record and disposition of all Program Trouble Reports (PTR)/Software Trouble Reports 

(STR) generated against the particular software configuration item 

 A record of any and all changes made to the software configuration item 

The safety team needs to update the SAFs continuously during the preliminary and detailed 

design SSHA phases. The SAFs should include the results of tests that verify the “safe” 

implementation of the software configuration item.  The SAF should be referenced in the safety 

case. 

3.3.6.6 Programmable Logic Device Analysis Folders 

The safety team should develop PLD analysis folders (PAFs), or similar, for safety-related PLDs.  

The PAF is similar in function and content to the SAF.  The safety team should develop the 

folders on a device basis and make them available to the SSS team throughout the development 

process.  The PAFs should include at a minimum: 

 Hardware item configuration data 

 Schematics of the circuit containing the PLD 

 Purpose and functionality of the PLD 

 Source code listings annotated by the safety engineer 
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 Safety-Related Functions (SRF) and SSRs pertaining to the item under analysis, SSR 

traceability results 

 Test procedures and test results pertaining to the item 

 Record and disposition of all Program Trouble Reports (PTR)/Software Trouble Reports 

(STR) generated against the particular item 

 A record of any changes made to the PLD software 

 A record of any changes made to the PLD hardware and associated circuits 

 A copy of the master net-list for the PLD 

The SSS team updates the PAF continuously during the preliminary and detailed analysis phases 

and includes test data demonstrating the desired risk mitigation.  The PAF should be referenced 

in the safety case 

3.3.7 Preliminary Software Design, Subsystem Hazard Analysis 

The identification of subsystem and system hazards and failure modes inherent in the system 

under development is essential to the success of a credible software safety program.  Today, the 

primary method of reducing the safety risk associated with software performing safety-critical or 

safety-significant functions is to first identify the system hazards and failure modes and then 

determine which hazards and failure modes are caused or influenced by software or lack of 

software.  This determination includes scenarios where information produced by software could 

potentially influence the operator into a wrong decision resulting in a hazardous condition 

(design-induced or information-induced human error).  Moving from hazards to software causal 

factors and consequently to design requirements that eliminate or control the hazard allows for 

traceability of the hazards and their mitigations for future reference.  If performed in a timely 

manner, the analysis can influence preliminary design activities with little or no impact on the 

overall development effort. 
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Figure 3-13:  Preliminary Software Design Analysis 

 

The fundamental basis and foundation of a SSP is a systematic and complete hazard analysis 

process.  One of the most helpful steps within a credible software safety program is to categorize 

the specific causes of the hazards and software inputs in each of the analyses (PHA, SSHA, 

SHA, and O&SHA).  Hazard causal factors can be those caused by hardware (e.g., failure of a 

hardware component), software inputs (or lack of software input), software design errors, 

software implementation errors, human error, software-influenced human error, or hardware or 

human errors propagating through the software…  Hazards may result from one specific cause or 

any combination of causes.  As an example, “loss of thrust” on an aircraft may have causal 

factors in different categories.  Examples are as follows: 

 Hardware: foreign object ingestion 

 Software: software commands engine shutdown in the wrong operational scenario 

 Human error: pilot inadvertently commands engine shutdown 

 Software-influenced pilot error: computer provides incorrect information, insufficient 

or incomplete data to the pilot causing the pilot to execute a shutdown (e.g., erroneous 

Engine Fire signal) 

Whatever the cause, the safety engineer must identify and define hazard control considerations 

(PHA phase) and requirements and implementation recommendations (SSHA, SHA, and 

O&SHA phases) for the design and development engineers for each individual causal factor.  

The preliminary software design SSHA begins upon the identification of the software subsystem 

and uses the derived system-specific SSRs.  The purpose is to analyze the system and software 

architecture and preliminary software configuration item design.  At this point, the analyst has 

identified (or should have identified) all SSRs (i.e., safety design requirements, generics, and 

functional derived requirements and hazard control requirements) and begins allocating them to 

the identified safety-related functions and tracing them to the design. 
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design 
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The choice of analysis and/or testing to verify the SSRs is up to the SwSSWG, whose decision is 

based on the criticality of the requirement to the overall safety of the system and the nature of the 

SSR. 

The next step of the preliminary design analysis is to trace the identified safety requirements and 

causal factors to the design (to the actual software components).  The RTM is the easiest tool to 

accomplish this task.  Note that the RTM is just as useful for the safety assessment of PLDs as it 

is for software. 

 

SSR Requirement 

Description 

SW 

Configur

ation 
Item 

SW 

Module 

Test 

Procedure 

Test 

Results 

Analysis 

Results 

       

       

       

       

Table 3-2:  Example of a partial RTM 
 

Note:  All software safety requirements should be traceable to system-level safety requirements. 

3.3.7.1 Component Safety-Criticality Analysis 

The purpose of the component safety-criticality analysis is to validate the appropriate level of 

development, validation & verification, configuration management and quality assurance 

activities to perform for this component. The safety analyst bases the level of activities on the 

hazard, in which the component is implied that have the highest criticality. The analyst can then 

add some architectural considerations to lower this level by taking into account such solutions 

has : redundancy, dissimilarity, monitoring, etc … 

3.3.7.2 Traceability Analysis 

The analyst develops and analyzes the RTM to identify where the SSRs are implemented in the 

code, SSRs that are not being implemented, and code that does not fulfill the intent of the SSRs.  

The traced SSRs should not just be those identified by the top-level specifications, but those 

identified by the software requirements and design documentation as well as the interface 

requirements and design documentation.  This trace provides the basis for the analysis and test 

planning by identifying the SSRs associated with all of the code.  This analysis also ties in nicely 

with the SRCA (see Section 3.3.6), which not only traces SSRs from specifications to design and 

test but also identifies what is safety-related and what is not. 

Tracing encompasses two distinct activities: a requirement-to-code trace and a code-to-

requirement trace.  The forward trace, requirement-to-code, first identifies the requirements that 

belong to the functional area (if they are not already identified through requirement analysis).  

The forward trace then locates the code implementation for each requirement.  A requirement 

may be implemented in more than one place thus making the matrix format very useful. 
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The backward trace, code-to-requirement, is performed by identifying the code that does not 

support a requirement or a necessary “housekeeping” function.  In other words, the code is 

extraneous (e.g., “debugging” code left over from the software development process).  The 

safety analyst performs this trace through an audit of the applicable code after he/she has a good 

understanding of the corresponding requirements and system processing.  Code that is not 

traceable should be documented and eliminated if practical.  The following items should be 

documented for this activity: 

 Requirement-to-code trace 

 Unit(s) [code] implementing each requirement 

 Requirements that are not implemented 

 Requirements that are incompletely implemented 

 Code-to-requirement trace 

 Unit(s) [code] that are not directly or indirectly traceable to requirements or necessary 

“housekeeping” functions 

3.3.8 Detailed Software Design, Subsystem Hazard Analysis 

Detailed-design level analysis (Figure 3-14) follows the preliminary design process that traced 

the software safety requirements to the software configuration item level.  Prior to performing 

this process, the safety engineer should complete development of any fault trees for all of the 

top-level hazards, identifying all of the potential software-related hazard causal factors and 

deriving generic and functional safety design requirements for each causal factor.   

This section provides the necessary guidance to perform a Detailed Design Analysis (DDA) at 

the software architecture level.  It is during this process that the SSE works closely with the 

software supplier and the verification & validation engineers to ensure that the implementation 

of the safety design requirements meets the intent, and to ensure that their implementation does 

not introduce any other potential safety concerns. 
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Figure 3-14: Detailed Software Design Analysis 

3.3.8.1 Detailed Design Analysis 

Detailed Design Analysis (DDA) provides the software safety engineer and the software 

development engineers an opportunity to analyze the implementation of the software safety 

requirements at the software unit level.  The analysis begins at the software configuration item 

level determined from the preliminary design analysis into the computer software architecture 

implementation.  As the software development process progresses from preliminary design to 

detailed design and code, the safety engineer must provide the software safety requirements to 

the appropriate engineers and programmers of the software development team.  In addition, the 

safety engineer must monitor the design and development process to ensure that the software 

engineers are implementing the requirements into the architectural design concepts at all levels 

of granularity.  This requires real-time, interactive communication with the software engineers.  

The software safety engineer does not need to be an expert in all computer languages, software 

development methodologies, and software architectural patterns.  Software design reviews, code 

walkthroughs, and technical interchange meetings will provide a conduit of information flow for 

the safety engineer’s assessment of the software development program from a safety perspective.  

The assessment should include how well the software design and programming team understands 

the system hazards and hazardous failure modes attributed to software inputs or influences.  It 

also includes their willingness to assist in the derivation of safety-specific requirements, their 

ability to implement the requirements, and their ability to derive test cases and scenarios to verify 

the resolution of the safety hazard.   

There are four methods of verifying software safety requirements: inspection, analysis, testing, 

and demonstration.  Later sections of this AOP discuss recommended approaches and techniques 

for analysis as well as approaches for SSR verification through testing. 

3.3.8.2 Detailed Design Software Safety Analysis 

One of the primary analyses performed during DDA is the identification of software units that 

implement software safety requirements.  The term software unit refers to the code-level routine, 

function, or module.  The best ways to accomplish this task is for the software safety team to 

meet with the software supplier, test engineer, or QA engineer and begin to link individual 

software safety requirements to software units, as illustrated in Figure 3-15.  This accomplishes 

two goals:  First, it helps focus the software safety team on the safety-related processing, which 

is more important on large-scale development projects than on smaller, less complex programs.  

Secondly, it provides an opportunity to continue development of the RTM.  A critical aspect of 

this portion of the analysis is identifying interfacing functions to the safety-related modules.  

As a result of the analysis, the software safety engineer will likely identify additional safety 

issues and develop design and implementation recommendations to mitigate the risks.  The 

following list provides examples of techniques and processes that the software safety engineer 

may use. 

 Safety Interlocks 

 Checks and Flags 

 Firewalls 
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 Come-from programming 

 Bit Combinations 

 “What If” analysis 

 

Figure 3-15: Identification of Safety-Related CSUs 

 

Detailed design analysis also allows the system safety team to identify potential hazards related 

to interfacing systems.  Erroneous safety-related data transfer between system-level interfaces 

can be a contributing factor (causal factor) to a hazardous event.  Interface analysis should 

include the identification of all safety-related data variables while ensuring that the software 

exhibits strong data typing for all safety-related variables.  The interface analysis should also 

include a review of the error processing associated with interface message traffic and the 

identification of any potential failure modes that would result if the interface fails or the data 

transferred is erroneous.  The safety team should tie identified failure modes to the identified 

system-level hazards. 

3.3.8.3 Detailed Design Analysis Related Sub-Processes 

The following list contains some analysis techniques that are useful in performing detailed 

design analysis of safety-related functionality in software.  None of these analysis techniques 

alone will provide all of the information required to assess and/or mitigate the risk.  Therefore, 

individual programs may require a combination of analysis techniques to adequately address the 

risk. 
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 Process flow diagrams 

 Data flow diagrams 

 Code Level Analysis 

 Data Structure Analysis 

 Control Flow Analysis 

 Interface Design Analysis 

 Interrupt Analysis 

 Analysis by Inspection 

3.3.9 Safety Risk as a System Property 

Safety Risk is a system property, not a property of the components or subsystems, including the 

software, that comprise the system.  Components, subsystems, and software exhibit certain 

safety-related attributes that affect the overall risk associated with the system.  These safety 

attributes are a function of the interaction of the component with the safety-related functionality 

of the system, failure modes of the component and their impact on the system, and the reaction 

of the component to other failures in the system.  Therefore, hazard causal factors are assessed 

for mishap potential at the system level.  Further, just as changes within a system affect the 

safety-related functionality of components within the system, changes to the system context will 

subsequently change the safety-related functionality and/ or the interaction of components with 

that functionality, and thus change the safety properties of the system.  This is true whether the 

boundaries of the system remain the same or the boundaries of the system increase, which 

happens when we integrate a system with another system or into a larger system of systems.  We 

may also change the criticality of the system’s or a component’s functionality in the context of 

the new system configuration or environment. 

3.3.10 System Hazard Analysis 

The purpose of the System Hazard Analysis (SHA) is to: 

 Verify system compliance with safety requirements and other applicable documents.  

These system-level requirements and specifications are traceable “down” to the software 

requirements.  The software requirements analyses are compared back “up” to those 

safety-related system level specifications to assure that all system hazards are mitigated at 

the software sub-system level and that lower derived software requirements do not 

introduce new system level hazards. 

 Identify previously unidentified hazards associated with the subsystem interfaces and 

system functional faults.  The lower level interface analyses results are compared back 

“up” with the system interfaces to assure that the original safety risk level assigned to 

each system interface is still the same level. Differences are highlighted when detailed 

design and software architecture analyses results are: 

o Compared “up” to original system level hazards, 

o Assessed whether low level design and code faults induce system level hazards, 
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o Assessed to assure that system level mitigations are not bypassed or left in an 

unsafe state by low level functional faults. 

o Traced back to software and system architecture components previously declared 

as safety-related software system components 

o Used to highlight the hazards which are dependent on PDS and where that PDS 

operates within the architecture and interface of the system. 

 Identify and confirm: 

o Original software system interface safety risk level assignment agrees with 

feedback from low level safety risk level interface assignments; 

o low level safety risk level assignments to components in the architectures agree 

with system level component safety risk level assignments and partitions: 

 selected operational safety threads are traced through and highlight each 

system interface, software interface, and software component in 

architectures (software structure, software interfaces, software activity or 

node architecture, and data exchange(s)); 

o software system architecture fault tolerance designs (partitions, initializations, 

shut-downs, status monitoring, stand-by functions) and interfaces to system level 

architecture fault tolerance design and functionality is correct; 

o residual actions necessary for identified hazards: 

 document their associated risk 

 the stakeholder (may be a different interfacing system supplier, a 

subcontractor supplier, GOTS, or a COTS supplier) responsibilities with 

respect to the hazards (acceptable, change required, fault tolerance to be 

increased) has been determined 

 recommend further mitigation to achieve acceptable safety level 

 recommend appropriate system level V&V (inspections, test cases, and 

especially demonstrations – since system testing may not be discrete 

enough to close interface hazard). 

The software contribution to an SHA can begin once the project has an approved Preliminary 

Hazard Analysis (PHA), the system requirements have been linked to the systems hazards, 

system architecture (at least the physical, activity, and data exchange models) have been 

designed, and at least some of the requirements have been allocated to software functions.  SHA 

updates are made for each software milestone review (Software Requirements Review, 

Preliminary Design Review (PDR), Critical Design Review (CDR), Test Readiness Review, 

Initial Operating Commencement (IOC), Low Rate of Production Decision, and Initial Operating 

Capability), and for Review Authority submittals.  Key SHA events are requirements reviews, 

swPDR, swCDR, system integration, and IOC.  The SHA is iteratively updated throughout the 

development process.  The SHA is complete when software changes cease and the final version 

is delivered 
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Figure 3-16 graphically represents the inputs, outputs, and primary sub-tasks associated with the 

SHA activity.  Like other software related analyses the SHA is iterative in nature: changes to 

architecture elements and issues raised during integration will require updating analysis portions.  

The inputs to the SHA iterations include: all lower level design and interface analyses results, 

hardware causes, software causes, and human error causes. 

 

 

Figure 3-16:  System Hazard Analysis 

 

In a majority of the hazards, the in-depth causal factor analysis will identify failure modes (or 

causal factor pathways) which will cross physical subsystem interfaces, functional subsystem 

interfaces, and even contractor/subcontractor interfaces.  Figure 3-17 graphically depicts the 

crossing of interfaces and subcontracts. 
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Figure 3-17:  System Hazard Analysis Interface Analysis Example 

 

The software safety threads also delineate timing and sequence, which is dependence, of 

software functions at interfaces. It is possible to meet interface requirements tests but fail 

integration testing due to data refresh and sequence issues.  The threads also have a physical 

attribute that highlights pathways through the computer hardware, data busses, memory, data 

structures, and PDS.  The safety analyst must ensure that both hardware and software design 

architecture safety risk assignments, or “tags”, comply with the architectures, design 

specification, safety requirements, and interface descriptions. 

3.3.11 Systems Integration and System of Systems (SoS) 

Systems integration is a crucial development phase which should be supported with software 

safety system hazard analyses, interface analyses, and safety test analyses and results.  Lessons 

learned highlight that this phase is prone to new faults leading to new hazards, especially 

affecting the SHA. 

Integration into a System of Systems is more difficult and complex than systems integration, 

especially due to the lack of binding contracts and up-to-date information among SoS members 

to assist them as they integrate together 

3.3.11.1 System Integration 

Integrating even stable systems invariably affects the safety properties of the each system.  

Integration of systems may happen in a variety of ways, each with a different distribution of 

safety risks:  

 Interfacing one system within another system (e.g., linking a sensor and tracking system 

to a weapon control system which makes all firing decisions) creating one complex 

system where safety monitor and control is centralized. 

 Incorporating one system within another system (e.g., incorporating a sensor system 

within a weapon or fire control system but in a closed system with no outside system 

sharing data or commands) creating one complex system, with safety still “centralized” 

but interfaces and timing become more difficult. 

 Integrating systems together over a communications network (e.g., a battle space 

coordination created by digitally interfacing weapon systems and sensor systems) a 

global integration but each system only shares advisory awareness data and no system 

commands another.  Safety continues to be “local” only but inputs and redundancy are 

remote. 

 Integrating systems through a command and control system (e.g., a battle space command 

and control with a capability to command an interfacing weapon systems to fire based on 

safe data received from a remote sensor systems, all transporting data over a network 

system that interfaces individually with each) to create a distributed system of systems .  

This is the most difficult safety monitor and control problem. 
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The safety risk and the safety-related functionality shifts from the un-integrated first state to the 

integrated new state of the system or system-of-systems6.  These shifts depend on functionality 

changes created at the new system level, and the re-distribution of safety decisions and authority.  

Integrating systems may create new hazards7 (emergent hazards) or just change existing hazards.  

SoS integration creates new associations of sometimes both existing and new causal factors, 

and/or the severity of the hazards.  The occurrence of new hazards is usually the result of new 

functionality or changes to existing functionality in the system-of-systems context, whether 

intended or inadvertent. 

3.3.11.2 SoS Hazard Analysis Techniques 

The hazard analyses of SoS is a collection of current techniques that are analyzed together for 

interactions.  There are very few well-defined techniques for identifying hazards and causal 

factors associated with integrating systems into a system of systems: Interface Hazards Analyses 

is probably the most commonly used but does not cover physical, architectural, messaging, or 

nodal faults.  It is possible to “pass” interface control requirements and yet fail systems 

integration due to timing or sequencing faults.  Other useful techniques usually consist of using 

the architecture to walk through a planned operational thread to and from each of the interfacing 

systems and determine how the new functionality added by the integrated system affects the 

current hazards.  The next step is to use the CONOPS for each interfacing system and for the 

SoS.  Identifying causal factors associated with the system-of-systems proceeds much as it did in 

the analysis of the individual weapon systems however; the complexity of and number of 

stakeholders in the new System-of-Systems increases the complexity of the interactions between 

the systems, multiplies the number of potential causal factors, and multiples the mitigation 

parameters. 

3.3.11.3 System Interoperability 

The ability of systems to function together or system interoperability is a significant source of 

hazard causal factors when integrating systems.  These interoperability hazards include: systems 

not performing as expected but still on-line (degraded, failed, maintenance mode), systems closer 

together than expected (exhaust from one system burns another, pointing and shooting into 

another system),  loss of awareness.  Software safety needs to assess safety from various states 

and conditions that are best derived from CONOPS and review of current operations using a 

subject matter expert. 

 

One significant aspect is the compatibility of the data across the interfaces.  Compatibility refers 

to a variety of factors including data rate, data format, data type, coordinate system and 

associated reference system used, date and time format, references, units of measure, etc.  It also 

                                                 
6 A System-of-Systems is an integration of heterogeneous systems by means of a loosely coupled 

network that provides some level of control over the systems.  This integration can occur at 

all levels of complexity.  
7 Hazards are generally a function of the systems at the lowest level.  Creating new hazards 

generally requires new functionality involving the control of new energetic components in 

the system or new applications of existing energetic components, such as using a weapon in a 

new manner (e.g., providing over-the-horizon fire support).  
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includes whether the data means the same thing to the interfacing systems8.  Another data 

compatibility issue is the ability of a system to provide the data required by other systems.  

Often, the information provided by the sending system is very different from that the receiving 

system expects to receive since its original application served different needs.  The accurate 

conversion of that data is critical to ensuring the safety of the operations.  This is one safety-

critical aspect of systems interoperability and affects the safety of integrating systems into 

systems-of-systems.  In our safety analysis, we will focus on those modules providing the 

conversion of the information and the interface of those modules to the rest of the fire control 

system software.  Part of the conversion should be a sanity check: a check to verify that the 

information provided is meaningful in the context of the capabilities of the receiving system and 

the operations in progress. The latter may not be practical due to the limitations on the 

information available to the fire control system.   

When analyzing the integration of systems, one of the most critical factors is analyzing the 

interfaces between the systems, especially if the information passed across the interface includes 

control data or safety-critical data.  Very simple differences between the designs of the interfaces 

often go unnoticed, such as whether the serial data interface is least significant or most-

significant bit first.  The analysis of the interfaces is critical to assessing the potential risk 

associated with integrating systems into systems-of-systems. 

3.3.11.4 Risk Escalation: Other Factors 

Integrating systems into more complex systems is not the only means of escalating the associated 

safety risk.  Using systems outside their intended application can also result in the escalation of 

risk associated with weapon systems.  An example of this is the trend toward using joint warfare 

information systems, normally used for battle coordination, for directing fire support.  In their 

original inception, these systems were to provide commanders with improved situational 

awareness from multiple vantage points.  These systems provided information regarding 

coalition and enemy troops and installations that the commanders could use to plan attacks, 

assess battle damage, etc.   In that context, their application was safety related but not safety 

critical.  However, the military soon began using these systems to request fire support, direct fire 

from artillery batteries, etc.  The integrity of the data passed over the information system is 

essential to ensuring the safety of these operations (e.g., weapons firing).  With the trend toward 

coalition operations growing, the suppliers took the next logical step and integrated the joint 

warfare information system with the fire control systems, including those aboard ships.  In that 

new system context, the joint warfare information system becomes at least safety-significant: it 

directly passes target designation data to the fire control systems.  If the implementation in the 

fire control system permits automatic processing of engagement orders, that functionality in the 

joint warfare system is now safety critical.  Errors in the information could result in the laying of 

fires at the wrong location, possibly killing and injuring the personnel the fire support was to 

protect. 

The above example addresses a relatively complex system evolution.  However, applying much 

simpler systems outside their intended applications, including those that appear to have little 

safety risk, can significantly increase the safety risk.  An example is the use of a Global 

                                                 
8 For example, target elevation to one system may mean the altitude of the target above mean sea 

level and, to another system, the elevation angle to the target. 
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Positioning System device.  A coalition company was using the device to pin point the location 

of an enemy convoy.  The device up linked the enemy position data to an attack aircraft that 

downloaded the data into a precision-guided weapon.  During the operation, the GPS device 

experienced a momentary power interruption.  When it came on-line, it transmitted its own 

location vice the location of the enemy convoy resulting in the precision-guided weapon striking 

the coalition company.  The intended use of the GPS device was as a locator beacon for search 

and rescue operations.  

Many factors affect the integration of these systems that increase the risk associated with the new 

system-of-systems. These include personnel factors, changes in the warfare scenario, and 

technological factors.  Earlier generations of personnel had an inherent distrust of computer 

systems: they relied on them to provide information but made decisions based on what their 

other senses, including intuition, told them.  They tended to double-check their information 

before committing to a course of action recommended by the computer system.  Each succeeding 

generation of users however, tends to put more faith in the information provided by the 

computer, even to the extent that now, many users ignore information their senses provide them 

and believe the data provided by the computer.  They are also less likely to double-check the 

information before committing to a recommended course of action. 

Changes in the warfare scenario also increase the risk. Modern weapon systems, even those 

available to third world countries, are faster and stealthier. This makes their detection more 

difficult and shortens the allowable reaction time from detection to engagement. The quicker 

reaction time necessary to engage these threats requires the speed of computers and allows little 

time for the user to interpret the data and second guess the computer. Modern information 

systems are also faster and more complex and their interactions with other systems are far more 

complex.  All of these factors influence the risk associated with the new systems-of-systems. 

Within our engineering design space, we have limited options for reducing the risk associated 

with this kind of system integration. We must examine the functionality of the integrated systems 

in the context of the mishaps and hazards identified within the weapon systems.  The weapon 

system has the energies we are concerned about and the combat system of which our weapon 

system is an element, directly or indirectly exercises control over some of those energies. 

3.4 Software Safety Risk Assessment 

A great deal of the confidence placed on a critical software system is based upon the results of 

analyses and V&V performed on specific artifacts produced during system development (e.g., 

source code modules, executable programs produced from the source code).  These results 

contribute to confidence in the deployed system only to the extent that we can be sure that the 

tested and analyzed components, and only them, are actually in the deployed system. 

3.4.1 Software Mishap Definitions 

The difficulty of assigning useful probabilities to faults or errors within software requires an 

alternate method of determining both the initial and the residual risk for software hazard causal 

factors. This assessment methodology allows one to assign a qualitative measure of the software 

risk as opposed to the quantitative assessment traditional to that of hardware components. 

However, to be useful in the risk assessment of the host system, the methodology must provide a 

means of equating the risk associated with the software to the quantitative risk assessment 
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associated with hardware.  The initial risk assessment for software functions inherits the 

MRI/HRI from system level as determined by the PHA or FHA and following the requirements 

or functional allocation. 

The initial risk assessment for software hazard causal factors uses the influence or control that 

the software has over the hazard or mishap and the severity of the outcome of the hazard or 

mishap.  Table 3-3 provides definitions for the Software Control Categories. This risk 

assessment is not a traditional safety risk assessment, in that it is not a metric for reporting safety 

risk.  Rather, it is an assessment of the programmatic risk associated with the architecture and 

design of safety-related functions in the software.  It provides a means of identifying the level of 

effort and level of rigor required to verify that the software functionality does not pose an 

unwarranted safety risk at the system level. 

 

Software Control Category Definitions 

I Software exercises autonomous control over potentially hazardous hardware 

systems, subsystems, or components without the possibility of intervention to 

preclude the occurrence of a hazard. Failure of the software or a failure to prevent 

an event leads directly to a mishap.  

  

IIa Software exercises control over potentially hazardous hardware systems, 

subsystems, or components allowing time for intervention by independent safety 

systems to mitigate the hazard. However, these systems by themselves are not 

considered adequate.  

  

IIb Software item displays information requiring immediate operator action to 

mitigate a hazard. Software failures will allow or fail to prevent the mishap.  

  

IIIa Software item issues commands over potentially hazardous hardware systems, 

subsystems or components requiring human action to complete the control 

function. There are several, redundant, independent safety measures for each 

hazardous event.   

  

IIIb Software generates information that relates to safety or is used to make safety 

decisions. There are several, redundant, independent safety measures for each 

hazardous event. 

IV Software does not control safety related hardware systems, sub-systems or 

components and does not provide safety related information.  

  

Table 3-3:  Software Control Categories 
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3.4.2 Software Risk Assessment 

The safety team performs risk assessments throughout all phases of the design, development, and 

testing.  These risk assessments provide a means of tracking the progress of the system 

development effort with the system safety program.  The continuous risk assessment of software-

related hazard causal factors provides a means of tracking the progress of the software design, 

development, and testing efforts as well as the software systems safety program.  However, the 

actual assessment metric differs due to the inability to assign useful quantitative probabilities to 

software failures and especially to failures in specific functional threads through the software. 

3.4.2.1 Software Safety Criticality Index (SSCI) Matrix 

The SSCI presented in Table 3-4 uses the same definitions for hazard severity as the traditional 

hazard or mishap risk matrix described in AOP-15.  However, the SSCI matrix is different from 

the traditional hazard risk matrix as it is a tool to assess the risk associated with software control 

of or influence on hazards.  Each program should tailor this matrix to the specific requirements 

of the program in the beginning of the acquisition life cycle preferably in a system safety 

management plan or program plan. The safety team should develop a matrix for the system under 

development that best reflects the needs of the system, the system of systems into which it will 

be integrated, and regulations that apply to the safety assessment of the system. 

 

The SSCI is not the same as the mishap or hazard risk index used for the overall system, though 

they appear similar.  A low index number from the SSCI Matrix does not mean that a design is 

unacceptable.  Rather, it indicates that a more significant level of effort is necessary for the 

requirements definition, design, analyses, and V&V of software and its interaction with the 

system. 

 

The Mishap Risk Index (MRI) and the Hazard Risk Index (HRI) are safety designations at the 

system level (integrated hardware/software).  For communicating risk to the software engineer, 

the SSCI Matrix summarizes safety links to functional software and designates a level of rigor 

required by the software and test development group. 

 

Hazard Severity / 

Software Control Category 
Catastrophic Critical Marginal Negligible 

I 

Autonomous 
1 1 2 3 

IIa/IIb 

Semi-Autonomous 
1 2 3 4 

IIIa/IIIb 

Redundant Backup 
2 3 4 5 

IV 

Not Safety Related 
3 4 5 5 

 

Table 3-4:  Software Safety Criticality Index Matrix 
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3.4.2.2 Software Safety Criticality Interpretation 

The interpretation of the SSCI determines the level of rigor in the analysis and testing that the 

safety and the software development teams need to apply to the software as well as the level of 

scrutiny necessary during requirements definition and the design, implementation and validation 

of safety-related requirements.  If a system development program does not implement the 

recommended safety level of rigor the level of uncertainty rises and so does the level of risk. 

 
     PHASE 
 
SSCI 

DESIGN CODE UNIT TEST INTEGRATING 
UNIT TEST 

SYSTEM                                  
INTEGRATION 

1  
High Risk 

 Design Team 
Review 

 Safety Review 

 SCF Linked to 
SW Rqmts 

 SCF Linked to 
Design 
Architecture 

 Safety Fault 
Tolerant 
Design 

 Design Code 
Walkthrough 

 Independent 
Code Review 

 Safety Code 
Analysis 

 SCF Code 
Review 

 Safety Fault 
Detection, 
Fault Tolerance 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 Safety Test 
Result Review 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 100% 
Regression 
Testing 

 Safety Test 
Result Review 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 100% 
Regression 
Testing 

 Safety Test 
Result Review 

2  
Serious 
Risk 

 Design Team 
Review 

 Prioritizing 
Safety Review 

 SCF Linked to 
SW Rqmts 

 SCF Linked to 
Design 
Architecture 

 Design Code 
Walkthrough 

 Safety Code 
Analysis for 
Prioritized 
Modules 

 SCF Code 
Review 

 Safety Fault 
Detection, 
Fault Tolerance 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 100% Thread 
Testing 

 Safety Test 
Result Review 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 100% 
Regression 
Testing 

 Safety Test 
Result Review      

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 100% 
Regression 
Testing 

 Safety Test 
Result Review 

3  
Moderate 
Risk 

 Design Team 
Review 

 Minimal Safety 
Review 

 SCF Linked to 
SW Rqmts 

 SCF Linked to 
Design 
Architecture 

 SCF Code 
Review 

 Safety Fault 
Detection, 
Fault Tolerance 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 Safety Test 
Result Review 

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 Safety Test 
Result Review      

 Test Case 
Review 

 Independent 
Test Review 

 Failure Mode 
Effect Testing 

 Safety Test 
Result Review 

4 
Low Risk 

 Design Team 
Review 

 Minimal Safety 
Review 

 Normal 
Software 
Design 
Process IAW 
SDP 

No specific tasks  Test Case 
Review 

 Independent 
Test Review 

 Safety Test 
Result Review 

 

 Test Case 
Review 

 Independent 
Test Review 

 Safety Test 
Result Review 

 

 Test Case 
Review 

 Independent 
Test Review 

 Safety Test 
Result Review 

 

5 
No Safety 
Risk 

 Normal 
Software 
Design 
Activity IAW 
the Software 
Development 
Plan 

 Normal 
Software Code 
Activity IAW 
the Software 
Development 
Plan 

 Normal 
Software Unit 
Test Activity 
IAW the 
Software 
Development 
Plan 

 Normal 
Software Unit 
Integration Test 
Activity IAW the 
Software 
Development 
Plan 

 Normal Software 
System 
Integration Test 
Activity IAW the 
Software 
Development 
Plan 

 

Table 3-5:  Level of Rigor Matrix 
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Using the indices from Table 3-4, Table 3-5 provides recommendations for the level of rigor 

required for the safety assessment processes and the I&V that the safety team should apply. 

3.4.2.2.1 System-Level Hazards Analysis 

All safety efforts begin with a high-level assessment of the mishaps and hazards associated with 

a system, generally referred to as a Preliminary Hazards List.  This process requires 

identification of safety-related events and safety-related functions associated with the system.  In 

themselves, these functions and events may not constitute a hazard or mishap however, should 

they occur when not desired (e.g., inadvertently), not occur when required (e.g., failure of a fire 

sensor), occur out of sequence, etc., they likely contribute to a mishap (event) or hazard 

(function).  At a high level, the events and functions are very general in nature and, until the 

development defines the system architecture, the contribution of the software is likely unknown.  

However, without this system-level assessment, further identification of mishaps and hazards is 

more difficult. 

3.4.2.2.2 Architectural Assessment of System and Software 

The assessment of the system architecture uses the Preliminary Hazards List as a baseline to 

identify the safety-related events, sequences, and functions with associated hazards that require 

mitigation.  At the system architecture level, the safety team’s goals are to ensure that the 

architecture:  

 Supports desirable safety attributes,  

 Provides timely (does not block or delay) knowledge or control of safe or hazardous 

states or modes; 

 Provides survivable access to knowledge or control of safety mitigations or operators; 

 Does not contain constructions that make the overall safety assessment difficult or 

impossible, and  

 To influence the allocation of safety-related functions between hardware, software, 

operator, and maintainer in a manner that ensures the system will have a final residual 

risk that is as low as reasonably practical in the operational environment. 

 

There are a large number of architectural patterns that designers can use to develop a system.  A 

large portion of these patterns is inherently unsafe because the resultant system does not permit 

the effective application of the overall safety assessment process.  High interaction (coupling in 

software engineering terms) between safety-related and non-safety related functions, non-

modularization of mission-related and safety-related functionality, lack of visibility into the 

design to allow detailed testing, (PDS), etc. are a few of the many attributes an architecture can 

create that make it unsuitable for safety assessment.  Additional information on generic software 

safety guidelines is contained in Chapter 4 [Generic Software Safety Design Requirements].  

 

The allocation of events to hardware, software, the operator, and the maintainer occurs largely 

during the design of the system architecture.  The development team will generally evaluate 

several allocations, determine the benefits and drawbacks of each, and make a final 

recommendation based on these and other factors.  Inputs and recommendations from the safety 

team can affect the inherent risks of particular system architectures. 
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3.4.2.2.3 Requirements Hazards Analysis 

The Requirements Hazards Analysis provides a means of analyzing all requirements to 

determine or designate safety-related requirements, derived safety-design requirements, and 

generic safety-design requirements throughout the software development.  It begins with the 

identification of safety-related events and the associated functions at the system level, such as 

those found in a Functional Hazard Analysis (FHA).  The analysis will also incorporate the 

tailored generic safety-design requirements, correlating them to specific safety-related 

functionality in the system design as practical. 

3.4.2.2.4 Code Level Analysis 

Code-level analysis, often referred to as “static testing”, may address one of two types of code: 

the source code (programming language) and/or the object (or machine) code (binary code that 

executes on the processor). The level of detail in the analysis can range from simple inspection to 

formal proofs of correctness of the source or object code.  The level and detail of the analysis 

depends on the requirements for the particular safety-related function, the nature of the analysis, 

the reason for the analysis, and the focus of the analysis. A shallow analysis (e.g., inspection) 

may address only the program layout, ensuring that it complies with the next higher-level 

architecture and follows the recommended coding constraints. A “medium-depth” analysis may 

look at code structure, the implementation of safety-related functionality, and may address 

specific properties of the code (e.g., memory management) or specific functionality related to 

other aspects of the code such as exception or interrupt handling. A deep analysis may analyze 

the object code and its execution on the processor in a manner that allows the analyst to trace the 

functionality in the processor, its registers and cache memory, and the address and data busses. 

3.4.2.3 Testing 

Testing provides the evidence necessary to demonstrate that system-level, the software, the 

generic and derived safety-design requirements and their implementation provide the desired risk 

reduction.  However, to provide sufficient argument that the software does not pose an 

unacceptable or undesirable risk, the test program must include sufficient safety-specific testing 

to verify the design and implementation of the software mitigates all of the identified software-

related hazard causal factors.  Chapter 4 [Generic Software Safety Design Requirements] 

includes recommendations for “generic” tests for safety-related software. Generic tests are 

mainly structural test, relating to the selected hardware, the selected compiler and software 

language, and the selected architecture(s).  However, generic tests alone cannot provide the 

necessary evidence that the software can execute safely in the system context.  That is due to the 

subtle and complex interactions between the systems-of-systems, the operator/maintainer, the 

software and hardware, within the software, and in the software control of safety-related 

hardware. 

 

Analysts will identify software-related hazard causal factors during the analysis phases and 

develop safety-design requirements and/ or recommendations to mitigate either the hazard causal 

factor or the effects of the hazard causal factor.  Normally, requirements-based testing will 

include safety-related requirements and specify test cases to verify the implementation of these 

requirements.  The safety team must review both the test plan and the test procedures to ensure 

that the test cases provide the required evidence of risk mitigation validation.  This testing should 

include fault insertion and failure mode testing that verifies the correct response of the software 
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to these anomalies.  As the criticality of the software increases, the depth of analysis increases 

(e.g., detailed design, code-level analysis) and the level of necessary testing increase.  Analysts 

should use the analysis of the implementation to develop detailed tests of the safety-critical 

software to ensure that it achieves its objectives. 

3.4.2.3.1 Software Independent Verification and Validation 

Software Independent Verification and Validation, or IV&V, is a requirements-based test 

program run by a group independent of the organization that developed the software.  The testing 

first verifies that the computer correctly and completely implements the software-related 

requirements, from the highest level of abstraction to the lowest level of software requirements.  

The testing also validates that the requirements implemented in the software are those necessary 

to achieve the system-level (or mission-level) requirements.  The IV&V organization will 

identify functionality that does not appear to relate to the high-level requirements associated with 

the system. It verifies (to the extent practical) that there is no functionality that does not have a 

requirement at a higher level of abstraction.   

 

The effectiveness of the IV&V effort requires that the team understand not only the requirements 

but also the intent and objectives of the requirements.  Therefore, the IV&V team should work 

closely with the software development team to fully understand the functionality and its 

implementation in the final product.  IV&V interaction and test may occur at various stages of 

development, depending on the nature of the development, its complexity, and the ability to 

break the system software into segments that lend themselves to this form of testing. 

 

Safety testing must be an integral part of all IV&V processes.  The safety team and the IV&V 

team should work together to ensure that the IV&V process includes adequate testing of safety-

related functionality, verifies the correct implementation of safety-design requirements, and 

provides another level of evidence that the safety analyses achieved the desired risk mitigation.  

For the IV&V team to verify the correct implementation of safety-design requirements, the 

safety team must provide them with specific guidance on the safety-design requirement, its 

intent, and both the desired and undesired outcomes of the testing.  Likewise, the safety team 

should also review the IV&V tests and test cases to ensure they meet these objectives.  

Furthermore, the safety team should provide the IV&V team with guidance on the specific 

concerns associated with safety-related functionality in the system.  These tasks will ensure that 

the IV&V team can provide the data required by the program and secondarily that safety team 

use the IV&V output to confirm the system-level risk mitigation achieved. 

3.4.2.3.2 Validated Development Tools 

Validation of development tools (tools beyond the software engineering tools) requires that the 

development team, in concert with the system safety team, ensure that all tools used in the 

design, development, analysis, and testing of the software product receive an appropriate level of 

assessment to the product under development and their purpose in the overall development 

effort.  Suppliers frequently use models, simulators, stimulators, and emulators as part of the 

development effort, particularly for testing purposes.  Validation of these tools requires that the 

development team ensure that they provide as realistic a simulation as possible within the bounds 

of their intended purpose.  For example, a simulated sensor should provide inputs (including 

failure modes, degraded operation, etc.) as close to the actual simulator as practical.  Timing and 
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state or mode transitions are the most difficult to validate.  In early testing, the ability to test 

failure modes or degraded operation may not be as important as it is in later test efforts.  

Therefore, the level of fidelity required of the simulator varies with each development phase and 

must be validated for each phase or use. 

3.4.3 Residual Risk Assessment 

Accomplishing recommended tasks as shown in Table 3-5 is not sufficient to demonstrate that 

the risk is as low as reasonably practical, although accomplishing these tasks will provide 

substantial risk reduction.  The safety team must perform the “engineering” on the output safety 

data and accumulation of results required to ensure that the safety requirements derived has 

provided the desired risk reduction, that the implementation of the requirements achieves their 

intent, and that testing of the final product provides the evidence that it achieves the desired risk 

reduction.   They must also be an active participant in the overall software engineering and 

system engineering processes.   

3.5 Safety Assessment Report/Safety Case 

A Safety Assessment Report (SAR) is a structured argument, supported by a body of evidence, 

that provides a compelling, comprehensive and validated assessment that a system is safe for a 

given application in a given environment. That body of evidence is the Safety Case9, which 

contains all necessary information to enable the safety10 of the system to be assessed.  It will 

contain an accumulation of both product and process documentation.  The Safety Case will 

evolve over the life of the system and will be structured such that safety arguments are 

developed.  While the structure of the Safety Case will broadly remain constant, the status of the 

evidence will change e.g. planned test coverage will be replaced by evidence of test results. 

3.5.1 Safety Case Overview 

A Safety Case is required for all systems and may be produced at the sub-system, system or 

system-of-systems level.  Where a system includes sub-systems that have separate Safety Cases, 

these Safety Cases should be integrated and reconciled within the higher-level system Safety 

Case.  This will assist in demonstrating that interface and other safety issues have been managed 

effectively, and those assumptions and cascaded safety requirements have been properly 

addressed. 

3.5.2 Safety Case Summary 

Safety Case content will be dependent on the nature of the system and the potential risk 

associated with it but as a minimum the Safety Case should be sufficient to demonstrate that any 

activities underway at that time (including tests or trials) can be carried out safely.  The progress 

of a project at particular stages of its life may be dependent on acceptance of a safety assessment 

report that summarizes the arguments and evidence. 

3.5.3 Safety Case Contents 

The Safety Case should typically provide evidence at least that: 

                                                 
9 Some safety review authorities refer to the Safety Case as a Technical Data Package, Technical 

Munitions Safety Study, SAR or similar title 
10 Also referred to as the residual risk 
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 All applicable legislation, regulations, standards and policy have been complied with. 

 The Safety Management System is effective and is compliant with the Safety 

Management Plan. 

 The staff undertaking key roles with defined responsibilities had the appropriate 

competencies for those roles. 

 The set of safety requirements is valid and traceable.  The safety requirements should 

have been derived by thorough analysis and should correspond to the system as designed 

and implemented.  Many safety requirements are derived from actions to reduce risk that 

are identified as part of the Hazard Analysis.  Because of this, the evidence should show 

that Hazard Analysis and risk management processes have been carried out in accordance 

AOP 15. 

 Arguments and evidence are provided to demonstrate that all safety requirements, 

including contractual requirements and relevant process and procedural safety 

requirements, have been satisfied, or there is adequate mitigation for any non- or partial-

compliance with the safety requirements.  

 Any residual system failures are within the tolerable limits determined by the risk 

management process and are managed safely. 

 Safety claims, safety arguments and evidence have been subjected to independent 

scrutiny. 

 The quantity, quality and rigor of evidence is commensurate with the arguments it 

supports 

The Safety Case is a comprehensive set of artifacts and in general, it is not practicable or 

necessary for it to be physically delivered, at least in paper form.    

3.5.4 Safety Assessment Report 

The purpose of the SAR is to provide management an overall assessment of the risk associated 

with the system including the software executing within the system context of an operational 

environment.  This safety assessment report provides a snapshot summary of the Safety Case at 

key milestones.  In addition, the report will provide details of the progress made in managing 

safety since the previous report and should be structured around the safety claims for the system 

and the planned activities. The safety assessment report should provide justifiable confidence 

that the Safety Case is, or will be, comprehensive and that the expected progress is being made 

on planned activities.  This safety assessment report must be an encapsulation of all of the 

analysis performed as a result of the recommendations provided in the previous sections. 

3.5.5 Safety Assessment Report Contents 

The contents of the safety assessment report will vary according to the maturity of the Safety 

Case and the intended readership.  It has two main functions. Firstly, to assure the reader that 

safety risks are being managed effectively and so should include a clear and concise summary of 

the Safety Case and safety progress. Secondly, to highlight key areas of risk to the operators and 

users and so should provide information that will support operational decision-making.  The 

safety assessment report should contain meaningful information and be as concise as possible, 

without sacrificing the need to provide the necessary information.  References should be 

provided to supporting material within the Safety Case.  A suggested structure is as follows: 

 Executive Summary. 
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o The executive summary should provide assurance to stakeholders that safety 

requirements have been, or will be, met by:  

 Confirming that Safety Case work has been, or is being, progressed 

satisfactorily. 

 Confirming that all other stakeholders have formally acknowledged their 

safety responsibilities. 

 Recommending or otherwise progression to the next stage of the 

acquisition cycle or the next defined milestone confirming that safety 

risks associated with the next stage can be satisfactorily managed. 

 Summary of System Description. 

o A brief description of the system should be provided, noting that a full System 

Description will be contained within the Safety Case.  The summary should be 

sufficient to enable the boundaries and scope of the Safety Case and its 

interfaces with other Safety Cases to be clearly defined and understood. 

 Assumptions. 

o Assumptions that underpin the scope of the Safety Case, or the safety 

requirements, argument or evidence should be stated.  For example, this may 

include numbers of personnel, training levels, operational profiles, time in 

service, operating environment, etc. 

 Progress against the Program. 

o An assessment of progress against the safety programme should be provided 

that describes: 

 An indication of the current status relative to the expectations 

documented within the programme, including an assessment of any 

impacts on future progress. 

 Progress on safety management since the previous safety assessment 

report, including identification of any new hazards and accidents and 

progress on risk management activities. 

 Progress against agreed actions placed on stakeholders. 

 Meeting safety requirements:  The following should be included: 

o A statement describing the principal, agreed safety requirements. 

o A summary of the argument and evidence that demonstrates how the safety 

requirements have been, or will be, met.  This will describe: 

 Summary of the hazards and likely accidents associated with the system, 

noting the main areas of risk.  Note:   The aggregation of risk should be 

documented and main areas of risk will also be highlighted under the 

Operational Information heading. 

 Safety requirements that are unlikely to be met, either in part or in full, 

with remedial/follow-up actions identified. 

 Risk management actions that are outstanding, identifying both the risk 

and the organisation responsible for its management. 

 The residual risk that is, or is anticipated to be, posed by the System. 
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o The safety criteria and methodology used to classify and rank software related 

hazards (causal factors).  This includes any assumptions made from which the 

criteria and methodologies were derived; 

o A discussion of the engineering decisions made that affect the residual risk at a 

system level. 

o Issues of particular sensitivity, e.g. use of restricted materials, or with 

significant project or corporate risk. 

o Regulatory approvals/certificates, and any associated restrictions that are 

currently in place. 

o Any counter-evidence found that may invalidate the Safety Case, including a 

description of the activities taken to address this counter-evidence. 

o Feedback, reporting and auditing arrangements for defects and shortfalls. 

o Particular issues related to interfaces between different systems. 

 Emergency/Contingency Arrangements. 

o A statement confirming that appropriate Emergency/Contingency Arrangements 

(e.g. procedures) have been or will be put in place and identification of any 

areas where such arrangements do not exist or are inadequate. 

 Operational Information. (This section will be aimed specifically at the operator). 

o Outputs from the Safety Case that are relevant to the management of operational 

safety, including: 

o A description of the operational envelops. 

o Any limitations on use or operational capability. 

o The main areas of risk (i.e. high risk areas).  

o Relevant information that can assist the operator in balancing the operational 

imperative against safety risk. 

o Demonstration that operating and maintenance procedures and publications have 

been, or will be, developed. 

o Report on any independent safety assessment. 

 Conclusions and Recommendations. 

o Conclusions should be provided, including an overall assessment of the safety of 

the system and any recommendations to enable issues identified within the 

report to be resolved. 

 References. 

o A list of key reference documents should be provided (e.g. parts of the Safety 

Case documentation) 

3.5.6 Overall Risk 

The final section of the SAR should include a statement describing the software contribution to 

the overall residual risk.   Failure to conform to the guidelines of this AOP may result in 

unacceptable risk. The acceptance of that risk by an appropriate authority is mandatory. 
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3.5.7 System Development 

During system development, safety assessment reports show the progress in risk reduction and in 

producing safety evidence.  A major phase in the safety assessment reporting cycle will be at the 

completion of the development phase, prior to acceptance of a system into service; at this stage, 

the safety assessment report is likely comprise a number of versions, presented to varying 

degrees of granularity according to the expected reader (e.g. at a high level for top management 

down to very low level for detailed analysis). In operation, safety assessment reports support the 

operational use of the system, and present data on the rate of occurrence of safety-relevant events 

and the remedial action, if any, needed to preserve safety. 

Note: The maintenance of the Safety Case for a system continues until disposal of the system. 

3.6 Complex Electronic and Programmable Systems 

The previous section defines the requirement for a Safety Case and specifies the associated 

requirement to produce periodic safety assessment reports demonstrating the status of the Safety 

Case. This Section is concerned with demonstrating safety and in the context of complex 

electronic systems (“programmable” systems). 

In defense systems, complex electronic elements are an integral part of the overall system and 

the safety requirements should be driven top down from the overall system requirements. Some 

complex electronic elements will have a greater potential impact on safety than others.  This 

section indicates the types of evidence that may be used for assurance, but it should be noted that 

the question of sufficiency of evidence would generally involve expert judgment.  The role of the 

safety related complex electronic element, its criticality and the application domain of the system 

all affect judgments of tolerability and hence of the sufficiency of evidence necessary for 

assurance. 

AOP 15 defines the requirements for risk management and Section 3.4 discusses analysis, 

conducted as part of the risk management process, that specifically addresses complex electronic 

elements. Within the Safety Case, safety requirements, both specified and derived, must be 

clearly demonstrated to be: 

 Valid and consistent with the ALARP principle. 

 Safety Integrity requirements are valid and achievable 

In addition, evidence should be provided that the following safety claims have been met: 

 The functionality of the software is safe. 

 Software failures are safe. 

 Safety can be maintained over the lifetime of the software. 

 The evidence to support the safety argument is commensurate with the safety integrity of 

the software. 
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3.6.1 Provision of Evidence 

The body of evidence required to demonstrate that a complex electronic element is adequately 

safe is likely to be extensive and this section expands upon the types of evidence required, as part 

of the system Safety Case, based on meeting the above safety claims. 

Direct evidence, process evidence and counter-evidence relating to the complex electronic 

element should be documented and analyzed.  Direct evidence relates directly to the properties of 

the complex electronic element, to its implementation or its behavior in an operational or 

simulated environment.  Direct evidence may also relate to the requirements, role or mitigation 

associated with the use of the complex electronic element in its system context.  Process 

evidence is evidence about the processes for risk assessment, procurement, development, 

verification, validation (including demonstration) or operation of the complex electronic element.  

Such process evidence serves to increase confidence in the direct evidence. 

The quality and quantity of evidence provided for assurance of complex electronic elements 

should be proportionate to the safety integrity requirements. 

The evidence should be selected so that it supports claims for the safety of the complex 

electronic elements.  Evidence should be traceable via arguments to the safety claims that it 

supports and to the derived safety requirements and safety requirements (see Section 3.4).  Safety 

claims should typically address the correctness and sufficiency of the safety requirements 

(including safety integrity requirements) and the satisfaction of the safety requirements 

(including that the failure rate satisfies the safety integrity requirements). 

3.6.2 Direct Evidence 

This section provides guidance for complex electronic elements on the following potential types 

of direct evidence: 

 Analysis evidence 

 Demonstration evidence 

 Quantitative evidence 

 Review evidence 

 Qualitative evidence 

3.6.3 Analysis Evidence 

Evidence from analysis may be used to demonstrate absence of dangerous faults and 

achievement of derived safety requirements in the complex electronic element.  Analysis 

evidence may also be used to derive the safety requirements and to provide evidence of the types 

of failure mode that are possible (or prevented from occurring).  If analysis evidence forms part 

of the Safety Case, the following recommendations apply. 

 Reasoned justification should be provided for the context and limitations of the evidence 

generated by analysis. 

 Analyses should be fully documented and work products should be held under 

configuration control, so that the analyses are repeatable, auditable and verifiable. 
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 Analyses should be rigorous and automated where possible.  Justification should be 

provided for the competence of the people performing the analyses and for the processes 

and tools used.  

 The analysis may be used to provide evidence that the safety requirements are satisfied 

and the derived safety requirements of the complex electronic element hold.  Such 

analyses may include timing (e.g. worst case execution times), use of resources, 

computational accuracy, possibility of run-time error and functional properties.  Analysis 

evidence has the potential to show the absence of all known classes of particular types of 

fault (e.g. absence of run-time error). 

 The analysis evidence may also define the safety requirements for the complex electronic 

element via modeling of the system context and external mitigation. 

3.6.4 Demonstration Evidence 

Operational experience and verification and validation evidence may be used to demonstrate that 

the behavior of the complex electronic element is safe.  If demonstration evidence forms part of 

the Safety Case, the following recommendations apply: 

 Verification and validation of dynamic behavior should be fully documented and work 

products should be held under configuration control, so that test cases are repeatable, 

auditable and verifiable. 

 Operational experience should be documented and auditable. 

 The extent and coverage of dynamic behavior through verification and validation or 

operational experience should be justified. 

 The differences between any test environments and the operational environment should 

be documented and evidence provided to show that the test environment and test cases 

provide a valid demonstration of operational behavior 

This demonstration evidence may be from testing or from exercising the complex electronic 

element in an operational context and the detailed evidence may be further analyzed to form 

quantitative evidence.  Requirements based testing generally produces evidence that is easier to 

link to safety claims. 

3.6.5 Quantitative Evidence 

Quantitative evidence should be used to show how the complex electronic element performs 

against its quantitative safety requirements.  As quantitative requirements should be specified for 

complex electronic elements, quantitative evidence should form part of the Safety Case. 

Quantitative evidence usually relies on statistical models, and the appropriateness of the model 

used should be demonstrated. 

3.6.6 Review Evidence 

Review evidence may be used to show that the complex electronic element is capable of 

satisfying its safety requirements.  If review evidence forms part of the Safety Case, it is 

recommended that the reviews should cover: 

 Traceability to ensure that safety requirements are translated into the derived safety 

requirements, and hence into the implementation. 
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 Maintainability, where required as part of the safety requirements, to ensure that the 

complex electronic element is designed in a way that facilitates future modification or 

correction. 

 Compliance to ensure that design and implementation practice conforms with specified 

standards of good practice. 

 Validity to ensure that the complex electronic element implements the safety 

requirements and does so correctly (verification). 

 Robustness to ensure that faults in the complex electronic element, as well as failures 

originating in other system elements, is managed safely. 

3.6.7 Qualitative Evidence of Good Design 

Qualitative evidence may be used to show that good practice has been used in the selection of 

derived safety requirements, architecture and design features of the complex electronic element.  

If qualitative evidence of good design forms part of the Safety Case, the following 

recommendations apply: 

 Qualitative evidence of good design should be provided for all necessary safety features 

and derived safety requirements of the complex electronic elements. 

 The evidence should include the rationale, benefits and limitations of the design. 

 Evidence of good design should include references to significant examples or case studies 

illustrating successful use, where available. 

 Evidence should be provided that this design is appropriate given the system context and 

the functionality and safety related role of the complex electronic element. 

3.6.8 Process Evidence 

Process evidence should support the direct evidence.  For all systems process evidence should 

encompass all assurance and risk assessment and risk mitigation processes including Hazard 

Analysis, system selection, integration, commissioning and modification processes. 

3.6.8.1 Process and Tool Qualification 

Evidence should be provided that the tools and processes used have sufficient safety assurance to 

ensure that they do not undermine the integrity of the complex electronic element. 

The competence requirements for personnel undertaking each process should be stated and 

evidence should be retained that the personnel performing the processes have the required 

competence. 

Each tool and process should be evaluated to determine its role and significance to safety.  The 

following list is specific to safety issues, however this is not an exhaustive list of factors relevant 

to tool selection (others may include usability, interoperability, stability, commercial availability, 

maintenance support, familiarity to safety personnel): 

 The role of the tool or process in assuring the safety of the complex electronic element. 

 Whether the tool or process could introduce a safety significant fault. 

 Whether the tool or process could fail to detect a safety significant fault. 

 How failures of the tool or process could be detected and corrected by human supervision 

and by other tools and processes 
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Further details on the use of tools may be found in sections 4.8 and 4.9 of Appendix D. 

3.6.9 Good Development Practice 

The Supplier should provide evidence that the processes used in the risk assessment, 

procurement, development, implementation, verification, validation, modification and correction 

of complex electronic elements comprise good practice. 

The evidence of good practice should be appropriate to the application, domain and safety 

requirements.  Examples of good practice in process include: 

 Evidence of compliance with appropriate, respected standards – preferably standards that 

are international, relevant to domain and mature but still considered good practice. 

 Evidence of selection of good practice methods, tools, technology etc (this will typically 

be at a more technical level of detail than is covered by an international standard and may 

include specific software language, hardware technology, development toolsets etc). 

 Evidence of good practice in applying methods, technology, tools etc (e.g. internal 

procedures, processes and standard, tool supplier’s recommended best practice, user 

group recommendations etc). 

3.6.10 Sufficiency and Composition of Evidence 

The body of evidence, taken as a whole, should be sufficient to provide confidence, 

commensurate with the required safety integrity requirements, in the safety of the complex 

electronic element as part of the system Safety Case. 

The primary arguments for the safety of the complex electronic element should be based upon 

direct evidence, which may include analysis evidence, demonstration evidence, review evidence 

and quantitative evidence.  Process evidence should be used to support the primary arguments 

(and may additionally support claims for future maintainability if this is a safety concern within 

the Safety Case).  Qualitative evidence for good design should support the other forms of direct 

evidence. 

3.6.11 Strength and Rigor 

The rigor of the evidence and arguments should be proportionate with the required level of 

confidence.  The type of evidence provided for primary arguments should be based on the 

precedence below (preferred first).  The primary safety arguments should be based on the 

strongest types of evidence and then supported by other types of evidence. 

 Analysis evidence for the absence of dangerous faults, the satisfaction of safety 

requirements and the implementation of derived safety requirements. 

 Quantitative analysis of operational or realistic demonstration of the required behavior 

that shows that availability and reliability requirements are satisfied, to a level of 

confidence commensurate with the safety integrity requirements of the system. 

 Demonstration evidence and review evidence. 

 Qualitative evidence of good design, and process evidence 

3.6.12 Coverage 

The evidence provided should be representative of all aspects of the argument that it supports 

and sufficiently extensive to provide the required level of confidence.  This requires that: 
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 All safety requirements and derived safety requirements should be covered by the 

evidence. 

 Specific safety requirements and derived safety requirements should direct the selection 

of evidence.  For example, when using formal proof, proofs should be constructed and 

discharged to prove that specific derived safety requirements are true.  

 The assumptions, dependencies and limitations of the evidence for all safety claims 

should be documented. 

 Analysis evidence should be supported by diverse demonstration evidence. 

 Quantitative evidence should be supported by at least diverse traceability evidence and 

evidence from review of architecture and implementation quality. 
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4 Generic Software Safety Design Requirements 
The goal of this chapter is to provide generic software safety design guidelines for the design and 

development of systems containing software that have safety-related applications. Additional 

discussion of these guidelines is provided in Appendix D. 

4.1 System Design Requirements 

4.1.1 Two Person Rule 

At least two people shall be thoroughly familiar with the design, code, testing, and operation of 

each software module in the system. 

4.1.2 Program Patch Prohibition 

Patches shall be prohibited throughout the development process.  All software changes shall be 

coded in the source language and compiled prior to entry into operational or test equipment. 

4.1.3 Designed Safe States 

The system shall have at least one safe state identified for each logistic and operational phase. 

4.1.4 Safe State Return 

The software shall return hardware subsystems terms under the control of software to a designed 

safe state when unsafe conditions are detected.  Conditions that can be safely overridden by the 

battle short shall be identified and analyses performed to verify that the risk is acceptable. 

4.1.5 Circumvent Unsafe Conditions 

The system design shall not permit detected unsafe conditions to be circumvented.  If a “battle 

short” or “safety arc” condition is required in the system, it shall be designed such that it cannot 

be activated either inadvertently or without authorization. 

4.1.6 External Hardware Failures 

The software shall be designed to detect failures in external hardware input or output hardware 

devices and revert to a safe state upon their occurrence.  The design shall consider potential 

failure modes of the hardware involved. 

4.1.7 Safety Kernel Failure 

The system shall be designed such that a failure of the safety kernel (when implemented) will be 

detected and the system returned to a designated safe state. 

4.1.8 Fallback and Recovery 

The system shall be designed to include fallback and recovery to a designed safe state of reduced 

system functional capability in the event of a failure of system components. 

4.1.9 Computing System Failure 

The system that shall be designed such that a failure of any computing system will be detected 

and the system returned to a safe state. 
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4.1.10 Maintenance Interlocks 

Maintenance interlocks, safety interlocks, safety handles, and/or safety pins shall be provided to 

preclude hazards to personnel maintaining the computing system and its associated equipment. 

While overridden, a display should be made on the operator’s or test conductor’s console of the 

status of the interlocks, if applicable. 

4.1.11 Interlock Restoration 

Where interlocks must be overridden or removed to perform tests, training or maintenance, they 

shall be designed such that they cannot be inadvertently overridden, or left in the overridden state 

once the system is restored to operational use.  The override of the interlocks shall not be 

controlled by a computing system. 

4.1.12 Simulators 

If simulated items, simulators, and test sets are required, the system shall be designed such that 

the identification of the devices is fail safe and that operational hardware cannot be inadvertently 

identified as a simulated item, simulator or test set. 

4.1.13 Logging Safety Errors 

Errors in safety-related routines shall be logged and brought to the operator’s attention as soon as 

practical after their occurrence. 

4.1.14 Positive Feedback Mechanisms 

Software control of critical functions shall have feedback mechanisms that give suitable positive 

indications of the function’s occurrence.  These feedback mechanisms must not cause unsafe 

interference with other functions. 

4.1.15 Peak Load Conditions 

The system and software shall be designed to ensure that design safety requirements are not 

violated under peak load conditions. 

4.1.16 Ease of Maintenance 

The system and its software shall be designed and documented for ease of maintenance. 

4.1.17 Endurance Issues 

The system and software must be designed, developed, and tested to continuously operate for a 

specified period of time without safety anomalies occurring.  The specified time period should be 

1.5 times the specification requirement, if specified, or the maximum expected mission time.  

Verification should be accomplished in an environment that is representative of the operational 

environment. 

4.1.18 Error Handling 

The system and software shall be designed to remain robust and safe in the presence of errors, 

faults, failures, and exceptions generated by the application, operating system or processor. 
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4.1.19 Standalone Processors 

Where practical, safety-related functions should be performed on a standalone computer.  If this 

is not practical, safety-related functions shall be isolated to the maximum extent practical from 

non-critical functions. 

4.1.20 Input/Output Registers 

Input/output registers and ports shall not be used for both safety-related and non-safety-related 

functions unless the same safety design criteria are applied to the non-safety-related functions. 

4.1.21 Power-Up Initialization 

The system shall be designed to power-up into a predetermined safe state.  A verifiable system 

monitor check shall be incorporated in the design that verifies that the system is in this safe state.  

This check shall also verify memory integrity and program load. 

4.1.22 Power-Down Transition 

The system shall be designed to power-down into a predetermined safe state.  A verifiable 

system monitor check shall be incorporated in the design that verifies that the system is in this 

safe state.  

4.1.23 Power Faults 

The system and computing system shall be designed to ensure that the system is in a safe state 

during power-up faults, power-down faults, intermittent faults or fluctuations in power that could 

adversely affect the system, or in the event of power loss. 

4.1.24 System-Level Check 

The software shall be designed to perform a system-level check at power up to verify that the 

system is safe and functioning properly prior to application of power to safety-related functions 

including hardware controlled by the software.  Periodic software tests shall be performed to 

monitor the state of the system to insure safe operating conditions. 

4.1.25 Redundancy Management 

If the supplier’s design includes redundancy, any potential failure modes associated with the 

redundancy scheme shall be identified to ensure that the system requirements adequately 

mitigate the risk. 

4.2 Computing System Environment Requirements and 
Guidelines 

The requirements and guidelines of this section apply to the design and selection of computers, 

microprocessors, programming languages, and memories for safety-related applications in 

computing systems. 

4.2.1 Hardware and Hardware/Software Interface Requirements 

 CPU 

 Memory 



AOP-52 

4-4 
Edition B Version 1 

 Failure in the computing environment 

 Hardware and software interfaces 

 Self-test Features 

 Watchdog timers, periodic memory checks, operational checks 

 System utilities 

 Compilers, assemblers, translators, and OSs 

 Diagnostic and maintenance features 

 Memory diagnosis 

4.2.2 Failure in the Computing Environment 

An application program exists in the context of a computing environment - the software and 

hardware that collectively support the execution of the program.  Failures in this environment 

can result in a variety of failures or unexpected behavior in the application program and, 

therefore, must be considered in a hazard analysis.  For some of these failure modes (e.g., 

program overwrite of storage), it is particularly difficult to completely predict the consequences 

(e.g., because it depends on what region is overwritten and what pattern is written there); the 

burden of proof is, therefore, on the supplier to provide evidence either that there is no exposure 

to these kinds of failure or that such failures do not represent a potential hazard. 

 Has the supplier identified the situations in which the application can corrupt the 

underlying computing environment? Examples include the erroneous writing of data to 

the wrong locations in storage (by writing to the 11th element of a 10 element array, for 

example, or through pointer manipulation in “C” or unchecked conversion or use of 

pragma Interface in Ada).  Has Ada’s pragma Suppress been used? If so, how does the 

supplier ensure that such storage corruption is not being missed by removing the runtime 

checks? Note that if pragma Suppress is used and the detection of a constraint violation is 

masked, the results are unpredictable (the program is “erroneous”).  Has the supplier 

provided evidence that the software’s interaction with the hardware does not corrupt the 

computing environment in a way that introduces a hazard (e.g., setting a program status 

word to an invalid state, or sending invalid control sequences to a device controller)? 

 Has the supplier analyzed potential failure modes of the Ada Runtime Environment 

(ARTE), the host OS or executive, and any other software components (e.g., Data Base 

Management System) used in conjunction with the application for any hazards that they 

could introduce? What evidence does the supplier provide that either there are no failure 

modes that present a hazard or that the identified hazards have been mitigated [e.g., what 

evidence does the supplier provide for the required level of confidence in the ARTE, OS, 

etc.? (e.g., for commercial avionics certification and other safety-related domains, high 

assurance or even “certified” subset ARTEs have been used)] 

 Has the supplier provided evidence that data consistency management has been addressed 

adequately where it can affect critical functions? For example, is file system integrity 

checked at startup? Are file system transactions atomic, or is there a mechanism for 

backing out from corrupted transactions? 
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4.2.3 CPU Selection 

The following guidelines apply to the selection of CPUs: 

 CPUs that process entire instructions or data words are preferred to those that multiplex 

instructions or data (e.g., an 128-bit CPU is preferred to a 64-bit CPU emulating a 128-bit 

machine) 

 CPUs with separate instructions and data memories and busses are preferred to those 

using a common data/instruction buss.  Alternatively, memory protection hardware, 

either segment or page protection, separating program memory and data memory is 

acceptable 

 CPUs, microprocessors and computers that can be fully represented mathematically are 

preferred to those that cannot 

4.2.4 Minimum Clock Cycles 

For CPUs that do not comply with the guidelines above, or those used at the limits of their 

design criteria (e.g., at or above maximum clock frequency), analyses and measurements must be 

conducted to determine the minimum number of clock cycles that must occur between functions 

on the buss to ensure that invalid information is not picked up by the CPU.  Analyses must also 

be performed to ensure that interfacing devices are capable of providing valid data within the 

required time frame for CPU access. 

4.2.5 Read Only Memories 

Where Read Only Memories (ROM) are used, positive measures must be taken to ensure that the 

data cannot be corrupted or destroyed. 

4.3 Self-Check Design Requirements and Guidelines 

The design requirements of this section provide for self-checking of the programs and computing 

system execution. 

4.3.1 Watchdog Timers 

Watchdog timers or similar devices must be provided to ensure that the microprocessor or 

computer is operating properly.  The timer reset must be designed such that the software cannot 

enter an inner loop and reset the timer as part of that loop sequence.  The design of the timer 

must ensure that failure of the primary CPU clock cannot compromise its function.  The timer 

reset must be designed such that the system is returned to a known safe state and the operator 

alerted (as applicable). 

4.3.2 Memory Checks 

Periodic checks of memory, instruction, and data buss(es) must be performed.  The design of the 

test sequence must ensure that single point or likely multiple failures are detected.  Checksum of 

data transfers and Program Load Verification checks must be performed at load time and 

periodically thereafter to ensure the integrity of safety-related code. 
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4.3.3 Fault Detection 

Fault detection and isolation programs must be written for safety-related subsystems of the 

computing system.  The fault detection program must be designed to detect potential safety-

related failures prior to the execution of the related safety-related function.  Fault isolation 

programs must be designed to isolate the fault to the lowest level practical and provide this 

information to the operator or maintainer. 

4.3.4 Operational Checks 

Operational checks of testable safety-related system elements must be made immediately prior to 

performance of a related safety-related operation. 

4.4 Safety-Related Events and Safety-Related Functions 

 

A key aspect of the safety assessment of systems and software is the identification of safety-

related events and the associated safety-related functions.  Safety-related events are those that 

will cause hazards or mishaps should they occur inadvertently or when not desired (e.g., firing of 

a projectile is a safety-related event; inadvertent firing of a projectile is a hazard).  Safety-related 

events at the system level always have a direct correlation in the Preliminary Hazards Analysis 

(PHA): if not, the PHA is incomplete.  Safety-related events at a subsystem level will have a 

correlation in the Subsystem Hazards Analysis (SSHA) or both the PHA and the SSHA11.   

 

Safety-related functions are those functions that lead to or control safety-related events or 

generate or manipulate safety-related data.  Safety-related functions may include hardware 

functions, software functions, and/or human actions.  Identifying safety-related functions in the 

software provides a basis for identifying high-level software-related hazard causal factors thus 

allowing development of high-level safety design requirements to mitigate the identified hazard 

causal factors.  Safety design requirements are often the inverse of the software-related hazard 

causal factor.  Note that at this level of abstraction, the safety requirements are very broad and 

provide a baseline for further derivation of safety requirements.   

 

During the early design phases, prior to finalizing the system architecture, System Safety 

Engineers use the identification of safety-related events and the associated functions to influence 

the architecture of the system with the objective of ensuring that the system architecture, and 

particularly the software architecture, supports desirable safety attributes.  This same process 

applies at each level of refinement of the architecture including subsystems and the associated 

software.  As the Systems Engineering team defines and refines the architecture, the System 

Safety team will develop and refine high-level safety requirements for implementation using the 

previously identified safety-related functions, associated hazards and safety design requirements.   

Complex systems require more iterations of this process than do simple systems.   

 

                                                 
11 A hazard may be uncovered in the safety assessment of a subsystem that did not appear at the 

system level due to the lack of detail available during earlier analyses or it may not affect the 

overall system hazards such as a failure of one subsystem resulting in damage to another 

subsystem.  
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As the refinement of the system design proceeds, the Software Safety team will be able to refine 

the identification of software-related hazard causal factors and the development of safety design 

requirements or implementation recommendations to mitigate them.  Tracing the functional 

thread through the software is one means of identifying potential software-related hazard causal 

factors at subsequent levels of refinement.  However, the Software Safety team must also analyze 

other aspects of the software that can adversely influence the safety-related functional thread.  

Functionality within modules that form a part of the safety-related functional thread may impact 

the safe execution of that thread even though that functionality does not directly affect the 

functional thread.  This may be due to errors in the implementation of the software or non-

deterministic actions of the software caused by environmental factors12.  Likewise, software that 

interfaces to the safety-related functional thread may cause the function to execute in an unsafe 

manner.  The safety community often identifies software that directly affects the safety-related 

function as a first-level interface.  A first-level interface function includes software whose failure 

directly results in a hazardous condition (i.e., hazard causal factor).  Software interfaces that 

influence the execution of the safety-related functional thread but do not directly result in the 

associated software hazard causal factor are designated second-level interfaces.  Second-level 

interfaces frequently include those software interfaces that, should they fail in combination with 

other failures of unexpected conditions, lead to the undesired hazard causal factor. 

4.5 Safety-Related Computing System Functions Protection 

The design requirements and guidelines of this section provide for protection of safety-related 

computing system functions and data. 

4.5.1 Safety Degradation 

Other interfacing automata and software must design the system such that automata and software 

must prevent degradation of safety. 

4.5.2 Unauthorized Interaction 

The software must be designed to prevent unauthorized system or subsystem interaction from 

initiating or sustaining a safety-related function sequence. 

4.5.3 Unauthorized Access 

The system design must prevent unauthorized or inadvertent access to or modification of the 

software (source or assembly) and object code.  This includes preventing self-modification of the 

code. 

4.5.4 Safety Kernel ROM 

Safety kernels should be resident in non-volatile ROM or in protected memory that cannot be 

overwritten by the computing system. 

4.5.5 Safety Kernel Independence 

A safety kernel, if implemented, must be designed and implemented in such a manner that it 

cannot be corrupted, misdirected, delayed, or inhibited by any other program in the system. 

                                                 
12 See previous discussion of the software environment.  
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4.5.6 Inadvertent Jumps 

The system must detect inadvertent jumps within or into Safety Critical Computing System 

Functions (SCCSFs); return the system to a safe state, and, if practical, perform diagnostics and 

fault isolation to determine the cause of the inadvertent jump. 

4.5.7 Load Data Integrity 

The executive program or OS must ensure the integrity of data or programs loaded into memory 

prior to their execution. 

4.5.8 Operational Reconfiguration Integrity 

The executive program or OS must ensure the integrity of the data and programs during 

operational reconfiguration. 

4.6 Interface Design Requirements 

The design requirements of this section apply to the design of input/output interfaces. 

4.6.1 Feedback Loops 

Feedback loops from the system hardware must be designed such that the software cannot cause 

a runaway condition due to the failure of a feedback sensor.  Known component failure modes 

must be considered in the design of the software and checks designed into the software to detect 

failures. 

4.6.2 Interface Control 

SCCSFs and their interfaces to safety-related hardware must be controlled at all times, i.e., the 

interface must be monitored to ensure that erroneous or spurious data does not adversely affect 

the system, that interface failures are detected, and that the state of the interface is safe during 

power-up, power fluctuations and interruptions, and in the event of system errors or hardware 

failures. 

4.6.3 Decision Statements 

Decision statements in safety-related computing system functions must not rely on inputs of all 

ones or all zeros, particularly when this information is obtained from external sensors. 

4.6.4 Inter-CPU Communications 

Inter-CPU communications must successfully pass verification checks in both CPUs prior to the 

transfer of safety-related data.  Periodic checks must be performed to ensure the integrity of the 

interface.  Detected errors must be logged.  If the interface fails several consecutive transfers, the 

operator must be alerted and the transfer of safety-related data terminated until diagnostic checks 

can be performed. 

4.6.5 Data Transfer Messages 

Data transfer messages must be of a predetermined format and content.  Each transfer must 

contain a word or character string indicating the message length (if variable), the type of data and 

content of the message.  As a minimum, parity checks and checksums must be used for 
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verification of correct data transfer.  CRCs must be used where practical.  No information from 

data transfer messages must be used prior to verification of correct data transfer. 

4.6.6 External Functions 

External functions requiring two or more safety-related signals from the software (e.g., arming of 

an ignition safety device or arm fire device and release of an air launched weapon) must not 

receive all of the necessary signals from a single input/output register or buffer. 

4.6.7 Input Reasonableness Checks  

Limit and reasonableness checks, including time limits, dependencies, and reasonableness 

checks, must be performed on all analog and digital inputs and outputs prior to safety-related 

functions’ execution based on those values.  No safety-related functions must be executable 

based on safety-related analog or digital inputs that cannot be verified. 

4.6.8 Full Scale Representations 

The software must be designed such that the full scale and zero representations of the software 

are fully compatible with the scales of any digital-to-analog, analog-to-digital, digital-to-synchro, 

and/or synchro-to-digital converters. 

4.7 Human Interface 

The design requirements of this section apply to the design of the human interface to safety-

related computing systems. 

4.7.1 Operator/Computing System Interface 

Computer/Human Interface (CHI) Issues 

Displays 

Duplicated where possible, SCCSF displays to be duplicated by non-software generated 

output, designed to reduce human errors, quality of display, clear and concise 

Hazardous condition alarms/warnings 

Easily distinguished between types of alerts/warning, corrective action required to clear 

Process cancellation 

Multiple operator actions to initiate hazardous function 

Detection of improper operator entries 

4.7.2 Computer/Human Interface Issues 

CHI issues are not software issues per se - they are really a distinct specification and design issue 

for the system.  However, many of the CHI functions will be implemented in software, and CHI 

issues frequently are treated at the same time as software in milestone reviews. 

 Has the supplier explicitly addressed the safety-related aspects of the design of the CHI? 

Has this included analysis of anticipated single and multiple operator failures? What kind 

of human factors, ergonomic, and cognitive science analyses were done (e.g., of 

cognitive overload, ambiguity of display information)? 
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 Does the design ensure that invalid operator requests are flagged and identified as such to 

the operator (vs.  simply ignoring them or mapping them silently to “correct” values)? 

 Does the supplier ensure that the system always requires a minimum of two independent 

commands to perform safety-related function? Before initiating any critical sequence, 

does the design require an operator response or authorization? 

 Does the supplier ensure that there are no “silent mode changes” that can put the system 

in a different safety-related state without operator awareness (i.e., does the design not 

allow critical mode transitions to happen with notification)? 

 Does the supplier ensure that there is a positive reporting of changes of safety-related 

states? 

 Does the system design provide for notification that a safety function has been executed, 

and is the operator notified of the cause? 

 Are all critical inputs clearly distinguished? Are all such inputs checked for range and 

consistency validity? 

4.7.3 Processing Cancellation 

The software must be designed such that the operator may cancel current processing with a 

single action and have the system revert to a designed safe state.  The system must be designed 

such that the operator may exit potentially unsafe states with a single action.  This action must 

revert the system to a known safe state.  (e.g., the operator must be able to terminate missile 

launch processing with a single action which must safe the missile.) The action may consist of 

pressing two keys, buttons, or switches at the same time.  Where operator reaction time is not 

sufficient to prevent a mishap, the software must revert the system to a known safe state, report 

the failure, and report the system status to the operator. 

4.7.4 Hazardous Function Initiation 

Two or more unique operator actions must be required to initiate any potentially hazardous 

function or sequence of functions.  The actions required must be designed to minimize the 

potential for inadvertent actuation, and must be checked for proper sequence. 

4.7.5 Safety-related Displays 

Safety-related operator displays, legends and other interface functions must be clear, concise, 

and unambiguous, and where possible, be duplicated using separate display devices. 

4.7.6 Operator Entry Errors 

The software must be capable of detecting improper operator entries or sequences of entries or 

operations and prevent execution of safety-related functions as a result.  It must alert the operator 

to the erroneous entry or operation.  Alerts must indicate the error and corrective action.  The 

software must also provide positive confirmation of valid data entry or actions taken (i.e., the 

system must provide visual and/or aural feedback to the operator such that the operator knows 

that the system has accepted the action and is processing it).  The system must also provide a 

real-time indication that it is functioning.  Processing functions requiring several seconds or 

longer must provide a status indicator to the operator during processing. 
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4.7.7 Safety-related Alerts 

Alerts must be designed such that routine alerts are readily distinguished from safety-related 

alerts.  The operator must not be able to clear a safety-related alert without taking corrective 

action or performing subsequent actions required to complete the ongoing operation. 

4.7.8 Unsafe Situation Alerts 

Signals alerting the operator to unsafe situations must be directed as straightforward as practical 

to the operator interface.   

4.7.9 Unsafe State Alerts 

If an operator interface is provided and a potentially unsafe state has been detected, the system 

must alert the operator to the anomaly detected, the action taken, and the resulting system 

configuration and status. 

4.8 Critical Timing And Interrupt Functions 

The following design requirements and guidelines apply to safety-related timing functions and 

interrupts. 

4.8.1 Safety-related Timing 

Safety-related timing functions must be controlled by the computer and must not rely on human 

input.  Safety-related timing values must not be modifiable by the operator from system 

consoles, unless specifically required by the system design.  In these instances, the computer 

must determine the reasonableness timing values. 

4.8.2 Valid Interrupts 

The software must be capable of discriminating between valid and invalid (i.e., spurious) 

external and/or internal interrupts.  Invalid interrupts must not be capable of creating hazardous 

conditions.  Valid external and internal interrupts must be defined in system specifications.  

Internal software interrupts are not a preferred design as they reduce the analyzability of the 

system. 

4.8.3 Recursive Loops 

Recursive and iterative loop must have a maximum documented execution time.  Reasonableness 

checks will be performed to prevent loops from exceeding the maximum execution time. 

4.8.4 Time Dependency 

The results of a program should not be dependent on the time taken to execute the program or the 

time at which execution is initiated.  Safety-related routines in real-time programs must ensure 

that the data used is still valid (e.g., by using senescence checks). 

4.9 Selection of Language 

4.9.1 High-level Language Requirement 

For the vast majority of software systems, the software shall be written in a high level language.   
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4.9.2 Implementation Language Characteristics 

The implementation language or subset shall have the following characteristics: 

 Formally-defined syntax 

 Strongly typed 

 Block structured 

 Predictable program execution 

 Avoidance of features that are ambiguous to a human 

 Ability to impose naming conventions and format that aid readability 

 

4.9.3 Compilers 

The implementation of software compilers shall be validated to ensure that the compiled code is 

fully compatible with the target computing system and application (may be done once for a 

target computing system). 

4.9.4 Automated and tool assisted processes 

All tools used in software safety processes shall have sufficient safety assurance to ensure that 

they do not undermine the integrity of the assurance process. Each tool shall be evaluated to 

determine its role and significance within the software safety process. 

4.10 Coding and Coding standards 

4.10.1 Modular Code 

Software design and code shall be modular.  Modules shall have one entry and one exit point. 

4.10.2 Number of Modules  

The number of program modules containing safety-related functions shall be minimized where 

possible within the constraints of operational effectiveness, computer resources, and good 

software design practices. 

4.10.3 Size of Modules 

The size of a programming module should be no longer than a printed-page long.  This enhances 

readability and reduces complexity of the code, allowing for easier testing. 

4.10.4 Execution Path 

Safety Critical Computing System Functions (SCCSFs) shall have one and only one possible 

path leading to their execution. 

4.10.5 Halt Instructions  

Halt, stop or wait instructions shall not be used in code for safety-related functions.  Wait 

instructions may be used where necessary to synchronize input/output, etc.  and when handshake 

signals are not available. 
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4.10.6 Single Purpose Files 

Files used to store safety-related data shall be unique and shall have a single purpose.  Scratch 

files, those used for temporary storage of data during or between processes, shall not be used for 

storing or transferring safety-related information, data, or control functions. 

4.10.7 Unnecessary Features 

The operational and support software shall contain only those features and capabilities required 

by the system.  The programs shall not contain undocumented or unnecessary features.  Every 

line of code shall map to a design requirement as well as a defined test procedure. 

4.10.8 Indirect Addressing Methods 

Indirect addressing methods shall be used only in well-controlled applications.  When used, the 

address shall be verified as being within acceptable limits prior to execution of safety-related 

operations.  Data written to arrays in safety-related applications shall have the address boundary 

checked by the compiled code. 

4.10.9 Uninterruptible Code 

Safety critical code shall not be interruptible.  If interrupts are used, sections of the code which 

have been defined as uninterruptible shall have defined execution times monitored by an external 

timer. 

4.10.10Safety-related Files  

Files used to store or transfer safety-related information shall be initialized to a known state 

before and after use.  Data transfers and data stores shall be audited where practical to allow 

traceability of system functioning and data integrity 

4.10.11Unused Memory  

All processor memory not used for or by the application program shall be initialized to a pattern 

that will cause the system to revert to a safe state if executed 

4.10.12Overlays of Safety-related Software  

Overlays shall not be used for safety related code.  

4.10.13Operating System Functions 

If an OS function is provided to accomplish a specific task, application programs shall mitigate 

possible errors by the OS through the use of wrappers, boundary conditions, and exception 

handlers. 

4.10.14Flags and Variables 

Flags and variable names shall be unique.  Flags and variables shall have a single purpose and 

shall be defined and initialized prior to use. 

4.10.15Loop Entry Point 

Loops shall have one and only one entry point.  Branches into loops shall not be used.  Branches 

out of loops shall lead to a single exit point placed after the loop within the same module. 
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4.10.16Critical Variable Identification 

Safety-related variables must be identified in such a manner that they can be readily 

distinguished from non-safety-related variables (e.g., all safety-related variables begin with a 

letter S). 

4.10.17Variable Declaration 

Variables or constants used by a safety-related function shall be declared/initialized at the 

module level 

4.10.18Global Variables 

Global variables shall not be used in safety related applications. 

4.10.19Unused Executable Code 

Operational program loads which contain unused executable code shall: 

 Be identified as active code for safety analyses and V&V 

o Safety assessment should include system-level impacts if executed 

o Assessments shall be conducted at the highest level of rigor of the equipment 

under control 

o Report findings as a hazard causal factor in the Safety Case, and SwSSWG, and 

program reviews 

 Be mitigated in accordance with the SSPP 

4.10.20Unreferenced Variables 

Operational program loads shall not contain unreferenced or unused variables or constants. 

4.10.21Data Partitioning 

Safety related data shall be partitioned away from other non-safety related data. 

4.10.22Conditional Statements 

Conditional statements shall have all possible conditions satisfied and under full software 

control. 

4.10.23Strong Data Typing 

Safety-related functions shall exhibit strong data typing.  

4.10.24Annotation of Timer Values  

Values for timers shall be annotated in the code. 

4.11 Software Maintenance 

The requirements and guidelines of this section are applicable to the maintenance of the software 

in safety-related computing system applications.  The requirement applicable to the design and 

development phase as well as the software design and coding phase are also applicable to the 

maintenance of the computing system and software 
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4.11.1 Critical Function Changes 

Changes to SCCSFs on deployed or fielded systems must be issued as a complete package for 

the modified unit or module and must not be patched. 

4.11.2 Critical Firmware Changes 

When not implemented at the depot level or in manufacturers’ facilities under appropriate QC, 

firmware changes must be issued as a fully functional and tested circuit card.  Design of the card 

and the installation procedures should minimize the potential for damage to the circuits due to 

mishandling, electrostatic discharge, or normal or abnormal storage environments, and must be 

accompanied with the proper installation procedure. 

4.11.3 Software Change Medium 

When not implemented at the depot level or in manufacturers’ facilities under appropriate QC, 

software changes must be issued as a fully functional copy on the appropriate medium.  The 

medium, its packaging, and the procedures for loading the program should minimize the 

potential damage to the medium due to mishandling, electrostatic discharge, potential magnetic 

fields, or normal or abnormal storage environments, and must be accompanied with the proper 

installation procedure. 

4.11.4 Modification Configuration Control  

All modifications and updates must be subject to strict configuration control.  The use of 

automated CM tools is encouraged. 

4.11.5 Version Identification 

Modified software or firmware must be clearly identified with the version of the modification, 

including configuration control information.  Both physical (e.g., external label) and electronic 

(i.e., internal digital identification) “fingerprinting” of the version must be used. 

4.12 Software Analysis And Testing 

The requirements and guidelines of this section are applicable to the software-testing phase. 

4.12.1 General Testing Guidelines  

Systematic and thorough testing is clearly required as evidence for critical software assurance; 

however, testing is “necessary but not sufficient.” Testing is the chief way that evidence is 

provided about the actual behavior of the software produced, but the evidence it provides is 

always incomplete since testing for non-trivial systems is always a sampling of input states and 

not an exhaustive exercise of all possible system states.  In addition, many of the testing and 

reliability estimation techniques developed for hardware components are not directly applicable 

to software; and care must, therefore, be taken when interpreting the implications of test results 

for operational reliability. 

Testing to provide evidence for critical software assurance differs in emphasis from general 

software testing to demonstrate correct behavior.  There should be a great deal of emphasis 

placed on demonstrating that even under stressful conditions, the software does not present a 

hazard; this means a considerable amount of testing for critical software will be fault injection, 

boundary condition and out-of-range testing, and exercising those portions of the input space that 
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are related to potential hazards (e.g., critical operator functions, or interactions with safety-

related devices).  Confidence in the results of testing is also increased when there is evidence that 

the assumptions made in designing and coding the system are not shared by the test suppliers 

(i.e., that some degree of independence between testers and suppliers has been maintained). 

 Does the supplier provide evidence that for critical software testing has addressed not 

only nominal correctness (e.g., stimulus/response pairs to demonstrate satisfaction of 

functional requirements) but robustness in the face of stress? This includes a systematic 

plan for fault injection, testing boundary and out-of-range conditions, testing the behavior 

when capacities and rates are extreme (e.g., no input signals from a device for longer than 

operationally expected, more frequent input signals from a device than operationally 

expected), testing error handling (for internal faults), and the identification and 

demonstration of critical software’s behavior in the face of the failure of various other 

components. 

 Does the supplier provide evidence of the independence of test planning, execution, and 

review for critical software? Are unit tests developed, reviewed, executed, and/or 

interpreted by someone other than the individual supplier? Has some amount of 

independent test planning and execution been demonstrated at the integration test level? 

 Has some amount of independent ‘free play” testing been provided? If so, during this 

testing is there evidence that the critical software is robust in the face of “unexpected” 

scenarios and input behavior, or does this independent testing provide evidence that the 

critical software is “fragile”? (free play testing should place a high priority on exercising 

the critical aspects of the software and in presenting the system with the kinds of 

operational errors and stresses that the system will face in the field.) 

 Does the supplier’s software problem tracking system provide evidence that the rate and 

severity of errors exposed in testing is diminishing as the system approaches operational 

testing, or is there evidence of “thrashing” and increasing fragility in the critical 

software? Does the problem tracking system severity classification scheme reflect the 

potential hazard severity of an error, so that evidence of the hazard implications of 

current Problems can be reviewed? 

 Has the supplier provided evidence that the tests that exercise the system represent a 

realistic sampling of expected operational inputs? Has some portion of testing been 

dedicated to randomly selected inputs reflecting the expected operational scenarios? (This 

is another way to provide evidence that implicit assumptions in the design do not 

represent hazards in critical software, since the random inputs will be not selectively 

“screened” by implicit assumptions.) 

4.12.2 Trajectory Testing for Embedded Systems 

There is a fundamental challenge to the amount of confidence that software testing can provide 

for certain classes of programs.  Unlike “memory-less” batch programs that can be completely 

defined by a set of simple stimulus/response pairs, these programs “appear to run 

continuously...One cannot identify discrete runs, and the behavior at any point may depend on 

events arbitrarily far in the past.” In many systems where there are major modes or distinct 

partitioning of the program behavior depending on state, there is mode-remembered data that is 

retained across mode-changes.  The key issue for assurance is the extent to which these 
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characteristics have been reflected in the design and especially in the testing of the system.  If 

these characteristics are ignored and the test set is limited to a simplistic set of stateless 

stimulus/response pairs, the extrapolation to the operational behavior of the system is seriously 

weakened. 

 Has the supplier identified the sensitivities to persistent stale and the “input trajectory” 

the system has experienced? Is this reflected in the test plans and test descriptions? 

 Are the supplier’s assumptions about prohibited or “impossible” trajectories and mode 

changes explicit with respect to critical functions? “There is always the danger that the 

model used to determine impossible trajectories over looks the same situation overlooked 

by the programmer who introduced a serious bug.  It is important that any model used to 

eliminate impossible trajectories be developed independently of the program.  Most 

safety experts would feel more comfortable if some tests were conducted with “crazy” 

trajectories.” 

4.12.3 Formal Test Coverage 

All software testing must be controlled by a formal test coverage analysis and document.  

Computer-based tools must be used to ensure that the coverage is as complete as possible. 

4.12.4 Go/No-Go Path Testing 

Software testing must include GO/NO-GO path testing. 

4.12.5 Input Failure Modes 

Software testing must include hardware and software input failure mode testing. 

4.12.6 Boundary Test Conditions 

Software testing must include boundary, out-of-bounds, and boundary crossing test conditions. 

4.12.7 Input Data Rates 

Software testing must include minimum and maximum input data rates in worst-case 

configurations to determine the system’ capabilities and responses to these conditions. 

4.12.8 Zero Value Testing 

Software testing must include input values of zero, zero crossing, and approaching zero from 

either direction and similar values for trigonometric functions.   

4.12.9 Regression Testing 

SCCSFs in which changes have been made must be subjected to complete regression testing. 

4.12.10Operator Interface Testing 

Operator interface testing must include operator errors during safety-related operations to verify 

safe system response to these errors. 
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4.12.11Duration Stress Testing 

Software testing must include duration stress testing.  The stress test time must be continued for 

at least the maximum expected operating time for the system.  Testing must be conducted under 

simulated operational environments.  Additional stress duration testing should be conducted to 

identify potential critical functions (e.g., timing, data senescence, resource exhaustion, etc.) that 

are adversely affected as a result of operational duration.  Software testing must include 

throughput stress testing (e.g., CPU, data bus, memory, input/output) under peak loading 

conditions. 
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5 Previously Developed Software 

5.1 Definitions 

Previously Developed Software (PDS) includes: 

 Commercial off-the-shelf (COTS) software, including: 

o Non-Developmental Items (NDIs) (e.g. OSs and environments, communications 

handlers, interface handlers, network software, database managers, data reduction and 

analysis tools, and a variety of other software components that are functionally part of the 

system.  Indirect applications of NDI include programming languages, compilers, 

software development (e.g., CASE) tools, and testing tools that directly or indirectly 

affect the applications software in the fielded system) 

o Commercially Developed Items (CDI) (e.g. specific application software 

packages) 

o GOTS (Government Off the Shelf) software. Software specifically developed for 

military purposes which may be functionally suitable for reuse in a new 

development 

 Legacy Software (e.g. an existing (typically bespoke) software product that is to be 

upgraded) 

 Reusable software includes libraries of software routines specifically designed and 

developed for reuse during system development by a system designer.  Examples include 

interfacing software, math routines, protocol handlers, etc.  These routines augment other 

non-developmental software. 

5.2 Overview 

While use of PDS is a goal to reduce cost, it is a high-risk process for safety.  Safety-related PDS 

will be handled at the same level of rigor as other software handling those hazards.  Therefore, 

there is a hazard action record on each piece of PDS in the safety thread.  From the safety 

perspective PDS can be classified into Information Technology (IT) and equipment under 

control.  Regardless of the PDS pedigree, safety analyses and Verification and Validation (V&V) 

are required if the PDS is safety related. 

Different types of software may raise different issues.  There are similar possibilities for 

assurance arguments and evidence that are discussed in this section.  When proposing to make 

use of PDS the following points should be considered: 

 Although there are potential advantages to the use of PDS, lessons learned have shown 

there may be considerable systems engineering and software safety risk 

 The appropriate reuse of well proven software can be of substantial benefit to the 

integrity of software 

 Use of an existing software system can have significant benefits for cost and schedule 

 Risks associated with dormant of unused executable code need to be identified and 

mitigated 
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 If software is unreliable however, in the sense that it fails more frequently than the 

tolerable frequencies specified by safety integrity requirements, then no amount of 

activity in looking for assurance evidence will make it suitable for the safety related role 

Virtually all PDS contains unused executable code that may not be discovered.  Safety analysis 

and V&V should be performed consistent with the level of rigor to ensure no anomalous 

behavior is exhibited.  Refer to section 4.10.19 for further requirements. 

5.3 Points to Consider for COTS Software 

The safety assessment of COTS software poses one of the greatest challenges to the safety 

certification of systems.  COTS software is generally developed for a wide range of applications 

in the commercial market.  Suppliers use an internal company or industry standard for software 

development.  The languages used will generally match the nation and skills of the developing 

workforce.  Since the supplier releases only compiled versions of the product, there is often no 

way to determine the programming language, the requirements to which the supplier designed 

the software or the rigor with which they tested the software.  Because the PDS suppliers can 

only intelligently assess the applications for the product, they cannot address specific issues 

related to a particular application, however, they must supply a full list of features, options, and 

functions.  The PDS supplier attempts to ensure that the product is compatible with many system 

and software configurations.  This often results in additional unnecessary functionality that may 

introduce hazards. 

5.3.1 Documentation 

Generally, suppliers provide only user documentation from the PDS suppliers.  The type of 

documentation necessary to conduct detailed analyses is usually not available and limits the 

software safety engineer’s ability to identify system hazard causal factors related to the COTS 

software. Occasionally it may be possible to purchase the required data or documentation from 

the COTS supplier (at a premium price) concerning all necessary safety data. Examples of 

necessary data are a full list of features, functions, and options. 

5.3.2 Testing 

Testing of the COTS software in an application is very limited in its ability to provide evidence 

that the software cannot influence system hazards. The testing organization, like the safety 

organization, must still treat COTS software as a "black box,” developing tests to measure the 

response of the software to input stimulus under (presumably) known system states.  Hazards 

identified through "black box" testing are sometimes happenstance and difficult to duplicate.  

Timing issues and data senescence issues also are difficult to fully test in the laboratory 

environment even for software of a known design.  Without the ability to analyze the code, 

determining potential timing, logic, or other problems in the code is difficult at best.  Without 

detailed knowledge of the design of the software, the system safety and test groups can only 

develop limited testing to verify the safety and fail-safe features of the system.  A well-known 

paradigm of Software Engineering is that it is impossible to completely test any except the most 

trivial of software programs. 
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5.3.3 Obsolescence 

COTS products typically have a short market life compared with military projects.  COTS 

suppliers exist in a marketplace that affects their supply chain and resources as well as their 

product decisions.  This is particularly the case where the COTS software is delivered as a 

package with hardware, because hardware components bought in by the COTS supplier are 

likely to become obsolete.  A COTS supplier, whose market strategy relies on continuously 

upgraded software, may be unwilling or unable to support a particular version of software 

beyond a short time after its replacement is available.  However, a good COTS supplier will have 

a strategy for continuous evolution to avoid being trapped with an obsolete product.  This 

evolutionary strategy may be incompatible with the needs of a safety related product, especially 

where the costs of reassurance are high.  Fixing at one version, however, may mean that a later, 

‘big bang’ upgrade is not supported by the COTS supplier. 

5.3.4 Additional Features 

Many COTS suppliers do not have the processes or resources to provide customized versions or 

features for their software.  If the COTS supplier is willing to provide specific features then the 

supplier is now a sub-contractor and the software is no longer defined as COTS.  Note that all 

sub-contracted software must comply with all aspects of the SSP the cost of adding features will 

typically be disproportionate to the cost of the baseline product.  The additional features will also 

need to be maintained (at the customer’s cost) for future upgrades of the product.  Obviously this 

includes upgrades necessary to fix faults. 

5.3.5 Compatibility of COTS Products Upgrades 

Where a system is developed using more than one COTS products, each of the COTS products 

need to be compatible with the others.  If there are upgrades, it may not be possible to find a set 

of compatible versions.  This is particularly the case where COTS products are incorporated into 

a software system e.g. COTS compilation system, operating system, middleware, drivers, 

libraries etc. 

5.4 Points to Consider for Legacy Software 

5.4.1 Obsolete Tools & Methods 

Legacy software may have been written using software development methods and tools that are 

obsolete.  It may be difficult to obtain tools for old languages (such as compilers) that are 

supported on modern platforms.  It may also be difficult to find competent software engineers 

willing or able to work with obsolete technology.  Safety analysis will be difficult without these 

tools and will increase costs. 

5.4.2 Non-maintained Documentation 

Many legacy projects will not have maintained original development documentation when there 

have been updates.  Software by its nature is flexible and the legacy software may have evolved 

substantially over time without the benefit of documentation.  Therefore, safety will require 

additional time to generate system descriptions and identify and mitigate hazards. 
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5.4.3 Degradation Through Updates 

Changing software over time tends to have the effect of degrading its quality.  Updates, 

especially patches, affect the flow, cohesion and coupling of the software.  This will impact 

documentation pedigree and safety analyses and V&V time and budget.  Some code that is no 

longer required (as a result of changes) may have been left in (i.e. unused executable code).  A 

thorough safety analysis and V&V may require reverse engineering. 

5.4.4 Architecture 

Changes in architecture have wide-ranging effects on safety, performance, maintainability, 

sustainability, and utility for use.  .  The legacy architecture and the architecture into which it is 

being inserted must be subject to a SHA and V&V. 

5.5 Points to Consider for Reusable Software 

Reusable software regardless of modifications or not, is subject to the SSP and must comply with 

safety requirements.  Libraries of reusable software, especially commercially developed libraries, 

suffer from the same shortcomings as other PDS items.   Safety analysts will not have the 

visibility into the source code, design documentation, or requirements documentation for the 

modules that comprise the resulting software. 

All reusable software that is safety-related must be considered as new code.  Any software 

hazard causal factors must be identified, analyzed, mitigated, and that mitigation subject to V&V 

per SSP.  Failure to do so will increase system hazard risk. 

5.6 Related Issues 

5.6.1 Managing Change 

The project must maintain a change configuration board, which notifies the SSP of pending PDS 

changes.  The project must also establish and maintain processes for integrating the many 

suppliers’ upgrades, enhancements, or error corrections to commercial software products on a 

routine basis.  Changes to PDS may introduce new hazards, reopen closed hazards, undo 

mitigation of hazards and therefore must be subject to the SSP and V&V to manage potential and 

residual risk. 

5.6.2 Configuration Management (CM) 

PDS changes are subject to project CM, CCB reviews, and the SSP processes.  Suppliers and 

their sub-contractors must obtain contractual agreements from PDS suppliers that they will be 

alerted of any changes made to PDS.  This rule applies to software that is part of the system as 

well as software used to develop the system.   Failure to do so can result in the release of an 

unsafe system to the user. 

5.7 Assurance Issues 

5.7.1 Strategy 

The SSPP should include policy for the use of PDS detailing the criteria for acceptability (e.g. 

appropriate in-service data for the PDS).  Where the PDS does not have sufficient assurance for 
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the application, it may be possible to develop bespoke safeguards to provide the additional 

assurance.  These are often referred to as ‘wrappers’. 

The PDS assurance strategy must be included in the SSPP and all relevant project processes and 

documentation.  It is acceptable to refer all other project documents to the SSPP.  Failure to 

coordinate this strategy will result in increased project costs and may increase safety risk. 

5.7.2 Safety Analysis 

A systematic safety analysis should be conducted to determine the differences between the safety 

requirements required for the role the PDS in the safety related system and the functions and 

properties of the PDS.  This may identify: 

 Safety requirements that are met by the PDS 

 Safety requirements that are not met by the PDS, for which alternative provision needs to be 

made 

 Features and properties of the PDS that are not required (and may even be inimical to safety) in 

the safety related system 

5.7.3 Operational or In-Service History 

In-service history should only be taken into account as evidence of the integrity of legacy 

software or re-use of software where reliable data exists relating to the in-service user, usage, 

and failure rates in similar applications for similar periods of time.  The operating environments 

of such PDS should be assessed to determine their relevance to the proposed use in the new 

application.  Determine the acceptability of the PDS, taking into account: 

 Length of service period 

 The operational in-service hours within the service period, allowing for different 

operational modes and the numbers of copies in service 

 Definition of what is counted as a fault/error/failure 

The suitability of the quantified methods, assumptions, rationale and factors relating to the 

applicability of the data must be justified.   

5.7.4 Versions, Variants and Problem Reporting 

Configuration changes during the software’s service life should be identified and assessed in 

order to determine the stability and maturity of the software and to determine the applicability of 

the entire service history data to the particular version to be incorporated in the software. 

In order for in-service history of the PDS to provide useful assurance evidence, there will need to 

have been effective configuration management of the PDS and a demonstrably effective problem 

reporting system.  In particular, both the software and the associated service history evidence 

should have been under configuration management throughout the software’s service life. 

5.7.5 Visibility of Process 

Evidence developed during the development may be available for use in the assurance of the 

safety related system when PDS has been developed under verified and approved processes 

which meet the requirements of a recognized standard or best practices of the software supplier.  
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It is necessary to ensure that any differences between the original and new development 

environments and tool suites will not reduce the safety integrity of the software.  Where 

differences exist, that are not covered already by assurance evidence, V&V activities should be 

repeated to a degree necessary to provide assurance in safety.  For example, if a different 

compiler or different set of compiler options are used, resulting in different object code, it will be 

necessary to repeat all or part of the test and analysis activities that involve the object code, 

particularly with respect to the safety related parts of the code. 

Reverse engineering may be an option where there are gaps in the documentation required for 

assurance of process (see the section on Reverse Engineering and Design Reviews below).   

5.7.6 Upgrades 

All changes to PDS made as part of its incorporation in the safety related software should be 

considered as new software and assurance evidence and arguments should be developed.  For a 

legacy product that is to be upgraded, the legacy part will typically be argued as a grandfather 

rights/previous history case but the new upgrades should be performed to the appropriate safety 

integrity argument.  However, if only black box information is known for the legacy part, the 

interaction of legacy and upgraded parts will also be reliant on empirical arguments thus 

reducing confidence in this aspect.  Additional assurance activities, such as wrapping the legacy 

software, are therefore required to provide evidence that there are no adverse interactions. 

Where there is white box visibility of the PDS, it should be checked for code that is unreachable 

in its new context.  Unreachable code should be documented in the Software Design and a 

decision made as to whether it is safer to leave it in or remove it.13  Unreachable code may be 

allowed to remain in the final application where it can be shown that the risks of leaving it in are 

less than the risks of modifying the code to remove it.  Where there is unreachable code, 

additional safeguards may be necessary to mitigate the effects should it be inadvertently 

executed. 

5.7.7 Wrappers 

Software may need to be developed to interface and interact between the safety related system 

and the PDS.  In such a case, the safe-by-design argument for the wrapper may be the primary 

argument for safety and could be combined with an argument for appropriateness of the PDS 

product.  This wrapper could allow a lower safety integrity product to be used in a higher safety 

integrity environment.  The requirements for the wrapper should be determined from the safety 

analysis for the use of the PDS. 

5.7.8 Middleware 

The use of middleware can be a fault-isolation design technique to provide a means of isolating 

(e.g., firewalls) the PDS from the safety-related functions.  However, middleware also delays or 

defeats real-time safety monitoring and control of hazards.  The middleware consists of two 

layers, an interfacing layer to the OS and an interfacing layer to the applications software.  

Features in the middleware can “capture” undesired events from the OS.  A significant advantage 

to middleware is that it can minimize the impact of changes to the OS or other PDS.  Only the 

                                                 
13 That decision may depend heavily on the availability of qualified tools to make the 

modifications, especially for legacy software developed using outdated languages. 
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interfacing layer to the OS requires modification to accommodate the change.  To minimize the 

safety impact of middleware, it must be tailored and designed to meet the time and sequence 

requirements for all safety-related threads.  Failure to do so will result in unreported, unsafe 

performance and monitoring of safety mitigations. 

5.7.9 Reverse Engineering and Design Reviews 

One way to approach the assurance of PDS is via reverse engineering.14  Access to the source 

code, design documentation and the software supplier is the least expensive way for this to be 

practicable.   

The primary aims of the reverse engineering, from the assurance perspective, are to provide an 

unambiguous and complete definition of what the software does and to verify, to an appropriate 

level of confidence, that the software meets this definition.  A secondary aim is to produce 

documentation that will assist the assessment of the PDS for use with the safety related software 

and to facilitate future maintenance. 

 

5.7.10 Additional Verification and Validation 

All PDS should be subject to at least validation to ensure that it performs acceptably in the 

system context.  The amount of assurance evidence already available will dictate the amount of 

additional verification and validation necessary.  This can provide demonstration evidence.   

5.7.11 Eliminating OS Functionality 

Eliminating unnecessary functionality from OSs and environments reduces the risk that these 

functions will corrupt safety-related functions.  It may not be possible, and occasionally even 

risky, to eliminate functions from OSs or environments.  Generally, one eliminates the 

functionality by preventing certain modules from loading.  However, there may be interactions 

with other software modules in the system not obvious to the user.  This interdependency, 

particularly between apparently unrelated system modules, may cause the software to execute 

unpredictably or to halt.  Any changes to the OS will require a full system V&V plus full 

software safety regression testing to ensure the reduced risk has been realized. 

                                                 
14 Ensure that any license agreements with the supplier permit reverse engineering. 
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6 Testing and Assessment Guidelines 
Testing is an incremental risk reduction technique verifying requirements and specifications.  

Testing methodologies of software using either “white-box” or “black-box”technique are limited 

by the visibility that safety analysts have into the internal functionality of the software.  

Therefore, safety-specific testing, such as using hazard scenario data, failure mode, or fault 

insertion testing will be limited in its ability to provide evidence that the software cannot 

influence system hazards.  The testing organization may need to employ specialized methods of 

testing, including mutation testing or perturbation testing, to provide sufficient evidence for 

safety certification.  Hazards are not closed until a completely specified test suite has been 

successfully performed and safety results verified on the unit level, Computer Software 

Configuration Item (CSCI) level, and system level. 

Software testing should include testing at each of the following levels during the development 

life cycle: 

 Unit Level Testing – Testing done during the development of the software, but performed 

by someone other than the writer of that code.  Software safety analyses data is used to 

check logic for monitoring and control of the hazard. 

 CSCI Level Testing – Testing done to integrate certain code segments that will form a 

sub-system of the overall system, also performed by someone other than the writer of that 

code.  For example, this could include the fire control subsystem of an overall system 

including four components; fire control, drive control, user interface and ballistic solution 

calculator.  Software safety analyses data is used to check sharing of resources and 

communication of status, states, modes, and hazards 

 System Level Testing – Testing done on the system as a whole by someone other than the 

writer of that code.  This includes the integration of all subsystems and is representative 

of the final product to be fielded (hardware as well as software).  Software safety 

analyses data is used to check interfaces and system level requirements for safety. 

 Test Coverage Analysis – (Source; DO-178B 1 December 1992) A two-step process, 

involving requirements-based coverage analysis and structural coverage analysis.  The 

first step analyzes the test cases in relation to the software requirements to confirm that 

the selected test cases satisfy the specified criteria.  The second step confirms that the 

requirements-based test procedures exercised the code structure.  Structural coverage 

analysis may not satisfy the specified criteria.  Additional guidelines are provided for 

resolution of such situations as dead code (in DO-178B, subparagraph 6.4.4.3).  Software 

safety will use test coverage analyses results to confirm system level safety requirement 

were tested. 

The following are some of the types of tests that can be performed on software, and depending 

on the complexity and criticality of the code module you will need to include different types to 

rigorously test and evaluate the software.  Types of software testing include, but may not be 

limited to: 

 Functionality testing – This is the most common testing and includes such tests as FQT 

because it’s requirements based testing.  In this testing, the requirements and design are 

verified to operate correctly under normal operating procedures.  Software safety 

requirements are a subset of the overall requirements being tested.  Completion of 
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functional testing that validates safety requirements is indispensable in achieving hazard 

closure and risk reduction. 

 Stress Testing – This type of testing includes any testing that represents a worst-case 

scenario in terms of such things as message traffic and expected inputs and outputs.  This 

testing is used to verify that the system either acts correctly (as per the normal operating 

procedures) or fails safe during these extreme conditions.  The value of this type of 

testing to software safety is that it is usually the first long-term continuous operation of 

the system software and validates stability. 

 Boundary and Out of Bounds Testing – This refers to testing at, near, and across the 

boundaries and stress testing where the system receives an unexpected value 

forprocessing.  For example, if the user can choose a distance from anywhere between 

100 meters and 10 kilometers, and the tester enters 70 meters, how will the system handle 

that situation? The value of this type of testing to software safety is that it verifies that the 

system either acts correctly or fails safe (does not create a hazard). 

 Fault Insertion Testing (FIT) – This testing can be considered a subset of stress testing, 

but relates to inserting faults directly into the system (possibly at the CSCI or unit level) 

in order to test the handling of such events by the system (as laid out in the requirements).  

FIT requires a software safety engineer to assist in the test design to insert faults that 

exacerbate or cause hazardous conditions.    In all cases, the software safety team must 

have valid data from previous analyses to begin this task.  This testing is used to verify 

that the system either acts correctly (as per the normal operating procedures) or fails safe 

during the operation of these test cases.  This type of testing is the only purposeful way 

for software safety to verify exception handling for safety-related components.   

6.1 Generic Test Requirements 

The following requirements should be utilized when developing a testing strategy for any 

software program, especially those involving safety-related aspects.  The application of these 

generic test requirements is dependent on the level of rigor and scale of the system/software 

under test.  These requirements will increase the confidence in the implementation of safety 

functions in the system/software.  Any deletions from or changes in the set of requirements 

below will be assessed for safety risk impact by the SwSSWG and SSWG, and logged into the 

Safety Case by the supplier.  The minimum testing requirements should be confirmed by the 

review authority.  Failure to do so will delay the approval process and complicate the project 

schedule. 

All safety-related software testing shall be defined and controlled by a formal document. The 

means to assess and approve deviations to the test processes or formal document will be 

addressed in the SSPP. 

 New or Modified Code effecting safety critical functions shall be tested to the same 

standards originally designated for the module. 

 Tests shall exercise program logic (decision coverage) through nominal safety related 

paths (branch and path coverage) and through the combination of contingency and error 

paths (FIT, stress testing, boundary and out-of-bounds testing,  and exception handling). 

 Testing shall be used to verify correct implementation of safety-critical requirements 

under off-nominal and fault conditions. 
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 Any fault condition not able to be verified through the normal operation of the system 

shall be tested through the implementation of fault-insertion testing using validated 

simulators/stimulators, emulators, and test equipment. 

 All system functions that may adversely affect the safety of equipment or personnel shall 

be tested as part of the system performance verification tests using validated 

simulators/stimulators or emulators, where possible, to protect equipment and personnel. 

 All software tests which may adversely affect the safety of personnel or equipment shall 

be formally identified to the test IPT, SwSSWG and SSWG and logged into the Safety 

Case. 

 Exit Criteria for safety shall be defined for each test objective that determines successful 

test requirements or execution of safety-related functions prior to test execution. 

 All safety requirements shall be traceable to a specific test, or multiple tests, designed to 

investigate its implementation.  This will be found in the RTM. 

 All safety design elements shall be traceable to a specific test, or multiple tests, designed 

to investigate its implementation.  This will be found in the RTM. 

6.2 Test Recommendations 

The following recommendations provide methods and prescriptions for executing a rigorous 

software safety-testing program. 

 Testing should include minimum and maximum input data rates in worst-case 

configurations to determine the system’s capabilities and responses to these conditions.  

Testing should also include presenting data at a rate greater than the maximum specified 

and less than the minimum specified to establish a baseline for the system behavior. 

 Software testing should include GO/NO-GO path testing. 

6.3 Test Execution 

The following are guidelines on things to consider when actually conducting tests on software. 

 Testing should be conducted utilizing an approved test facility where software execution 

and environment is controlled and monitored. 

 Execution of tests shall be in accordance with the approved test procedures. 

 All tests shall document test objectives prior to execution. 

 No tests should be performed on code segments by individuals who took part in 

developing that specific code segment. 

6.4 Results and Analysis 

The following are ways in which to manage the data collected during the testing phases and how 

to properly manage the testing program and verify that all requirements have been met through 

the testing process. 

 Safety related test failures occurring during system integration and test shall be formally 

documented and tracked. 
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 Any safety problems discovered during testing shall be analyzed and documented in 

discrepancy reports as well as test reports.  Discrepancy reports shall contain 

recommended solutions for the identified safety problems. 

6.5 Guidelines for Previously Developed Software (PDS) 
Testing 

The following should be used for any safety-related PDS that has insufficient supporting 

requirements or design documentation available, that has been incorporated into the system 

being tested. 

 A full software safety analysis shall be performed when source code is available. 

 If source code is not available, special safety tests shall be performed that include load 

and stress testing, using the full range of inputs as well as out of range inputs, to elicit 

unsafe program behavior.  The test cases should include exception handling of any 

erroneous I/O from the PDS piece of software. 

 Testing shall ensure that COTS  cannot cause a single point failure leading to a hazard or 

be  the sole control (initiate or active decision maker) of a system hazard.  

 The interfaces to the system shall be tested to ensure that they pass only required 

information to the rest of the system and react to unintended information in a safe 

manner. The PDS will be tested to ensure that the interface software provides all the 

information that the PDS software requires at all times. 

6.6 Software Testing Process 

The review authorities will be expecting the project to lead them through the following bullets 

for planning for and executing both developmental and Functional Qualification Testing (FQT).  

This process will help to describe the necessary steps and considerations in order to effectively, 

rigorously and efficiently test the software that is being developed.  The formal names of the 

various groups may be different to each organization, but the process in planning, executing and 

evaluating the software through all testing phases is applicable to all software developments. 

6.6.1 Testing During the Development Phase 

 Software testing will be done at every logical step in the development process.  This 

includes, but is not limited to, at the unit level, the sub-system level and the system level. 

 During the requirements development phase, test engineers should be involved to ensure 

the testability of the requirements in order to both determine the proper method for 

testing and to ensure that the necessary resources (people, equipment and facilities) are 

available and planned to be ready when testing is scheduled. 

 At each development phase, test equipment such as simulators, stimulators, emulators 

and test environments must be taken into account including the design, qualification and 

cost effectiveness.  These components will be paramount in the verification that the unit 

and sub-system level code is truly meeting the requirements for the software and system 

in general. 
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 All testing performed should have detailed plans, procedures and reports generated each 

and every time testing is performed to not only report back to the development team, but 

also to determine how the development of the code is progressing and if the code is truly 

maturing and meeting the intended requirements. 

 All unit level testing should be performed by individuals other than those who actually 

wrote the code.  This will add a necessary independence to the verification of the code in 

that an individual with less knowledge about how the code was written, but adequate 

knowledge of how the requirements are being met by this code unit, can truly verify the 

intended requirements are met. 

 Sub-system level testing, or integration testing, is the first check that the individually 

developed units of code not only meet their own specific requirements, but that they work 

in conjunction with the other units developed that they will need to interact with regularly 

during the performance of the system.  With this integration, more robust testing 

techniques may be utilized to determine not only if the specific code units perform 

properly, but also to determine if the units pass the correct values to the other units that it 

is interacting with and to determine if any and all possible exceptions or erroneous inputs 

or outputs are handled properly by the receiving unit of code. 

 Once the code has reached a point that it has been integrated into all of its subsystems 

and all of those subsystems meet the requirements and have passed all unit and sub-

system level testing satisfactorily, a test readiness review should be conducted to insure 

that the system is ready for FQT.  This also requires that all test plans, procedures, 

facilities, personnel and test equipment necessary to perform FQT is also in place and 

ready to begin the testing. 

6.6.2 Functional Qualification Testing and Independent Verification 
and Validation 

 Software testing will include hardware in the target environment.  This is necessary, since 

the integration and interaction between hardware and software is the area that usually 

cause the most issues during testing.  If testing is conducted on the actual hardware that it 

will ultimately be used upon as early in the development process as possible, then these 

issues can be resolved before they become more costly and potentially require “stepping 

back” in the life cycle in order to address design issues that could have been mitigated by 

finding them during unit level or subsystem level testing.  This is much more amiable as 

opposed to the costlier predicament of having to redesign during FQT or FQT Regression 

Testing. 

 Testing should include parameters to validate the interaction between the operator and the 

system.  This could include exception handling if the operator tries to access programs 

that the system should not be allowing, or simply not allowing the operator to cause an 

unsafe condition by holding down one button or entering in improper information.  Both 

the system and the operator must be able to check the validity of each other’s inputs and 

outputs. 

 Prior to executing the FQT, after the testers have written the FQT procedures, the rest of 

the team (including the software engineers, software quality engineers and software 

safety engineers) must evaluate the adequacy and completeness of the FQT procedures 
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and trace it back to the requirements verification methods, procedures and mitigation 

strategies included in the hazard analyses.  All safety critical requirements are to be 

addressed in verification plans, which can be seen in an updated RTM to show the section 

of the test plan that relates to each requirement and design component.  The  SwSSWG 

must verify that all SSRs can be traced from system level specifications to design 

documentation /diagrams to test plans /procedures (for this, use a hazard tracking tool, 

e.g. RTM). 

 The test plan, descriptions and procedures will be reviewed by the SwSSWG to ensure 

that they address all safety requirements adequately, as laid out in the hazard analyses.  

The test plans, descriptions, and procedures must also be checked by the software quality 

engineer to verify that they are consistent with one another.  Safety tests will be 

performed by independent evaluators, meaning those who did not develop the code 

themselves.  The software quality and software safety engineers shall take part in such 

activities as witnessing tests, reviewing test results and reporting any test incidents to the 

appropriate level. 

 A Data Review Board (DRB) shall be initiated and chaired by the software quality 

engineer, inviting all stakeholders, usually limited to the SwSSWG, but can involve the 

test community, or program management based on the test issues that are to be discussed 

at each meeting, and the importance of any decisions that must be made during the DRB.  

A DRB is an Integrated Project Team meeting to review the Software Problem Reports 

(SPR) to qualify, rank and assign them for disposition. 

 All SPR from testing should be resolved or have an assignee actively pursuing closure.  

Acceptable closure or mitigation of an SPR include design change, deferment to a future 

spiral development or block upgrade, or informational with no action required.  All non-

deferred and non-informational SPRs mitigations must be verified through testing, as 

defined in the hazard analyses through analysis of safety test results. 

 If necessary, prepare a system level risk assessment to address those risks that have not 

been fully mitigated.  This assessment shall define the constraints on the system due to 

the safety-critical failure(s) that will not be mitigated through design change, but rather 

through procedure augmenting. 

 The SwSSWG will take the SPR list and other safety-critical testing results to determine 

the residual risk that could not be mitigated and is still inherent to the system.  The 

system safety engineer and software safety engineer will then update any safety 

assessment documentation, which will then be reviewed by the rest of the SwSSWG. 
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A Acronyms and Terms of Reference 

A.1 Acronyms 

 

AECL   Atomic Energy of Canada Limited 

ALARP  As Low As Reasonably Practicable 

ARP   Aerospace Recommended Practice 

ARTE   Ada Runtime Environment  

 

CASE   Computer-Aided Software Engineering 

CCB   Configuration Control Board 

CDI   Commercially Developed Item 

CDR   Critical Design Review 

CHI   Computer/Human Interface 

CI    Configuration Item 

CM   Configuration Management 

COTS   Commercial-Off-The-Shelf 

CPU   Central Processing Unit 

CRC   Cyclic Redundancy Check 

CSCI   Computer Software Configuration Item 

CSR   Component Safety Requirement 

CTA   Critical Task Analysis 

 

DAL   Development Assurance Level 

DDA   Detailed Design Analysis 

DFD   Data Flow Diagram 

DOD   Department of Defense 

DOT   Department of Transportation 

DSMC   Defense Systems Management College 

DU    Depleted Uranium 

 

E/E/PES  Electrical/Electronic/Programmable Electronic Systems 

EIA   Electronic Industries Association 

EMP   Electro-Magnetic Pulse 

EOD   Explosive Ordnance Disposal 

ESH   Environmental Safety and Health 

 

FAA   Federal Aviation Administration 

FCA   Functional Configuration Audit 

FFD   Functional Flow Diagram 

FIT   Fault Insertion Testing 
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FQT   Functional Qualification Test 

FTA   Fault Tree Analysis 

 

GOTS   Government Off-The-Shelf 

GSSRL  Generic Software Safety Requirements List 

 

HAR   Hazard Action Record 

HHA   Health Hazard Assessment 

HMI   Human/Machine Interface 

HRI   Hazard Risk Index 

 

IEC   International Electrotechnical Commission 

IEEE   Institute of Electrical and Electronic Engineering 

ILS   Integrated Logistics Support 

IPD   Integrated Product Development 

IPT   Integrated Product Team 

IT    Information Technology  

IV&V   Independent Verification & Validation 

 

LOT   Level of Trust 

 

MIL-STD   Military Standard 

 

NASA   National Aeronautics and Space Administration 

NDI   Non-Developmental Item 

 

O&SHA  Operating and Support Hazard Analysis 

OOA&D  Object Oriented Analysis & Design 

OS    Operating System 

 

PAF   Programmable logic device Analysis Folder 

PDL   Program Design Language 

PDS   Previously Developed Software 

PFD   Process Flow Diagram 

PFS   Principal for Safety 

PHA   Preliminary Hazard Analysis 

PHL   Preliminary Hazard List 

PLD   Programmable Logic Devices 
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QA    Quality Assurance 

QAP   Quality Assurance Plan 

QC    Quality Control 

 

RHA   Requirements Hazards Analysis 

ROM   Read Only Memory 

RTCA   RTCA, Inc. 

RTM   Requirements Traceability Matrix 

 

SAF   Software Analysis Folder 

SAR   Safety Assessment Report 

SCC   Software Control Category 

SCCSF  Safety Critical Computing System Functions 

SCLI   Software Criticality Level Index 

SCLM   Software Criticality Level Matrix 

SCM   Software Configuration Management 

SDL   Safety Data Library 

SDP   Software Development Plan 

SDR   System Design Review 

SEDS   Systems Engineering Detailed Schedule 

SEE   Software Engineering Environment 

SHA   System Hazard Analysis 

SIL   Safety Integrity Level 

SQA   Software Quality Assurance 

SRA   Safety Review Authority 

SRCA   Safety Requirements Criteria Analysis 

SRCSF  Safety-related Computing System Functions 

SRFL   Safety-related Functions List 

SSE   Software Safety Engineer 

SSG   System Safety Group 

SSHA   Subsystem Hazard Analysis 

SSMP   System Safety Management Plan 

SSP   System Safety Program 

SSPP   System Safety Program Plan 

SSR   Software Safety Requirements 

SSS   Software System Safety 

SSWG   System Safety Working Group 

STP   Software Test Plan 

STR   Software Trouble Report 

SwSE   Software Safety Engineer 

SwSPP   Software Safety Program Plan 

SwSSP   Software System Safety Program 

SwSSWG  Software System Safety Working Group 
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V&V   Verification and Validation 

 

WBS   Work Breakdown Structure 

A.2 Terms of reference 

NOTE: All definitions used in this AOP have either been extracted from various standards such 

as MIL-STD-882C/D, MIL-STD-498, AOP-15, Def-Stan 00-55/00-56, and Def(Aust) 5679.  A 

[882], [498], [00-55], [00-56], [AOP-15], or [5679] references each definition’s source. 

Acceptance.  An action by an authorized representative of the acquirer by which the acquirer 

assumes ownership of software products as partial or complete performance of a contract.  [498] 

Acquiring Agency.  An organization that produces software products for itself or another 

organization.  [498] 

Architecture.  The organizational structure of a system or CSCI, identifying its components, 

their interfaces, and concept of execution among them.  [498] 

Automata.  A machine or controlling mechanism designed to follow a predetermined sequence 

of operations or respond to encoded instructions. 

Battle Short. (Safety Arc) The capability to bypass certain safety features in a system to ensure 

completion of a mission without interruption due to the safety feature.  Bypassed safety features 

include such items as circuit current overload protection, thermal protection, etc. 

Behavioral Design.  The design of how an overall system or CSCI will behave, from a user’s 

point of view, in meeting its requirements, ignoring the internal implementation of the system or 

CSCI.  This design contrasts with architectural design, which identifies the internal components 

of the system or CSCI, and with the detailed design of those components.  [498] 

Build.  (1) A version of software that meets a specified subset of the requirements that the 

completed software will meet.  (2) The period of time during which such a version is developed.  

[498] 

Commercially Developed Items. Computer programs and/or hardware procured from 

commercial vendors. Commercially Developed Items are generally designed and sold for a broad 

range of applications. Examples include Operating Systems and environments, computer 

program development tools, compilers, microprocessors, etc. 

Computer Hardware.  Devices capable of accepting and storing computer data, executing a 

systematic sequence of operations on computer data, or producing control outputs.  Such devices 

can perform substantial interpretation, computation, communication, control, or other logical 

functions.  [498] 

Computer Program.  A combination of computer instructions and data definitions that enables 

computer hardware to perform computational or control functions.  [498] 

Computer Software Configuration Item.  An aggregation of software that satisfies an end-use 

function and is designated for separate configuration management by the acquirer.  CSCIs are 

selected based on tradeoffs among software function, size, host or target computers, developer, 
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support concept, plans or reuse, criticality, interface considerations, need to be separately 

documented and controlled, and other factors.  [498] 

Computing System. A device and its associated interfaces capable of accepting and storing 

computer data, executing a systematic sequence of operations on computer data, or producing 

control outputs.  Such devices can perform substantial interpretation, computation, 

communication, control, or other logical functions. 

Condition.  An existing or potential state such as exposure to harm, toxicity, energy source, 

activity, etc.  [882] 

Configuration Item.  An aggregation of hardware, software, or both that satisfies an end use 

function and is designated for separate configuration management by the acquirer.  [498] 

Contractor.  A private sector enterprise or the organizational element of DOD or any other 

government agency engaged to provide services or products within agreed limits specified by the 

MA.  [882] 

Data Type.  A class of data characterized by the members of the class and operations that can be 

applied to them; for example, integer, real, or logical.  [IEEE 729-1983] 

Dead Code.   Executable but not reachable code containing functionality not intended for the 

current environment. 

Deliverable Software Product.  A software product that is required by the contract to be 

delivered to the acquirer or other designated recipient.  [498] 

Derived Safety Requirement.  A design requirement that: 

 has a basis in a higher level safety requirement and is allocated to a subsystem or 

component of the system 

 is developed during the hazard analysis process to mitigate specific hazard causal factors 

 is developed as a result of the identification of safety related functions at the system 

integration, system, subsystem, or component level 

Design.  Those characteristics of a system or CSCI that are selected by the developer in response 

to the requirements.  Some will match the requirements; others will be elaborations of 

requirements, such as definitions of all error messages; others will be implementation related, 

such as decisions, about what software units and logic to use to satisfy the requirements.  [498] 

Designed Safe State.  A system state that provides the maximum degree of safety within the 

constraint of the current operational or logistic phase. 

Dormant Code.  Reachable and executable code containing functionality appropriate for any 

previous environments that is not intended for the current environment 

Fail Safe.  A design feature that ensures that the system remains safe or in the event of a failure 

will cause the system to revert to a state which will not cause a mishap.  [882] 

Firmware.  The combination of a hardware device and computer instructions and/or computer 

data that reside as read-only software on the hardware device.  [498] 
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Formal Methods. The application of a mathematical process for the verification of software 

design compliance with the specification. 

Hazard.  Any real or potential condition that can cause injury, illness, or death to personnel, 

damage to or loss of a system, equipment or property; or damage to the environment.  [AOP-15] 

Hazardous State.  A computer program state that may lead to an unsafe state. 

Independent Verification & Validation.  Systematic evaluation of software products and 

activities by an agency that is not responsible for developing the product or performing the 

activity being evaluated.  [498] 

Managing Activity.  The organizational element of DOD assigned acquisition management 

responsibility for the system, or prime or associate contractors or subcontractors who impose 

system safety tasks on their suppliers.  [882] 

Middleware.  A computer program or series of programs that functionally isolate application 

computer programs from non-developmental computer programs. 

Mishap.  An unplanned event or series of events resulting in death, injury, occupational illness, 

or damage to or loss of equipment or property, or damage to the environment.  [882 and AOP-

15] 

Mishap Probability.  The aggregate probability of occurrence of the individual events that 

create a specific hazard.  [882] 

Mishap Risk.  An expression of the impact and possibility of a mishap in terms of potential 

mishap severity and probability of occurrence.  A measure of the likelihood of the hazardous 

event occurring with the consequences if it does occur.  [882 and AOP-15] 

Mishap Severity.  An assessment of the consequences of the worst credible mishap that could be 

caused by a specific hazard.  [882] 

Non-Developmental Items.  Items, (computer programs, hardware, subsystems, components, 

etc.), including commercially developed items, government development items, or items from 

other sources, employed in the design of a system with or without modification. 

Patch.  A modification to a computer program that is inserted into the program in machine 

(object) code.  

Path.  The logical sequential structure that the program must execute to obtain a specific output. 

Peer Review.  An overview of a computer program presented by the author to others working on 

similar programs in which the author must defend his implementation of the design. 

Process.  An organized set of activities performed for a given purpose.  [498] 

Qualification Test.  Testing performed to demonstrate to the acquirer that a CSCI or a system 

meets its specified requirements.  [498] 

Reengineering.  The process of examining and altering an existing system to reconstitute it in a 

new form.  May include reverse engineering (analyzing a system and producing a representation 

at a higher level of abstraction, such as design from code), restructuring (transforming a system 

from one representation to another at the same level of abstraction), redocumentation (analyzing 

a system and producing user or support documentation), forward engineering (using software 
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products derived from an existing system, together with new requirements, to produce a new 

system), retargeting (transforming a system to install it on a different target system), and 

translation (transforming source code from one language to another, or from one version of a 

language to another).  [498] 

Requirement.  (1) A characteristic that a system or CSCI must possess in order to be acceptable 

to the acquirer.  (2) A mandatory statement in contractual binding document (i.e., standard, or 

contract).  [498] 

Reusable Software Products.  A software product developed for one use but having other uses, 

or one developed specifically to be usable on multiple projects or in multiple roles on one 

project.  Examples include, but are not limited to, commercial-off-the-shelf software products, 

acquirer-furnished software product, software products in reuse libraries, and pre-existing 

developer software products.  Each use may include all or part of the software product and may 

involve its modification.  [498] 

Risk.  An expression of the impact and possibility of a mishap in terms of potential mishap 

severity and probability of occurrence.  [882 and AOP-15] 

Risk Assessment.  A comprehensive evaluation of the risk and its associated impact.  [882] 

Safety.  Freedom from those conditions that can cause death, injury, occupational illness,  

damage to or loss of equipment or property, or damage to the environment.  [882 and AOP-15] 

Safety-Critical.  A term applied to a condition, event, operation, process, or item of whose 

proper recognition, control, performance or tolerance is essential to safe system operation or 

support (e.g., safety-critical function, safety-critical path, safety-critical component.  [882 and 

AOP-15].  In the context of this AOP, all software that affects the safety of the system is “safety 

related”.  

Safety Critical Computing System.  A computing system containing at least one Safety Critical 

Function. 

Safety Critical Function.  A computer software function in which an error or failure can cause a 

catastrophic mishap. 

Safety Kernel: An independent computer program that monitors the state of the system to deter-

mine when potentially unsafe system states may occur or when transitions to potentially unsafe 

system states may occur.  The Safety Kernel is designed to prevent the system from entering the 

unsafe state and return it to a known safe state. 

Safety-Related Computer Software Components.  Those computer software components and 

units whose errors can result in a potential hazard, or loss of predictability or control of a system.  

[882]  In the context of this AOP, all software that affects the safety of the system is safety 

related.   

Safety-Significant Functions and Safety-Significant Hazard Causal Factors:  In the context 

of this AOP, all software that is shown to have a “Medium” or “Serious” risk in the Software 

Safety Criticality Matrix is safety significant. 
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Software Development.  A set of activities that results in software products.  Software 

development may include new development, modification, reuse, reengineering, maintenance, or 

any other activities that result in software products.  [498] 

Software Engineering.  In general usage, a synonym for software development.  As used in 

MIL-STD 498, a subset of software development consisting of all activities except qualification 

testing.  [498] 

Software Failure. An unexpected or unintended action by the software. An error in the software 

that results in functioning not in accordance with the design requirements and specification. 

Software System.  A system consisting solely of software and possibly the computer equipment 

on which the software resides and operates.  [498] 

Subsystem.  A grouping of items satisfying a logical group of functions within a particular 

system  [882 and AOP-15] 

System.  An integrated composite of people, products, and processes that provide a capability to 

satisfy a stated need or objective. [882 and AOP-15] 

System Safety.  The application of engineering and management principles, criteria, and 

techniques to achieve mishap risk as low as reasonably practicable (ALARP), within the 

constraints of operational effectiveness and suitability, time and cost, throughout all phases of 

the life cycle.  [AOP-15] 

System Safety Engineer.  An engineer who is qualified by training and/or experience to perform 

system safety engineering tasks.  [882] 

System Safety Engineering.  An engineering discipline requiring specialized professional 

knowledge and skills in applying scientific and engineering principles, criteria, and techniques to 

identify and eliminate hazards, in order to reduce the associated risk.  [882]  

System Safety Group/Working Group.  A formally chartered group of persons, representing 

organizations initiated during the system acquisition program, organized to assist the MA system 

PM in achieving the system safety objectives.  Regulations of the military components define 

requirements, responsibilities, and memberships.  [882] 

System Safety Management.  A management discipline that defines SSP requirements and 

ensures the planning, implementation and accomplishment of system safety tasks and activities 

consistent with the overall program requirements.  [882] 

System Safety Manager.  A person responsible to program management for setting up and 

managing the SSP.  [882] 

System Safety Program.  The combined tasks and activities of system safety management and 

system safety engineering implemented by acquisition project managers.  [882] 

System Safety Program Plan.  A description of the planned tasks and activities to be used by 

the contractor to implement the required SSP.  This description includes organizational 

responsibilities, resources, methods of accomplishment, milestones, depth of effort, and 

integration with other program engineering and management activities and related systems.  

[882] 

Unsafe State. A system state that may result in a mishap. 
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Unused Executable Code.  Dead or dormant code. 

Watchdog Timer.  An independent, external timer that ensures that the computer cannot enter 

an infinite loop.  Watchdog timers are normally reset by the computer program.  Expiration of 

the timer results in generation of an interrupt, program restart, or other function that terminates 

current program execution. 
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C Software Development Models 

C.1 Software Development Models 

Software Engineering uses several different lifecycle models to develop software. These models 

evolved over the years to meet different needs and expectations and to help cope with the 

increasing complexity of software used in modern systems. One generally accepted paradigm is 

that software engineering is not able to adequately develop software of the complexity of today’s 

systems.  

A software development process for a given system may use a single model or it may include 

several different models depending on the needs of the program. The software engineering team 

may choose the model or individual software developers may use a model they are experienced 

with to do the development. 

Figure C-1 is a graphical representation of the relationship of the software development life cycle 

to the system/hardware development life cycle.  The model is representative of the “Waterfall,” 

or “Grand Design” life cycle.  While this model is still used on numerous developments, other 

models are more representative of the current software development practices, such as the 

“Spiral”, “Modified V”, Rapid Prototyping, Object Oriented Analysis and Design, and 

Generative Programming techniques such as Aspect Oriented Programming. 

An important consideration is that the software development lifecycle does not correlate exactly 

with the hardware or system development lifecycle.  It often “lags” behind the hardware 

development at the beginning but may finish before the hardware development is complete.  

Another important consideration is that design reviews for hardware often lag behind those for 

software. 

C.1.1 Grand Design, Waterfall Life Cycle Model1 

The Waterfall software acquisition and development lifecycle model is one of the oldest 

“formal” models in use by software developers.  This strategy “...was conceived during the early 

1970s as a remedy to the code-and-fix method of software development.” Grand Design places 

emphasis on up-front documentation during early development phases, but does not support 

modern development practices such as object oriented design, rapid prototyping, or automatic 

code generation.  “With each activity as a prerequisite for succeeding activities, this strategy is a 

risky choice for unprecedented systems because it inhibits flexibility.” Another limitation to the 

model is that after a single pass through the model, the system is complete.  Therefore, 

identification of many integration problems occurs too late in the development process resulting 

in significant cost and schedule impacts.  In terms of software safety, interface issues must be 

identified and rectified as early as possible in the development life cycle to allow for adequate 

correction and verification.  Figure C-1 is a representation of the Grand Design, or Waterfall, life 

cycle model.  The Waterfall model is not an effective development model for large, software-

                                                 
1 The following descriptions of the software acquisition life cycle models are either quoted or 

paraphrased from the Guidelines for Successful Acquisition and Management of Software 

Intensive Systems, Software Technology Support Center (STSC), September 1994, unless 

otherwise noted. 
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intensive, systems due to the limitations stated above and the inability to manage program risks 

during the software development process effectively.  The Grand Design does, however, provide 

a structured and well-disciplined method for software development. 
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Figure C-1:  Grand Design Waterfall Software Acquisition Life Cycle Model 

C.1.2 Modified V Life Cycle Model 

The Modified V software acquisition life cycle model depicted in Figure C-2 is another example 

of a defined method for software development.  The model relies heavily on the ability to design, 

code, and test the software in increments of design maturity.  “The left side of the figure 

identifies the specification, design, and coding activities for developing software.  It also 

indicates when the test specification and test design activities can start.  For example, the 

system/acceptance tests can be specified and designed as soon as software requirements are 

known.  The integration tests can be specified and designed as soon as the software design 

structures are known.  And, the unit tests can be specified and designed as soon as the code units 

are prepared.”2 The right side of the figure identifies when the evaluation activities occur that are 

involved with the execution and testing of the code at its various stages of evolution. 

                                                 
2 Software Test Technologies Report, August 1994, STSC, Hill Air Force Base, UT 84056 
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Figure C-2:  Modified V Software Acquisition Life Cycle Model 

C.1.3 Spiral Lifecycle Model  

The Spiral development life cycle model provides a risk-reduction approach to the software 

development process.  In the Spiral model, Figure C-3, the radial distance is a measure of effort 

expended, while the angular distance represents progress made.  It combines features of the 

Waterfall and the incremental prototype approaches to software development.  “Spiral 

development emphasizes evaluation of alternatives and risk assessment.  These are addressed 

more thoroughly than with other strategies.  A review at the end of each phase ensures 

commitment to the next phase or identifies the need to rework a phase if necessary.  The 

advantages of Spiral development are its emphasis on procedures, such as risk analysis, and its 

adaptability to different development approaches.  If Spiral development is employed with 

demonstrations and Baseline/Configuration Management (CM), you can get continuous user 

buy-in and a disciplined process.”3 From the system safety perspective, the spiral development 

model is ideal: it offers the opportunity to gradually develop, implement and verify safety 

requirement during each cycle. 

 

                                                 
3 Guidelines for Successful Acquisition and Management of Software Intensive Systems, STSC, 

September 1994. 
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Figure C-3:  Spiral Software Acquisition Life Cycle Model 

C.1.4 Rapid Prototyping  

Rapid prototyping involves the development of models of a system at high levels of abstraction 

and refining the models as development progresses. It is useful for develop large, complex 

system software, particularly software with significant user interaction. In such systems, 

developers frequently begin with prototypes of the user interface with rudimentary simulators to 

simulate system necessary functionality. After the user has an opportunity to test the interface 

and make comments, suggestions, and criticisms, the developers revise the interface and begin 

developing the functional software. Prototypes will undergo many revisions in the course of 

development and therefore, their design must support these changes. 

Rapid prototyping may involve several teams who independently develop models of the system 

software. The teams or team leaders meet to discuss the models and determine which model or 

combination of models best exemplifies the desired capabilities of the system. A prototype must 

satisfy the system-level requirements however, the interpretation of those requirements may 

vary, especially if written in English language specifications. Through the independent study, 

teams often find that they’ve interpreted the high-level requirements differently. These meetings 

allow the teams to discuss the different interpretations and the rationale for those interpretations. 

This process often identifies missing or ambiguous requirements allowing for clarification from 

the procuring agency. 

Rapid prototyping is not intended to produce robust software for production. Its primary purpose 

is to allow for reasoning about the system and its software and develop specifications that most 

accurately reflect the desired functional and non-functional capabilities of the system. 
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C.1.5 Object Oriented Analysis and Design 

The classical software-development paradigms (e.g., waterfall and Grand V models) worked well 

for small to medium scale programs however, they were unable to scope up to the size of modern 

software products. Also, developers and users expected that these paradigms would reduce post-

delivery maintenance, an expectation they never realized. One significant reason for the failure 

to meet expectations is that they are either operation oriented or data oriented but not both. The 

Object Oriented Analysis and Design (OOA&D) paradigm considers both attributes and 

operations to be equally important. An object is a unified software artifact that encompasses both 

attributes and operations. Safety requirements are typically specified as “contracts” on classes 

and subclasses of objects. These contracts translate into design requirements in the actual 

implementation. One of the negative features of OOA&D is the difficulty in testing the 

implementation of the safety design requirements. A key reason is that OOA&D minimizes the 

visibility into the internal functionality of the objects. Another negative feature of OOA&D is 

that the identification of classes and objects may make the integration of desirable safety features 

difficult if not impossible. Safety requirements are typically “cross-cutting” concerns in that they 

affect multiple objects (and their interactions). Classical OOA&D does not support the resolution 

of cross-cutting concerns very well. 

C.1.6 Evolutionary Prototyping 

Evolutionary prototyping requires the rapid realization and analysis of proposed system 

behavior. It blends the traditional waterfall model of requirements analysis, design, coding, and 

testing with rapid prototyping with requirements refinement occurring at each phase of 

development. As such, it eliminates many details of the system design and development from the 

designer’s consideration during the early phases of development. The process uses an iterative 

approach to define requirements and design solutions, determining required interactions between 

the proposed system and its environment, identifies and determines constraints on the proposed 

system, and explores a range of possible solutions. Evolutionary prototyping provides executable 

models of the target systems, models hardware resources, software architecture, and supports 

evaluation of the system performance. This allows validation of specifications through prototype 

demonstrations. It also allows early identification of resource allocation and system performance 

issues early in the development. This reduces the system integration and overall testing effort. 

C.1.7 Extreme Programming Model 

The Extreme Programming (often called XP) model is also known as Pair-wise programming. In 

the XP model, the customer specifies a capability for the software system under development. 

The developer breaks the software system into component capabilities and parts and returns to 

the customer who chooses what features the initial delivery must provide. Programmers break 

the features down into stand-alone tasks and estimate the level of effort required to complete 

each task. The programmers work in pairs (hence the name “pair-wise”) with one overlooking 

the efforts of the other. The programmers write unit tests, add features to modules to pass the 

unit tests, fix features and tests as necessary until all tests past. The programmers then integrate 

the code and conduct testing until they can release the code to the customer. The customer then 

runs acceptance tests on the code. Once the customer accepts the release, the developer releases a 

production version. Note that Extreme Programming is the least suitable methodology for 

developing safety-related software. 
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C.1.8 Generative Programming Techniques 

Generative Programming techniques automate aspects of the software development process, 

primarily in the high-level design phase. The processes generally involve developing models 

from the system specifications which are refined to the point where tools can begin selecting 

reusable components to build the system software. Generative Programming techniques therefore 

rely on the availability of libraries of reusable components that the developers use to build the 

system. 

C.2 Software Systems Safety and Software Development Models 

The Software Systems Safety process remains relatively constant through many of the software 

development lifecycle models although there are variations required to accommodate 

fundamental differences in the models. The basic premise of the Software Systems Safety 

lifecycle process follows the Grand Design Model closely. However, it has many of the same 

difficulties associated with the Grand Design Model. More difficult models to apply the process 

for the same reasons are: 

 

 Modified V Life Cycle Model 

 Spiral Lifecycle Model 

 Rapid Prototyping 

 Object Oriented Analysis and Design 

 Evolutionary Prototyping 

 Extreme Programming Model 

 Generative Programming Technique 
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D Guidance on System Design Requirements 
Guidance within this Appendix refers to the Requirements set down in Chapter 4 where each 

paragraph relates to the same paragraph in this appendix providing the corresponding guidance. 

If these requirements and guidelines are properly implemented, they should reduce the risk of the 

computing system causing an unsafe condition, malfunction of a failsafe system, or non-

operation of a safety function.  These requirements and guidelines are not intended to be used as 

a checklist but, in conjunction with safety analyses performed in accordance with applicable 

standards and directives, they must be tailored to the system or system type under development.  

These requirements and guidelines must also be used in conjunction with accepted high quality 

software engineering practices including configuration control, reviews and audits, structured 

design, and related systems engineering practices. 

D.1 General Principles 

D.1.1 Two Person Rule 

While this basic requirement is applicable to all systems, it is worth stressing the absolute 

necessity for at least two people to be totally familiar with the software components and their 

impact on safety 

D.1.2 Program Patch Prohibition 

The use of patches to ‘fix’ a problem may be acceptable in general software development, but 

must not be tolerated in the development of safety related software. 

D.1.3 Designed Safe States 

No further guidance. 

D.1.4 Safe State Return 

Any safety condition that may be overridden must be well documented, with appropriate 

warnings clearly annotated. It would be advisable that any safety violation is logged in order that 

any retrospective safety implications may be further analysed. 

D.1.5 Circumvent Unsafe Conditions 

Guidance: As for Safe State Return. 

D.1.6 External Hardware Failures:  

No further guidance. 

D.1.7 Safety Kernel Failure: 

No further guidance. 

D.1.8 Fallback and Recovery 

A common design idiom for critical software systems is that they are “self checking and self 

protecting.” This means that software components “protect” themselves from invalid requests or 
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invalid input data by frequently checking for violations of assumptions or constraints.  In 

addition, they check the results of service requests to other system components to make sure that 

they are behaving as expected.  Finally, such systems typically provide for the checking of 

internal intermediate states to determine if the routine is itself working as expected.  Violations 

of any of these kinds of checks can require transition to a safe state if the failure is serious or if 

the confidence in further correct execution has been seriously reduced.  Failure to address this 

“defensive” approach can allow a wide variety of failures to propagate throughout the system in 

unexpected and unpredictable ways, potentially resulting in a hazard. 

 Does the developer identify a distinct safe mode or set of safe modes? Has the analysis of 

these safe modes adequately considered the transition to these safe modes from 

potentially hazardous states (e.g., internal inconsistency)? 

 Does the design include acceptable safety provisions upon detection of an unsafe state? 

 Does the design include assertion checks or other mechanisms for the regular run-time 

calibration of internal logic consistency? 

 Does the developer provide for an orderly system shutdown as a result of operator 

shutdown instructions, power failure, etc.? 

 Does the developer explicitly define the protocols for any interactions between the 

system and the operational environment? If anything other than the expected sequences 

or interlocks is encountered, does the system design detect this and transition to a safe 

state? 

 Does the developer account for all power-up self-test and handshaking with other 

components in the operational environment in order to ensure execution begins in a 

predicted and safe state? 

D.1.9 Computing System Failure 

No further guidance. 

D.1.10 Maintenance Interlocks 

Upon completion of tests and/or training wherein safety interlocks are removed, disabled or 

bypassed, restoration of those interlocks should all be verified by the software prior to being able 

to resume normal operation.  While overridden, a display should be made on the operator’s or 

test conductor’s console of the status of the interlocks, if applicable. 

D.1.11 Interlock Restoration 

No further guidance. 

D.1.12 Simulators 

No further guidance. 

D.1.13 Logging Safety Errors 

No further guidance. 
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D.1.14 Positive Feedback Mechanisms: 

Such feedback should be analysed to ensure that any failure to operate a safety function is 

investigated. Where possible, such feedback should also be included in the design. 

D.1.15 Peak Load Conditions 

Where possible the system should be fully tested under peak load conditions to confirm this 

requirement has been satisfied. 

D.1.16 Ease of Maintenance 

It should be remembered that personnel that are not associated with the original design team will 

carry out the maintenance.  Good documentation is essential and should be developed with 

maintenance of the software in mind.  Strict configuration control of the software during 

development and after deployment is required.  The use of techniques for the decomposition of 

the software system for ease of maintenance is recommended. 

D.1.17 Endurance Issues 

Although software does not “wear out,” the context in which a program executes can degrade 

with time.  Systems that are expected to operate continuously are subjected to demands for 

endurance - the ability to execute for the required period of time without failure.  As an example 

of this, the failure of a Patriot missile battery in Dhahran during the Persian Gulf War was traced 

to the continuous execution of tracking and guidance software for over 100 hours; the system 

was designed and tested against a 24-hour upper limit for continuous operation.  Long-duration 

programs are exposed to a number of performance and reliability problems that are not always 

obvious and that are difficult to expose through testing.  This makes a careful analysis of 

potential endurance-related defects an important risk-reduction activity for software to be used in 

continuous operation. 

 

D.1.17.1 Identification of duration requirements 

The following questions should be considered: 

 Has the developer explicitly identified the duration requirements for the system? Has the 

developer analyzed the behavior of the design and implementation if these duration 

assumptions are violated? Are any of these violations a potential hazard? 

 Has the developer identified potential exposure to the exhaustion of finite resources over 

time, and are adequate detection and recovery mechanisms in place to handle these? 

Examples are as follows: 

o Memory (e.g., heap leaks from incomplete software storage reclamation) 

o File handles, Transmission Control Protocol ports, etc.  (e.g., if not closed under 

error conditions) 

o Counter overflow (e.g., 8-bit counter and > 255 events was a factor in the failure 

of Theriac-25 radiation treatment machines). 
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D.1.17.2 Performance Degradation 

The following should be considered: 

 Has the developer identified potential exposure to performance degradation over time, 

and are adequate deduction and recovery mechanisms in place to handle these? Examples 

are memory and disk fragmentation that can result in increased latency. 

 Has the developer analyzed increased exposure to cumulative effects over time, and are 

adequate detection and recovery mechanisms in place to handle these so that they do not 

present any hazards? Examples include cumulative drift in clocks, cumulative jitter in 

scheduling operations, and cumulative rounding error in floating point and fixed-point 

operations. 

D.1.18 Error Handling 

Causal analyses of software defects frequently identify error handling as a problem area.  For 

example, one industry study observed that a common defect encountered was “failure to consider 

all error conditions or error paths.” A published case study of a fault tolerant switching system 

indicated that approximately two thirds of the system failures that were traceable to design faults 

were due to faults in the portion of the system that was responsible for detecting and responding 

to error conditions.  The results of a Missile Test and Readiness Equipment (MlTRE) internal 

research project on Error Handling in Large Software Systems also indicate that error handling is 

a problematic issue for many software systems.  In many cases, the problems exposed were the 

result of oversight or simple logic errors.  A key point is that these kinds of errors have been 

encountered in some software that is far along in the development process and/or under careful 

scrutiny because it is mission critical software.  The presence of simple logic errors such as these 

illustrates the fact that error handling is typically not as carefully inspected and tested as other 

aspects of system design.  It is important that the program office gain adequate insight into the 

developer’s treatment of error handling in critical systems. The basic considerations are: 

 Has the developer clearly identified an overall policy for error handling?  

 Have the specific error detection and recovery situations been adequately analyzed? 

 Has the developer defined their relationship between exceptions, faults, and “unexpected” 

results? 

These considerations lead to a number of  more technical issues, such as: 

 Are different mechanisms used to convey this status of computations? What are they? 

[e.g., Ada exceptions, OS signals, return codes, messages].  If return codes and 

exceptions are both used, are there guidelines for when each is to be used? What are these 

guidelines and the rationale for them, and how are they enforced? Are return codes and 

exceptions used in distinct “layers of abstraction” (e.g., return codes only in calls to 

COTS OS services) or freely intermixed throughout the application? How are return 

codes and exceptions mapped to each other? In this mapping, what is done if an 

unexpected return code is returned, or an unexpected exception is encountered? 

 Has the developer determined the costs of using exceptions for their compiler(s)? What is 

the space and runtime overhead of having one or more exception handlers in a 
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subprogram and a block statement, and is the overhead fixed or a function of the number 

of handlers? How expensive is propagation, both explicit and implicit? 

 Are derived types used? If so, are there any guidelines regarding the exceptions that can 

be raised by the derived operations associated with the derived types? How are they 

enforced? 

 Are there guidelines regarding exceptions that can be propagated during task rendezvous? 

How are they reinforced and tested? 

 Is program suppression ever used? If so, what are the restrictions on its use, and how are 

they enforced? What is the rationale for using/not-using program suppression? If it is 

used, are there any guidelines for explicit checking that must be in the code for critical 

constraints in lieu of the implicit constraint checks? If not, how is the reliability of the 

code ensured? 

 Are there any restrictions on the use of tasks in declarative regions of subprograms (i.e., 

subprograms with dependent tasks)? If so, how are they enforced? How are dependent 

tasks terminated when the master subprogram is terminating with an exception, and how 

is the suspense of exception propagation until dependent task termination handled? 

 What process enforcement mechanisms are used to ensure global consistency among 

error handling components? (e.g., we have seen examples of systems where various 

subcontractors were under constrained; they each make locally plausible design decisions 

regarding error handling policy, but when these components were integrated they were 

discovered to be globally inconsistent.) 

 Are there guidelines on when exceptions are masked (i.e., a handler for an exception does 

not in turn propagate an exception), mapped (i.e., a handler for an exception propagates a 

different exception), or propagated? If so, how are they enforced? Are there any 

restrictions on the use of the “others” handlers? If so, how are they enforced? 

 How does the developer ensure that return codes or status parameters are checked after 

every subroutine call, or ensure that failure to check them does not present a hazard? 

Are there any restrictions on the use of exceptions during elaboration? (e.g., checking data 

passed to a generic package during installation).  Is exception handling during elaboration a 

possibility due to initialization functions in declarative regions? If so, how is this handling tested, 

and are there design guidelines for exception handling during elaboration? If not, how are they 

assured that this does not present a hazard? 

D.1.19 Standalone Processors 

It is important that the opportunity for non-safety related software components to react with 

safety related components is minimised. There should be partitioning to separate the different 

functions, which will ideally involve employing separate processors, protected memory etc. 

The practical limits on resources for critical software assurance are consistent with the consensus 

in the software development community that a major design goal for critical software is to keep 

the critical portions small and isolated from the rest of the system.  The program office can 

evaluate evidence provided by the developer that indicates the extent to which this isolation has 
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been a design goal and the extent to which the implementation has successfully realized this 

goal.  Confidence that unanticipated events or latent defects in the rest of the software will not 

introduce an operational hazard is in part correlated with the confidence that such isolation has 

been achieved. 

 Does the developer’s design provide explicit evidence of an analysis of the criticality of 

the components and functions (i.e., does the design reflect an analysis of which functions 

can introduce a hazard)? 

 Does the developer’s design and implementation provide evidence that in critical portions 

of the software, coupling has been kept to a minimum (e.g., are there restrictions on 

shared variables and side-effects for procedures and functions)? 

 Does the developer’s design include attention to the implementation of “firewalls” in the 

software - boundaries where propagation of erroneous values is explicitly checked and 

contained? Do critical portions of code perform consistency checking of data values 

provided to them both by “clients” (i.e., software using the critical software as a service) 

and by the software services the critical software calls (e.g., OS services)? 

 Does the critical software design and implementation include explicit checks of 

intermediate states during computation, in order to detect possible corruption of the 

computing environment (e.g., range checking for an intermediate product in an 

algorithm)? 

 Does the developer provide the criteria for determining what software is critical, and is 

there evidence that these criteria were applied to the entire software system? How does 

the developer provide evidence that the portions considered non-critical in fact will not 

introduce a hazard? 

D.1.20 Input/output Registers  

Whenever it is impossible to segregate safety and non-safety functions, as discussed above, the 

rigor associated with the design and development should be commensurate with the highest 

safety level determined. 

D.1.21 Power-Up Initialization 

The requirements apply to the design of the power subsystem, power control, and power-on 

initialization for safety-related applications of computing systems. 

D.1.22 Power-Down Transition 

This is a key area, which could easily be overlooked in the test programme. 

D.1.23 Power Faults 

No further guidance. 

D.1.24 System-Level Check  

No further guidance. 
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D.1.25 Redundancy Management 

In order to reduce the vulnerability of a software system to a single mechanical or logic failure, 

redundancy is frequently employed.  However, the added complexity of managing the 

redundancy in fault-tolerant systems may make them vulnerable to additional failure modes that 

must be accounted for by the developer.  For example, the first shuttle flight and the 44th flight of 

NASA’s Advanced Fighter Technology Integration (AFTI)-F16 software both exhibited 

problems associated with redundancy management.  The first shuttle flight was stopped 20 

minutes before scheduled launch because of a race condition between the two versions of the 

software.  The AFTI-F16 had problems related to sensor skew and control law gain causing the 

system to fail when each channel declared the others had failed; the analog backup was not 

selected, because the simultaneous failure of two channels was not anticipated. 

If the developer’s design includes redundancy (e.g., duplicate independent hardware, or “N 

version programming”), have the additional potential failure modes from the redundancy scheme 

been identified and mitigated? Examples include sensor skew, multiple inconsistent states, and 

common mode failures.   

D.2 Computing System Environment Requirements and Guidelines 

Good practice should be laid down in the development standards.  This should include 

compliance with all limits specified for the overall size and complexity of the software and for 

the size and complexity of its constituent parts;  Non-functional properties, such as fault-

tolerance, resource management and timing should be implemented in a consistent way 

throughout the design process.  The method of implementation should be defined as a policy in 

the development standards.  These should address how architectural features such as interrupts 

and scheduling, memory management, global data, defensive coding and exception handling are 

implemented. 

Design methods 

Software design methods comprise a disciplined approach that facilitates the partitioning of a 
software design into a number of manageable stages through decomposition of data and function.  
They are usually tool supported.  Design methods include object-oriented methods and older, 
structured design methods. 

A range of design methods and variations exist, with some general purpose and some intended 
for specific application areas, for example real-time, process control, data-processing and 
transaction processing.  Many are graphical in format, providing useful visibility of the 
structure of a specification or design, and hence facilitating visual checking. 

Many design methods possess their own supporting notation and rules that in some cases may 
make use of mathematical notations thereby providing scope for automatic processing.  
Automatic code generation is also possible with some (tool supported) methods. 

There is controversy about the use of object-oriented methods in high integrity software.  The use 
of object-oriented methods implies that object-oriented languages will be used to implement the 
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design and raises issues of insecurities. On the positive side object oriented methods facilitate 
encapsulation, modularity and information hiding, all of which can contribute to better designs. 

Alternatively, object oriented methods may be used for design, but with restrictions enabling an 
object based approach for implementation.  An object based approach would typically be 
consistent with safe language subsets (e.g. of Ada). 

D.3 Coding and Coding Standards 

The coding standards should define rules that lead to clear, unambiguous source code 
that is easy to review, test and maintain, amenable to static analysis (where used) and 
whose traceability to software design is clear.   

A coding standard should be defined as part of the development standard and 
justification for the choice of language and coding standard features should be 
provided.   

The implementation language and coding standards used should conform to the 
development standards.  Justification should be provided to show that the code is not 
affected by any known errors in the compilation system or target hardware. 

To be effective, a coding standard must be enforced.  It is easier to enforce a coding 
standard if the coding standard requirements are checked by a tool.  It is not always 
possible to have a tool that checks all coding standard requirements however, so a 
subset of the requirements may need to be checked by review (e.g. naming conventions, 
explanatory comments and layout).  A checklist may be useful where this is the case. 

D.3.1 Modular Code 

No further guidance. 

D.3.2 Number of Modules 

No further guidance. 

D.3.3 Size of Modules 

No further guidance. 

D.3.4 Execution Path 

No further guidance. 

D.3.5 Halt Instructions 

No further guidance. 

D.3.6 Single Purpose Files 

No further guidance. 



ANNEX D to 
AOP-52 

 

D-9 
Edition B Version 1 

 

D.3.7 Unnecessary Features 

No further guidance. 

D.3.8 Indirect Addressing Modes 

No further guidance. 

D.3.9 Uninterruptible Code 

No further guidance. 

D.3.10 Safety Related Files 

No further guidance. 

D.3.11 Unused Memory 

It should not be filled with random numbers, halt, stop, wait, or no-operation instructions.  Data 

or code from previous overlays or loads must not be allowed to remain.  (Examples: If the 

processor architecture halts upon receipt of non-executable code, a watchdog timer shall be 

provided with an interrupt routine to revert the system to a safe state.  If the processor flags non-

executable code as an error, an error handling routine must be developed to revert the system to a 

safe state and terminate processing.) Information must be provided to the operator to alert him to 

the failure or fault observed and to inform him of the resultant safe state to which the system was 

reverted. 

D.3.12 Overlays of Safety Related Software 

Where less memory is required for a particular function, the remainder must be filled with a 

pattern that will cause the system to revert to a safe state if executed.  It must not be filled with 

random numbers, halt, stop, no-op, or wait instructions or data or code from previous overlays. 

D.3.13 Operating System Functions 

No further guidance. 

D.3.14 Flags and Variables 

No further guidance. 

D.3.15 Loop Entry Point 

No further guidance. 

D.3.16 Critical Variable Identification 

No further guidance. 

D.3.17 Variable Declaration 

Care should be taken to use meaningful variable names. Duplication of variable name should be 

avoided, even though their scope may be independent. 
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D.3.18 Global Variables 

No further guidance. 

D.3.19 Unused Executable Code 

No further guidance. 

D.3.20 Unreferenced Variables 

No further guidance. 

D.3.21 Data Partitioning 

No further guidance. 

D.3.22 Conditional Statements 

There should be no potentially unresolved input to the conditional statement. 

Conditional statements must be analyzed to ensure that the conditions are reasonable for the task 

and that all potential conditions are satisfied and not left to a default condition.  All condition 

statements must be annotated with their purpose and expected outcome for given conditions. 

D.3.23 Strong Data Typing 

Safety-related functions must not employ a logic “1” and “0” to denote the safe and armed 

(potentially hazardous) states.  The armed and safe state for munitions must be represented by at 

least a unique, four-bit pattern.  The safe state must be a pattern that cannot, as a result of a one-, 

two-, or three-bit error, represent the armed pattern.  The armed pattern must also not be the 

inverse of the safe pattern.  If a pattern other than these two unique codes is detected, the 

software must flag the error, revert to a safe state, and notify the operator, if appropriate. 

D.3.24 Annotation of Timer Values 

Comments shall include a description of the timer function, its value and the rationale or a 

reference to the documentation explaining the rationale for the timer value.  These values shall 

be verified and shall be examined for reasonableness for the intended function. 

D.4 Selection of Languages 

D.4.1 High-level language requirement. 

There are a few exceptions to the use of high level languages i.e. for very small units of software 

(or logic) where the use of assembler or a simple logic device avoids the complexity of assuring 

a compilation system. For safety related systems, the full set of features of a standard language is 

often inappropriate and a subset should be defined. 

D.4.2 Use of assembler  

Experience shows that programming in assembler language is more error-prone than 

programming in a high-level language.  There are circumstances, however, in which the 

practicalities of real time operation are such that the use of assembler is necessary in order to 

meet performance requirements.  Furthermore, the use of a high-level language introduces some 
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additional risks compared with the use of assembler.  Specifically, high-level language 

compilation  systems are more prone to error and less easy to verify than assemblers.  There is 

therefore a need to trade off the risks of assembler programming against the risks of the use of a 

high-level language compiler, linker and run-time system.   

In general it is considered that only for very small amounts of assembler do the safety benefits of 

not having a compilation system outweigh the increased risk of programming error.  Examples 

where the use of assembler is justified include: 

Sections of the software where close interaction with hardware is required that cannot easily be 

accommodated with a high-level language. 

Sections of the software where performance constraints cannot be met by a high-level language. 

Very small applications where the use of a high-level language, compilation system and more 

powerful processor would increase, rather than reduce, safety risk. 

If programming in assembler, it is still important to have coding standards.  There should be 

standards for block structuring, naming identifiers, layout and comments.  Even with assembler, 

there may be features of the assembly language that should not be used (e.g. self modifying 

code!).  Programming rules for assembler language programming should be more strict than 

those for high-level languages:   

A possible alternative to small units of software programmed in assembler is the use of custom 

hardware, firmware and logic devices.  These may be particularly appropriate for simple 

interlocks.  These types of device may have features of both software development and hardware 

design.  A technology should be selected that is robust enough for the environment (e.g. thermal 

range, EMC, shock resistance) and reliable.  The logic may need to be developed and assured 

like a software process (particularly if the implementation is via a software like language such as 

VHDL and is compiled onto the hardware).  If programmed in a similar way to software, coding 

standards should be used. 

D.4.3 Characteristics and Selection of Languages 

The syntax of a language is its vocabulary and grammar rules.  A formally-defined syntax is one 

that is represented in an appropriate formal or mathematical language.  A suitable formal 

language for representing programming language syntax is Backus-Naur Form (BNF).  The 

semantics of the language are its meaning.  The semantics define what the compiler will do when 

it translates the syntax into an executable form.  In order for program execution to be predictable, 

the semantics of the language need to be well defined, either formally or informally. 

Definitions of the language characteristic terms ‘strongly typed’ and ‘block structured’ are 

provided in Appendix A of this guidance.   

D.4.4 Language Sub-Sets 

Currently most commercially supported languages have features which are undefined, poorly 

defined or implementation-defined.  Furthermore, most languages have constructs that are 

difficult or impossible to analyse.  There are however, some widely accepted safe subsets of 

languages including Ada and C.  Coding in a subset designed for use in safety related systems 

ensures that the program execution will be both predictable and verifiable.   
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Both static and dynamic checks are required to ensure that the requirements of the sub-et of the 

language hold.  Syntax checks should be performed by the compiler (e.g. remove code that 

causes the compiler to generate warnings) and by additional syntax  tools.  Unfortunately it is 

rarely possible to define a subset that can be enforced only by syntax checks.  Semantic checking 

of the subset requires more sophisticated static analysis tools.  Some checking may need to be 

undertaken by reviewers.  Checking of the dynamic properties may be possible by sophisticated 

static analysis tools (a few can show absence of run-time errors), otherwise they should be 

performed by analysis tools that operate during testing.   

The safety claims for the software should include justification that the language checks 

performed by the compiler and by other means are adequate to ensure predictable program 

execution and that the code is unambiguous for human readers including reviewers, testers, 

analysts and future maintainers. 

D.4.5 Object oriented languages 

An object based approach uses objects in the structure of the programme.  An object 

encapsulates data and operations together.  Object based languages provide mechanisms so that 

objects have a public interface that provides services to other objects and the detail of how the 

object achieves these services is hidden within the object (information hiding).  Many of the 

subsets of object oriented languages (e.g. of Ada) are object based.  Object based languages have 

some, but not all of the advantages of object oriented languages in terms of productivity.  

Encapsulation and information hiding generally aid good program structure, limit the 

propagation of errors and assist in making the software easy to understand. 

Inheritance permits one object to be defined from the properties of another.  A general purpose 

object could be defined (e.g. I/O device) and then several different more specific objects (e.g. 

USB port, parallel port) could be defined by inheritance from the general purpose object.  The 

specific objects are instantiations of the general object.  Object based languages typically permit 

inheritance in a limited way. 

Fully object oriented languages have all of the features of object based languages, but go further 

by permitting late or dynamic binding.   With dynamic binding, the instantiation and interfaces 

between objects are not statically determinable, because the decisions are left until run-time.  

Traditional approaches to the definition of a safe-subset are difficult to apply to object oriented 

languages because of this lack of static predictability.  

To mitigate this, if an object oriented language is used, the design should impose strict control on 

interfaces between objects.  Formal specification of contracts (including pre-conditions, post-

conditions and invariants) should be considered.  For object oriented languages, additional 

justification should be provided that development standards have controlled within safe bounds: 

 Memory usage (e.g. by appropriate controls on dynamic allocation); 

 Predictable execution (e.g. by removing reliance on garbage collection); 

 Predictable implementation of dynamically defined aspects (e.g. by controls on inheritance 

and dynamic binding). 



ANNEX D to 
AOP-52 

 

D-13 
Edition B Version 1 

 

D.4.6 Language Issues 

D.4.6.1 Ada 

The Ada programming language provides considerable support for preventing many causes of 

unpredictable behavior allowed in other languages.  For example, unless pragma Suppress or 

unchecked conversion (and certain situations with pragma Interface) are used, implicit constraint 

checks prevent the classic “C” programming bug of writing a value into the 11th element of a 10-

element array (thus overwriting and corrupting an undetermined region of memory, with 

unknown results that can be catastrophic).  However, the Ada language definition identifies 

specific rules to be obeyed by Ada programs but which no compile-time or run-time check is 

required to enforce.  If a program violates one of these rules, the program is said to be erroneous.  

According to the language definition, the results of executing an erroneous program are 

undefined and unpredictable.  For example, there is no requirement for a compiler to detect the 

reading of uninitialized variables or for this error to be detected at run-time.  If a program does 

execute such a use of uninitialized variables, the effects are undefined: the program might raise 

an exception (e.g., Program_Error, Constraint_Error), or simply halt, or some random value may 

be found in the variable, or the compiler may have a pre-defined value for references to 

uninitialized variables (e.g., 0).  For obvious reasons, the overall confidence that the program 

office has in the predictable behavior of the software will be seriously undermined if there are 

shown to be instances of “erroneous” Ada programs for which no evidence is provided that they 

do not present a hazard.  There are several other aspects of the use of Ada that can introduce 

unpredictable behavior, timing, or resource usage, while not strictly erroneous. 

 Are all constraints static? If not, how are the following sources of unpredictable behavior 

shown to prevent a hazard: Constraint_Error raised? 

 Use of unpredictable memory due to elaboration of non-static declarative items 

 For Ada floating point values, are the relational operators “<”, ‘>”, “”=, and “/=” 

precluded? Because of the way floating point comparisons are defined in Ada the values 

of the listed operators depend on the implementation.  “<=” and “>=” do not depend on 

the implementation, however.  Note that for Ada floating point it is not guaranteed that, 

for example, “X <= Y” is the same as “not (X>Y)”.  How are floating point, operations 

ensured to be predictable or how is the lack of predictability shown to not represent a 

hazard by the developer? 

 Does the developer use address clauses? If so, what restrictions are enforced on the 

address clauses to prevent attempts to the overlay of data, which results in an erroneous 

program? 

 If Ada access types are used, has the developer identified all potential problems that can 

result with access types (unpredictable memory use, erroneous programs if 

Unchecked_Deallocation is used and there are references to a deallocated object, aliasing, 

unpredictable timing for allocation, constraint checks) and provided evidence that these 

do not represent hazards? 

 If pragma Interface is used, does the developer ensure that no assumptions about data 

values are violated in the foreign language code that might not be detected upon returning 

to the Ada code (e.g., passing a variable address to a C routine that violates a range 
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constraint - this may not be detected upon return to Ada code, enabling the error to 

propagate before detection)? 

 Does the developer ensure that all out and in out mode parameters are set before 

returning from a procedure or entry call unless an exception is propagated, or provide 

evidence that there is no case where returning with an unset parameter (and therefore 

creating an erroneous program) could introduce a hazard? 

 Since Ada supports recursion, has the developer identified restrictions on the use of 

recursion or otherwise presented evidence that recursion will not introduce a hazard (e.g., 

through exhaustion of the stack, or unpredictable storage timing behavior)? 

 Are any steps taken to prevent the accidental reading of an uninitialized variable in the 

program [through coding standards (defect prevention) and code review or static analysis 

(defect removal)]? Does the developer know what the selected compiler’s behavior is 

when uninitialized variables are referenced? Has the developer provided evidence that 

there are no instances of reading uninitialized variables that introduce a hazard, as such a 

reference results in an erroneous program? 

 If the pre-defined Ada generic function Unchecked_Conversion is used, does the 

developer ensure that such conversions do not violate constraints of objects of the result 

type, as such a conversion results in an erroneous program? 

 In Ada, certain record types and private types have discriminants whose values 

distinguish alternative forms of values of one of these types.  Certain assignments and 

parameter bindings for discriminants result in an erroneous program.  If the developer 

uses discriminants, how does he ensure that such erroneous uses do not present a hazard? 

D.4.7 Compilers 

Depending on the integrity requirements of the software (i.e. for lower integrity systems), it may 

be possible to argue that the correct operation of the compiler is demonstrated by the testing of 

the compiled code.  For higher integrity systems (e.g. safety critical software), specific object 

code verification will be necessary 

It is important that the operation of the compiler is repeatable, otherwise, the code that is tested 

may be different to the code that is put into service, even if there has been no change to the 

source code.  It may be necessary to have different settings during testing compared with settings 

used for compiling the operational code (e.g. if debug facilities are needed during testing).  If this 

is the case, then tests should be rerun using code compiled with the operational settings.  Some 

compilers change their optimisation strategies depending on the memory available during 

compilation.  If this is the case, and it is not possible to control the compiler through switches, it 

may be necessary to have a standard, consistent environment purely for compilation, to ensure a 

repeatable result. 

Conditional compilation may be used e.g. to allow for variants of the software and to distinguish 

additional features as part of software for use on test rigs from operational software.  Conditional 

compilation has the advantage that unnecessary executable code is not actually present in the 

operational software and therefore can not be accidentally triggered.  Conditional compilation 

can be used as a defence against any failures in configuration management that allows test code 
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to be included in operational builds (e.g. by including conditionally compiled code that produces 

compilation errors if the compilation switches are set for operational code). 

If conditional compilation is used the coding standards should require that conditionally 

compiled code is immediately obvious to reviewers and programmers.  

Where the software is required to be of the highest integrity, there will be a requirement for high 

integrity performance from the compilation system.  As compilers are not developed specifically 

for safety critical applications, in practice a combination of design, compiler assurance and 

object code verification should be used to maximize confidence in the correctness of the 

compilation process. 

Methods of providing assurance of the correctness of a compiler include: 

 Compiler validation:  An internationally agreed black box method of testing compilers, 

designed to demonstrate that a compiler conforms to the appropriate international 

language standard.  A validation certificate indicates that a compiler has successfully 

passed all the tests in the appropriate validation suite.  This is not the same as a assurance 

that the compiler will always compile the safe subset correctly. 

 Evaluation and testing:  The conduct of evaluation and testing beyond that provided by 

validation.  Such evaluation and testing may examine the compiler in more depth than 

validation and is also able to assess the compiler in the particular configuration in which 

it is to be used on the safety related software, which may not be the same configuration in 

which the compiler was validated.  Such evaluations may be available from a third party. 

 Experience in use.  For lower integrity systems, the correctness of the compilation system 

may be demonstrated by the evidence that the executable code passed its tests.   

 Object Code Verification.  For high integrity systems, object code verification should be 

carried out.  The process of object code verification will provide evidence for the 

correctness of the compilation system. 

 Previous use:  Evidence provided by successful previous use can be used as an argument 

for increasing the confidence in the correctness of the compiler.  The requirements for 

configuration management, problem reporting and usage environments should be the 

same as for previously developed software. 

The use of many programming languages will involve the use of an existing run-time system.  

This should be considered as use of previously developed software. 

D.4.8 Automated and Tools assisted processes 

The evaluation of automated tools should include: 

 The role of the tool in assuring the safety of the software 

 Whether the tool could introduce a safety significant fault 

 Whether the tool could fail to detect a safety significant fault 

 How failures of the tool could be detected and corrected by human supervision and by 

other tools and processes 
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The requirements for each tool should be documented and in addition to functionality and 

specific integrity properties, these should address: 

 Usability 

 Interoperability 

 Stability 

 Commercial availability 

 Maintenance support 

 Familiarity to software safety personnel 

D.4.9 Selection of Tools 

Tools are essential in an industrial scale project as they allow processes to be performed which 

otherwise would be impracticable or inefficient and they allow the developer to have a higher 

degree of confidence in the correctness of a process than might otherwise be the case.  In 

addition to any tools that are needed for the specific methods to be used, tools to support 

common functions such as configuration management, checking of specification and design 

documents, static analysis, dynamic testing and subsequent manipulation of object code may be 

required. 

Tools need to be assessed to ensure that they have sufficient safety assurance to ensure that they 

do not jeopardise the safety integrity of the software.  The safety assurance requirements for the 

tools used to support the various functions of the development process are dependent on the 

contribution of the tools to the achievement of a safe product.  In the same way that software 

should be considered in a systems context, the use of the tools should be considered in the 

context of the overall development process.  The safety assurance requirements for a particular 

tool in a particular application can be deduced by undertaking a risk based assessment of the 

development process.  The risk based assessment of the development process should consider 

each tool in the context of its use in the software development. 

In many cases, the risk based assessment of the process may show that there are adequate 

safeguards within the process (e.g. potential faults introduced by one tool, will be detected by 

another).  Alternatively, the analysis may show that the integrity of a tool can be adequately 

demonstrated by its use within the project.  For example, where a tool is extensively used on a 

project and no problems found with the tool, such as in the case of a test tool that correctly 

detects test failures. 

Commercial pressures mean that few tools, if any, are developed to meet high integrity 

requirements, and hence diverse checks within the development lifecycle are almost always be 

required to reduce the safety assurance requirements for the tools to a manageable level.  The 

documentation should record the assessment of each tool to determine conformance with the 

required safety assurance requirements for the tool's proposed use in the development process. 

Where the safety analysis and tool evaluation indicates that a single tool does not have the 

required level of safety assurance, combinations of tools or additional safeguards, such as diverse 

checks and reviews, should be used.  The independence and diversity of the methods or tools and 



ANNEX D to 
AOP-52 

 

D-17 
Edition B Version 1 

 

their effectiveness in achieving the required level of safety assurance should be addressed in the 

safety analysis of the development process. 

The Software Designer/developer has the overall responsibility for selecting tools and should 

address the matching of tools to the experience of members of the Design Team as this has an 

important effect on productivity and quality, and hence on safety assurance.  It should be 

appreciated that compromises are inevitable in assembling a coherent tool set from a limited set 

of candidates.  As part of the determination of adequate safety assurance, consideration should 

also be given to the interaction between the Design Team members and the tool, and the level of 

safety assurance that can be given to this interface. 

The needs of support and maintenance activities during the in-service phase should be taken into 

account when selecting tools  In order to minimize support requirements, consideration should be 

given to the selection of a limited number of broad spectrum tools in preference to the selection 

of a larger number of specialized tools.  Tools which are unlikely to have continued support 

through the life of the equipment should not be employed in the software development. 

In general, tools should be used as follows: 

 Whenever practicable a tool of the required level of safety assurance should be used. 

 Where it is not practicable to use a tool of the required level of safety assurance, a 

combination of tools should be used to provide the necessary added safety assurance. 

 Where it is not practicable to use a combination of tools, the use of a tool should be 

combined with an appropriate manual activity 

 Only if there are no suitable tools available should a process be performed manually
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E Lessons Learned 

E.1 Therac® Radiation Therapy Machine Fatalities 

E.1.1 Summary 

Eleven Therac-25 therapy machines were installed, five in the US and six in Canada.  The 

Canadian Crown (government owned) company Atomic Energy of Canada Limited (AECL) 

manufactured them.  The -25 model was an advanced model over earlier models (-6 and -20 

models, corresponding to energy delivery capacity) with more energy and automation features.  

Although all models had some software control, the -25 model had many new features and had 

replaced most of the hardware interlocks with software versions.  There was no record of any 

malfunctions resulting in patient injury from any of the earlier model Theracs (earlier than the -

25).  The software control was implemented in a DEC model PDP 11 processor using a custom 

executive and assembly language.  A single programmer implemented virtually all of the 

software.  He had an uncertain level of formal education and produced very little, if any 

documentation on the software. 

Between June 1985 and January 1987 there were six known accidents involving massive 

radiation overdoses by the Therac-25; three of the six resulted in fatalities.  The company did not 

respond effectively to early reports citing the belief that the software could not be a source of 

failure.  Records show that software was deliberately left out of an otherwise thorough safety 

analysis performed in 1983, which used fault-tree methods.  Software was excluded because 

“software errors have been eliminated because of extensive simulation and field testing.  (Also) 

software does not degrade due to wear, fatigue or reproduction process.” Other types of software 

failures were assigned very low failure rates with no apparent justification.  After a large number 

of lawsuits and extensive negative publicity, the company decided to withdraw from the medical 

instrument business and concentrate on its main business of nuclear reactor control systems. 

The accidents were due to many design deficiencies involving a combination of software design 

defects and system operational interaction errors.  There were no apparent review mechanisms 

for software design or QC.  The continuing recurrence of the accidents before effective 

corrective action resulted was a result of management’s view.  This view had faith in the 

correctness of the software without any apparent evidence to support it.  The errors were not 

discovered; because the policy was to fix the symptoms without investigating the underlying 

causes, of which there were many. 

E.1.2 Key Facts 

 The software was assumed to be fail-safe and was excluded from normal safety analysis 

review. 

 The software design and implementation had no effective review or QC practices. 

 The software testing at all levels were obviously insufficient, given the results. 

 Hardware interlocks were replaced by software without supporting safety analysis. 

 There was no effective reporting mechanism for field problems involving software. 
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 Software design practices (contributing to the accidents) did not include basic, shared-

data, and contention management mechanisms normal in multi-tasking software.  The 

necessary conclusion is that the programmer was not fully qualified for the task. 

 The design was unnecessarily complex for the problem.  For instance, there were more 

parallel tasks than necessary.  This was a direct cause of some of the accidents. 

E.1.3 Lessons Learned 

1 Changeover from hardware to a software implementation must include a review of 

assumptions, physics and rules. 

2 Testing should include possible abuse or bypassing of expected procedures. 

3 Design and implementation of software must be subject to the same safety analysis, review 

and QC as other parts of the system. 

4 Hardware interlocks should not be completely eliminated when incorporating software 

interlocks. 

5 Programmer qualifications are as important as qualifications for any other member of the 

engineering team. 

E.2 Missile Launch Timing Causes Hangfire 

E.2.1 Summary 

An aircraft was modified from a hardware-controlled missile launcher to a software-controlled 

launcher.  The aircraft was properly modified according to standards, and the software was fully 

tested at all levels before delivery to operational test.  The normal weapons rack interface and 

safety overrides were fully tested and documented.  The aircraft was loaded with a live missile 

(with an inert warhead) and sent out onto the range for a test firing. 

The aircraft was commanded to fire the weapon, whereupon it did as designed.  Unfortunately, 

the design did not specify the amount of time to unlock the holdback and was coded to the 

assumption of the programmer.  In this case, the assumed time for unlock was insufficient and 

the holdback locked before the weapon left the rack.  As the weapon was powered, the engine 

drove the weapon while attached to the aircraft.  This resulted in a loss of altitude and a wild 

ride, but the aircraft landed safely with a burned out weapon. 

E.2.2 Key Facts 

 Proper process and procedures were followed as far as specified. 

 The product specification was re-used without considering differences in the software 

implementation, i.e., the timing issues.  Hence, the initiating event was a specification 

error. 

 While the acquirer and user had experience in the weapons system, neither had 

experience in software.  Also, the programmer did not have experience in the details of 

the weapons system.  The result was that the interaction between the two parts of the 

system was not understood by any of the parties. 
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E.2.3 Lessons Learned 

 Because the software-controlled implementation was not fully understood, the result was 

flawed specifications and incomplete tests.  Therefore, even though the software and 

subsystem were thoroughly tested against the specifications, the system design was in 

error, and a mishap occurred. 

 Changeover from hardware to software requires a review of design assumptions by all 

relevant specialists acting jointly.  This joint review must include all product 

specifications, interface documentation, and testing. 

 The test, verification and review processes must each include end-to-end event review 

and test. 

E.3 Reused Software Causes Flight Controls to Shut Down 

E.3.1 Summary  

A research vehicle was designed with fly-by-wire digital control and, for research and weight 

considerations, had no hardware backup systems installed.  The normal safety and testing 

practices were minimized or eliminated by citing many arguments.  These arguments cited use of 

experienced test pilots, limited flight and exposure times, minimum number of flights, controlled 

airspace, use of monitors and telemetry, etc.  Also, the argument justified the action as safer; 

because the system reused software from similar vehicles currently operational. 

The aircraft flight controls went through every level of test, including “iron bird” laboratory tests 

that allow direct measurement of the response of the flight components.  The failure occurred on 

the flight line the day before actual flight was to begin after the system had successfully 

completed all testing.  The flight computer was operating for the first time unrestricted by test 

routines and controls.  A reused portion of the software was inhibited during earlier testing as it 

conflicted with certain computer functions.  This was part of the reused software taken from a 

proven and safe platform because of its functional similarity.  This portion was now enabled and 

running in the background.   

Unfortunately, the reused software shared computer data locations with certain safety-related 

functions; and it was not partitioned nor checked for valid memory address ranges.  The result 

was that as the flight computer functioned for the first time, it used data locations where this 

reused software had stored out-of-range data on top of safety-related parameters.  The flight 

computer then performed according to its design when detecting invalid data and reset itself.  

This happened sequentially in each of the available flight control channels until there were no 

functioning flight controls.  Since the system had no hardware backup system, the aircraft would 

have stopped flying if it were airborne.  The software was quickly corrected and was fully 

operational in the following flights. 

E.3.2 Key facts 

 Proper process and procedures were minimized for apparently valid reasons; i.e., the 

(offending) software was proven by its use in other similar systems. 
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 Reuse of the software components did not include review and testing of the integrated 

components in the new operating environment.  In particular, memory addressing was not 

validated with the new programs that shared the computer resources. 

E.3.3 Lessons Learned 

 Safety-related, real-time flight controls must include full integration testing of end-to-end 

events.  In this case, the reused software should have been functioning within the full 

software system. 

 Arguments to bypass software safety, especially in software containing functions capable 

of a Kill/Catastrophic event, must be reviewed at each phase.  Several of the arguments to 

minimize software safety provisions were compromised before the detection of the 

defect. 

E.4 Flight Controls Fail at Supersonic Transition 

E.4.1 Summary 

A front line aircraft was rigorously developed, thoroughly tested by the manufacturer, and again 

exhaustively tested by the Government and finally by the using service.  Dozens of aircraft had 

been accepted and were operational worldwide when the service asked for an upgrade to the 

weapons systems.  One particular weapon test required significant telemetry.  The aircraft 

change was again developed and tested to the same high standards including nuclear weapons 

carriage clearance.  This additional testing data uncovered a detail missed in all of the previous 

testing. 

The telemetry showed that the aircraft computers all failed—ceased to function and then 

restarted—at specific airspeed (Mach 1).  The aircraft had sufficient momentum and mechanical 

control of other systems so that it effectively “coasted” through this anomaly, and the pilot did 

not notice. 

The cause of this failure originated in the complex equations from the aerodynamicist.  His 

specialty assumes the knowledge that this particular equation will asymptotically approach 

infinity at Mach 1.  The software engineer does not inherently understand the physical science 

involved in the transition to supersonic speed at Mach 1.  The system engineer who interfaced 

between these two engineering specialists was not aware of this assumption and, after receiving 

the aerodynamicist’s equation for flight, forwarded the equation to software engineering for 

coding.  The software engineer did not plot the equation and merely encoded it in the flight 

control program.
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E.4.2 Key Facts 

 Proper process and procedures were followed to the stated requirements. 

 The software specification did not include the limitations of the equation describing a 

physical science event. 

 The computer hardware accuracy was not considered in the limitations of the equation. 

 The various levels of testing did not validate the computational results for the Mach 1 

portion of the flight envelope. 

E.4.3 Lessons Learned 

 Specified equations describing physical world phenomenon must be thoroughly defined, 

with assumptions as to accuracy, ranges, use, environment, and limitations of the 

computation. 

 When dealing with requirements that interface between disciplines, it must be assumed 

that each discipline knows little or nothing about the other and, therefore, must include 

basic assumptions. 

 Boundary assumptions should be used to generate test cases as the more subtle failures 

caused by assumptions are not usually covered by ordinary test cases (division by zero, 

boundary crossing, singularities, etc.). 

E.5 Incorrect Missile Firing from Invalid Setup Sequence 

E.5.1 Summary 

A battle command center with a network controlling several missile batteries was operating in a 

field game exercise.  As the game advanced, an order to reposition the battery was issued to an 

active missile battery.  This missile battery disconnected from the network, broke-down their 

equipment and repositioned to a new location in the grid. 

The repositioned missile battery arrived at the new location and commenced setting up.  A final 

step was connecting the battery into the network.  This was allowed in any order.  The battery 

personnel were still occupying the erector/launcher when the connection that attached the battery 

into the network, was made elsewhere on the site.  This cable connection immediately allowed 

communication between the battery and the battle command center. 

The battle command center, meanwhile, had prosecuted an incoming “hostile” and designated 

the battery to “fire,” but targeted to use the old location of the battery.  As the battery was off-

line, the message was buffered.  Once the battery crew connected the cabling, the battle 

command center computer sent the last valid commands from the buffer; and the command was 

immediately executed.  Personnel on the erector/launcher were thrown clear as the 

erector/launcher activated on the old slew and acquire command.  Personnel injury was slight as 

no one was pinned or impaled when the erector/launcher slewed. 
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E.5.2 Key Facts 

 Proper process and procedures were followed as specified. 

 Subsystems were developed separately with ICDs. 

 Messages containing safety-related commands were not “aged” and reassessed once 

buffered. 

 Battery activation was not inhibited until personnel had completed the set-up procedure. 

E.5.3 Lessons Learned 

 System engineering must define the sequencing of the various states (dismantling, 

reactivating, shutdown, etc.) of all subsystems with human confirmations and re-

initialization of state variables (e.g., site location) at critical points. 

 System integration testing should include buffering messages (particularly safety-related) 

and demonstration of disconnect and restart of individual subsystems to verify that the 

system always transitions between states safely. 

 Operating procedures must clearly describe (and require) a safe and comprehensive 

sequence in dismantling and reactivating the battery subsystems with particular attention 

to the interaction with the network. 

E.6 Operator’s Choice of Weapon Release Overridden by Software  

E.6.1 Summary 

During field practice exercises, a missile weapon system was carrying both practice and live 

missiles to a remote site and was using the transit time for slewing practice.  Practice and live 

missiles were located on opposite sides of the vehicle.  The acquisition and tracking radar was 

located between the two sides causing a known obstruction to the missiles’ field of view. 

While correctly following command-approved procedures, the operator acquired the willing 

target, tracked it through various maneuvers, and pressed the weapons release button to simulate 

firing the practice missile.  Without the knowledge of the operator, the software was 

programmed to override his missile selection in order to present the best target to the best 

weapon.  The software noted that the current maneuver placed the radar obstruction in front of 

the practice missile seeker while the live missile had acquired a positive lock on the target and 

was unobstructed.  The software, therefore, optimized the problem and deselected the practice 

missile and selected the live missile.  When the release command was sent, it went to the live 

missile; and “missile away” was observed from the active missile side of the vehicle when no 

launch was expected. 

The “friendly” target had been observing the maneuvers of the incident vehicle and noted the 

unexpected live launch.  Fortunately, the target pilot was experienced and began evasive 

maneuvers, but the missile tracked and still detonated in close proximity. 

E.6.2 Key Facts 

 Proper procedures were followed as specified, and all operations were authorized. 
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 All operators were thoroughly trained in the latest versions of software. 

 The software had been given authority to select “best” weapon, but this characteristic was 

not communicated to the operator as part of the training. 

 The indication that another weapon had been substituted (live vs. practice) by the 

software was displayed in a manner not easily noticed among other dynamic displays. 

E.6.3 Lessons Learned 

 The versatility (and resulting complexity) demanded by the requirement was provided 

exactly as specified.  This complexity, combined with the possibility that the vehicle 

would employ a mix of practice and live missiles was not considered.  This mix of 

missiles is a common practice and system testing must include known scenarios such as 

this example to find operationally based hazards. 

 Training must describe the safety-related software functions such as the possibility of 

software overrides to operator commands.  This must also be included in operating 

procedures available to all users of the system. 
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F Process Charts 
The process charts in Appendix H graphically depict the process described in this document.  

These charts show the process from a high, system-level safety assessment process to details 

regarding individual steps and tasks in the process.  It is not the intent of these charts to supplant 

the content of AOP-15: the system-level process both provides the basis for the Software 

Systems Safety Process and shows the inherent cohesiveness of the Software Systems Safety 

Process with the System Safety Process.  Therefore, the system-level charts are essential to the 

overall process description.  Following the process charts, the reader can gain an understanding 

of the process and the various steps involved in each task within the process.  In its electronic 

version, hyperlinks guide the reader.   

Each process chart presented in Appendix F contains the following: 

 Primary task description 

 Process inputs and outputs 

 Entry and exit criteria 

 Personnel involved 

 Primary sub-processes or tasks 

 Critical interfaces 

Not all of the items listed in the process chart apply in every instance of a software safety 

program.  Rather, they provide a comprehensive list of items that may apply.  The user will need 

to tailor the process charts to the development program.  For example, small development efforts 

will not have the breadth of documentation available in larger programs.  Therefore, one system-

level document may provide both a system specification and a software requirements 

specification.  Conversely, complex programs may have several subsystem specifications which 

may have one or more software requirements specifications.  Likewise, one individual may 

fulfill several engineering and/ or management roles in a small development program. 
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Purpose:
Establish the System / Software Safety Program and define program safety 

scope

Processes:

Inputs: Outputs:

Players:

Exit Objective(s):

Entry Criteria:

System Definition & Safety Planning
(Click here for Low Level Process Flow)

Preceding Process

•None

Next Process

•System Functional 

Hazard Analysis

•Contract Documents

(procurement environment)

CM, QA, & Safety 

Requirements and  

System Specification

 System capabilities 

specification

•Concept of operations 

Program funding and 

schedule (including WBS)

• Lessons learned

•System architecture 

concepts

•Functional allocation

•Software Development Plan

•Contract Start

•SSMP

•SSPP, Including Software 

Safety Plan

•Safety programmatic risks (ie, 

schedule, funding)

•Safe coding practices

•Safety aspects of software 

development, QA & CM plans

•System safety input to related 

documents (e.g., environmental 

regulation and compliance

•Scope safety program, safety 

funding, & safety schedule

•Establish safety involvement 

within project and across all 

project interfaces

•Support system architecture 

and recommend preferred 

system architecture for safety

 Project manager (Identify safety 

manager & Allocate Safety Funding)

 Safety Manager (Establish Plans)

 SSE (Support safety program)

 SWSE (Support safety program)

 Sys Eng (Develop SS)

•Develop and/or tailor SSMP, including Software Safety consideration

 Establish interface with stakeholders (e.g., security, user, survivability, etc.)

•Develop and/or tailor SSPP, including Software Safety section

 Schedule

 SSWG charter

 Identify resources 

 Plan safety for warranty, maintenance and upgrades

•Conduct system functional allocation analysis for safety impact

•Conduct system architecture analysis for safety considerations

•Couple SWS with software development, CM, QA and test planning processes

•Support PESHE development (safety summary rollup)

•Develop and document safety programmatic risks (i.e., schedule, funding)

System Definition & Safety Planning

Intermediate Flow Diagram

 S/W Eng (Conduct Studies)

 CM (Develop CM Plan)

 QA (Develop QA & SQA Plans)

 Domain experts (Support Sys Eng)

 User (Support Sys Eng)

 Test (Develop T&E Plans)

1
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Purpose:
Conduct Functional Allocation of Safety Related system elements & gain 

Review Authority Concurrence of System / Software Plans.

Processes:

Inputs: Outputs:

Players:

Exit Objective(s):

Entry Criteria:

System Functional Hazard Analysis
(Click here for Low Level Process Flow)

Preceding Process

•System Definition & 

Safety Planning

Next Process

•System Software 

Requirements Hazard Analysis

•System/Subsystem 

Specification

•Test and Evaluation Master 

Plan

•Mishap records for lessons 

learned from similar systems  

•Generic safety requirement

Regulatory requirements

 SOW clauses

Review Authority 

requirements

•Established SSWG

•System Architecture

•CONOPS

•Established System Safety 

Program

•Preliminary Hazard List

• Initial Safety Assessment

•Inputs to requirements 

traceability tool and 

requirements documents

•Safety requirements criteria 

analysis

•Introductory briefing for Safety 

Review Authority

•Identify system level hazards 

and potential mishaps

•Identify safety critical functions 

and/or requirements

•Allocate safety critical functions 

to system and software 

architecture

Optimize the allocation of 

safety critical software in 

the system

Consider software, 

hardware, and Human 

Systems Integration (HSI)

•Gain Safety Review Authority 

concurrence regarding safety 

approach

 SSWG (Review/Adjudicate Analyses) 

 Safety Manager (Execute Plans)

 SSE (Conduct Safety Analysis)

 SWSE (Conduct S/W Safety Analysis)

 Sys Eng (Develop SSS)

•Identify system level hazard and potential mishaps

•Identify safety critical functions and/or requirements

•Conduct Safety Requirements Criteria Analysis (SRCA)

•Analyze architectures

•Allocate safety critical functions to system/software architectures

•Develop safety recommendations

•Define safety testing approach

•Establish working interface with review authority

•Conduct initial safety risk assessment

•Brief planned safety program to safety review authority

•Evaluate safety review authority recommendations

System Functional Hazard Analysis

Intermediate Flow Diagram

 S/W Eng (Define Architecture)

 Domain experts (Support Sys Eng)

 User (Support Sys Eng)

 Test (Develop TEMP)

 Review Authority (Provide 

concurrence with Safety Plans
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Purpose:
Identify and derive Software Safety Requirements and link Hazards to 

requirements to support Preliminary Design.

Processes:

Inputs: Outputs:

Players:

Exit Objective(s):

Entry Criteria:

System Software Requirements 

Hazard Analysis
(Click here for Low Level Process Flow)

Preceding Process

•System Functional 

Hazard Analysis

Next Process

•Design & Implementation 

Hazard Analysis

•Software Criticality Matrix 

(SCM)

•Software Requirements 

Specification (SRS)

•Interface Requirements 

Specification (IRS)

•System Architecture with 

software visible

•Software Architecture

•Defined allocation of System 

Functions to Software

•Defined Software and 

Interface Requirements

•Hazard analysis update

•Inputs to hazard tracking 

system

•Safety Assessment for Review 

Authority

•Update to requirements 

traceability

•Link hazards to requirements 

and vice versa

 Verify completeness of 

hazards and requirements

Develop requirements to 

mitigate hazards

•Identify software safety 

requirements

•Obtain Review Authority 

concurrence on progress

 Project manager (Support Meetings)

 Safety manager (Execute Plans)

 SSE (Conduct Analyses)

 SWSE (Determine SHRI)

 Sys Eng (Develop SRS/IRS)

 S/W Eng (Refine Architecture)

•Analyze software functions to refine safety related functions

 Identify additional safety related functions

 Validate existing list of safety related functions

 Identify interfaces to safety related functions

•Identify hazard software causal factors

 Prioritize and categorize causal factors

•Tag or mark safety requirements in the SRS and IRS

•Derive safety requirements to mitigate identified hazards/causal factors

•Requirements walkthroughs to verify correctness and completeness of safety 

related requirements

•Confirm level of rigor equates to cumulative assigned risk index

•Update hazard analyses

•Update Safety Requirements Criteria Analysis (SRCA)

System Software Requirements Hazard Analysis

Intermediate Flow Diagram

 CM (Maintain Requirements)

 QA (Support Requirement Walk-

troughs)

 Domain experts (Support Sys Eng)

 User (Support Sys Eng)

 Test (Refine Test Plans)
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Purpose:
Identify and derive Software Safety Requirements for proposed COTS to be 

integrated into the system Preliminary Design. Always include unused 

functionalities.

Processes:

Inputs: Outputs:

Players:

Exit Objective(s):

Entry Criteria:

COTS Interoperability Hazard 

Analysis
(Click here for Low Level Process Flow)

Preceding Process
•Parallel Process with 

System Software 

Requirements Hazard 

Analysis

Next Process

•Design & Implementation 

Hazard Analysis

COTS Interoperability Hazard Analysis

Intermediate Flow Diagram

•Software Criticality Matrix 

(SCM)

•Software Requirements 

Specification (SRS)

•Interface Requirements 

Specification (IRS)

•COTS Application History

•Supplier Data “Cut” Sheets

•System architecture showing 

COTS locations

•Software architecture 

showing COTS/NDI/GOTS 

locations and functions

•Analyze COTS Requirements and Functions against System Requirements

 Review COTS product History, if available, for similar application

 Identify historical SHRI, if available, for used and unused functions

 Identify interfaces to and threads from safety related functions

•Identify, Categorize, & Prioritize COTS Requirements & Functions

 Prioritize and categorize causal factors for used and unused functions

•Match COTS to Safety Critical Functions, add new hazards for COTS unused functions

•Establish COTS level of rigor, unused functions inherit highest level of rigor

•Tag or mark safety requirements in the SRS, IRS, & Supplier Cut Sheets

•Analyze dead, unused, or inactivated options in COTS, and monitor/mitigation designs

•Analyze Functional & Behavioral characteristics of COTS

•Develop Safety Mitigation Requirements for COTS used and unused functions

•Develop Safety Regression Test criteria and procedures for used & inactivated COTS 

functions

•Update hazard analyses & Safety Requirements Criteria Analysis (SRCA)

 Project manager (Support Meetings)

 Safety Manager (Execute Plans)

 SSE (Conduct Analyses)

 SWSE (Determine SHRI)

 Sys Eng (Develop SRS/IRS)

 S/W Eng (Refine Architecture)

 COTS manager (buy, warranty)

 CM (Maintain Requirements)

 QA (Support Requirement Walk-

troughs)

 Domain experts (Support Sys Eng)

 User (Support Sys Eng)

 Test (Refine Test Plans)

•Defined allocation of System 

Functions to Software

•Defined Software and 

Interface Requirements

•Link hazards to COTS 

requirements and vice versa

 Verify completeness of 

hazards and requirements

Develop requirements to 

mitigate COTS hazards

•Identify COTS software safety 

requirements

•Obtain Review Authority 

concurrence on progress

•Hazard analysis update

•Inputs to hazard tracking 

system

•Inputs to Safety Assessment for 

Review Authority

•Update to requirements 

traceability

•COTS used and unused 

functions list to input to buy and 

tech refresh criteria

•COTS safety criticality Indexes

COTS = commercial-off-the-shelf software, GOTS, NDI, tools, compilers, debuggers, and most open source software 
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Purpose:
Identify, track, & resolve hazards and software causal factors through 

detailed analysis and test. 

Processes:

Inputs: Outputs:

Exit Objective(s):Entry Criteria:

Design & Implementation Hazard 

Analysis
(Click here for Low Level Process Flow)

Preceding Process
•System Software Requirements 

Hazard Analysis

Next Process

•Software Test & 

Validation

•Baseline System/Subsystem 

Specification

•Baseline Software 

Requirement Specification 

(SRS) and Interface 

Requirement Specification 

(IRS)

•Software Design (SDD) and 

Interface Design (IDD) 

Documents

•COTS selections as 

completed

•Operating and Support 

Documents

•Defined allocation of System 

Functions to Design

•Defined Software and 

Interface Design 

Requirements

•Updated Hazard Tracking 

System

•Updated and new Hazard 

Analyses

Updated SRCA

Updated software CDR 

SAR

Review Authority data 

package

•Residual safety risk

•New and/or modified 

requirements and associated 

test cases

•Recommend updates to user 

manuals and training

•Special COTS implementation 

safety requirements and COTS 

SHRI 

• Identify, track, resolve hazards 

and causal factors

•Create and coordinate 

mitigations and test cases

•Analyze implementation of 

safety related functions and 

safety requirements to ensure 

they satisfy their intent

•Conduct SSHA

 Hardware, software and human

 Establish SHRI and conduct analysis according to SHRI level of rigor

•Incorporate and analyze COTS functionality/interactions/threads/interfaces
 Match existing hazards to COTS (both used and unused functions)

 Analyze COTS for introduction of new hazards, mitigate unused functions

 Establish SHRI for new and/or modified requirements and conduct analysis 

according to SHRI level of rigor

•Conduct SHA
 Include System of Systems Hazards, human computer interface, etc.

 Establish SHRI for new and/or modified requirements and conduct analysis 

according to SHRI level of rigor

•Incorporate and analyze all system interfaces, esp. COTS, and tag for safety risk

•Conduct O&SHA
 Develop Safety Notes, Warnings, Cautions, training and workarounds 

 Recommend updates to user manuals and training

•Develop new or modified Requirements 

•Develop Software Safety Test Cases
•Coordinate with Reviewing Authority

•Produce software CDR Safety Assessment (SAR)

•Obtain Review Authority concurrence with software design

•Populate Hazard Tracking System

 Develop Test Readiness evaluation material(s)
 For each build, assess residual safety risk of partial-functionality and “left-out 

functionality” of build(s) to-date

NOTE: Applicable in research, spiral and rapid development incremental 

releases

Design & Implementation Hazard Analysis

Intermediate Flow Diagram (Page 1 of 2)

Players: See Next Page
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Design & Implementation Hazard 

Analysis
(Click here for Low Level Process Flow)

Preceding Process
•System Software Requirements 

Hazard Analysis

Next Process

•Software Test & 

Validation

 Project manager (Support software 

CDR and Review Authority meetings)

 Safety Manager (Support design 

reviews, Safety Review Authority 

meetings, oversight of SSHA, SHA, 

manuals, assess residual risk)

 SSE (hazard analyses, hazard 

tracking system, meeting support)

 SWSE (software hazard analyses, 

hazard tracking system, meeting 

support)

Design & Implementation Hazard Analysis

Intermediate Flow Diagram (Page 2 of 2)

Players:

 Sys Eng (new or modifying 

requirements)

 S/W Eng (new or modified code, 

recompile, test)

 CM (baseline and change control)

 SQA (audit)

 SSWG (CDR, Review Authority 

meetings)

 HSI and HFE (O&SHA and manuals)
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Purpose:
Verify Software Safety Requirements are validated through software 

developmental and System Integration Testing. 

Processes:

Inputs: Outputs:

Exit Objective(s):

Entry Criteria:

Software Test & Validation
(Click here for Low Level Process Flow)

Preceding Process

•Design & Implementation 

Hazard Analysis

Next Process

•Certification

•Test plans, descriptions and 

procedures

•Test results

•Software test anomalies 

(STRs, SPRs, TORs, etc.)

•Test environment and 

configuration definitions

•Build definitions

•SCNs, ECPs, etc.

•Regression suite(s), 

especially safety, and 

process triggers that initiate 

full sets of regression.

•COTS test requirements

•Defined Software Safety 

Requirements

•Updated safety documentation 

(e.g., SAR, Hazard Tracking 

System, etc)

•Safety review authority TDP

•Risk acceptance 

recommendations

•Verify the implementation of the 

intent of safety requirements

•Verify the implementation of 

safety related functions

•Identify and categorize safety 

anomalies

•Develop evidence supporting 

safety certification

•Document residual risk for 

government test events

•Identify residual risk

•Support software and integration testing

•Analyze test results

 Identify safety related anomalies

 Categorize safety related anomalies

 Verify resolution of anomalies

•Update safety documentation (e.g., SAR, Hazard Tracking System, etc)

•Provide safety evidence to safety review authority prior to government integration 

testing, if required

•If IV&V is conducted, then provide safety support and review results

Software Test & Validation

Intermediate Flow Diagram

Players:

 Project manager(Support TRR & RA 

Meetings)

 Safety Manager (Execute Plans)

 SSE (Analyze Test Results)

 SWSE (Analyze Test Results) 

 Sys Eng (Analyze Test Results)

 S/W Eng (Analyze Test Results)

 HSI & HFE Eng (Review Test Results) 

 SSWG (Concur with Safety test 

procedures & test approach)

 CM (Maintain Requirements Test 

Matrix)

 QA (Support Test Procedure Walk-

troughs)

 S/W & System Test Engineers 

(Develop & execute test procedures)

 IV&V personnel if required (Execute 

Test Procedures)

 Safety Review Authority (Concur 

with Test Event
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Purpose:
Assure that software defects identified during development and program 

lifecycle are assessed for safety, risk identified, tracked, and resolved.

Processes:

Inputs:

Outputs:

Exit Objective(s):Entry Criteria:

Defect Resolution
(Click here for Low Level Process Flow)

Preceding Process

•Multiple Entry Points

Next Process

•Multiple Exit Points

•Anomaly report(s)

•Engineering change 

proposal(s)

•Hazard Tracking System

•Baselined Requirements

•Test results and observations

•Planned test procedures

•Defect identified and 

communicated to software 

developers or In-Service 

Engineering Agent

•Update to Baselined

Requirements

•Engineering Change 

Proposal(s)

 Software Change Board 

review

•Updated Hazard Tracking 

System

•Updated Hazard Analysis(es)

 Possibly, new hazard(s)

•Recommended Test Case(s)

•Residual Safety Risk

•Resolve defects identified 

through software test and 

validation

•Identify anomalies (review STRs, etc.) passed through for safety impact(s)

•Create new entry in Hazard Tracking System

•Investigate possible causal factors

 Tool suite, compiler error

 Build, link list error (CM)

 Code Implementation

 Integration error

 Design error

 Requirement error

 Misinterpreted requirement, interface, hazard, use case, etc…

 COTS unused function

 Legacy functionality not regressed

•Determine safety risk of each causal factor

•Update previous safety analysis(es) for anomaly(ies)

•Develop mitigation(s):

 Rebuilt Code

 Patch(es) [when absolutely necessary!] followed by regression tests

 And also analyze for new hazards created by mitigation

• If new hazard, then return to 2-1 on slide 5

•Check mitigations for new or changes to Requirements

•Coordinate with:

 If software, then coordinate with Software Engineer

 If hardware, then coordinate with System Engineer

 If human, coordinate with HSI and HFE, etc.

Defect Resolution

Intermediate Flow Diagram (1 of 2)

Players: See Next Page

 



ANNEX F to 
AOP-52 

 

F-10 
Edition B Version 1 

 

9

Defect Resolution
(Click here for Low Level Process Flow)

Preceding Process

•Multiple Entry Points

Next Process

•Multiple Exit Points

Defect Resolution

Intermediate Flow Diagram (2 of 2)

Players:

 Software Change Board (SCB) 

(Adjudicate defects, prioritized and 

identify build plan)

 Safety manager (Determine residual 

risk)

 SSE (Investigates safety anomaly & 

Conducts Risk Assessment)

 SWSE (investigates software safety 

anomaly & Conducts Risk Assessment)

 Sys Eng (Updates requirements)

 Software engineer (Re-code, re-

compile)

 Software Test Engineer (Re-test)

 CM (Ensures requirements and 

software code changes are tracked)

 SQA (Ensures defect resolution 

process is followed and process 

improvement)

 HSI and HFE (Identifies need for 

additional training)
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Purpose:
Assure that software modified through defect resolution does not effect 

other aspects of software performance, especially safety related functions. 

Processes:

Inputs:

Outputs:

Exit Objective(s):

Entry Criteria:

Regression Testing
(Click here for Low Level Process Flow)

Preceding Process

•Multiple Entry Points

Next Process

•Multiple Exit Points

•Baselined, ready to release 

compiled code (anomalies 

removed)

•Engineering Change 

Proposals

•Software Trouble Reports

•Residual safety risk 

•Existing Test cases for 

required functions to maintain 

through any change

•Existing Test cases for 

required safety functions to 

maintain through any change

•Existing Test cases for 

required requirements to 

maintain through any change

•Proposed new test cases for 

change

•Baseline safety 

documentation

•Qualified test tools and test 

suite

•Ready to Test Software

•Qualified Test Environment

•Verified and Validated 

change(s)

•Possible software anomalies to 

be rendered in return to 

Software V&V

•Recommendations for safety 

assessment

•Changes to requirements trace 

(SRCA)

•Assurance that changes or 

modifications in one area do not 

affect critical functions and 

safety functions in another 

portion of the system. 

•Assurance that changes or 

modifications have their 

intended effect.  

•New residual risk.

•Analyze functionality to be maintained through any change

•Analyze safety functionality and safety data and structure to be maintained through 

any change

•Analyze planned change(s) made to functionality and requirements

•Analyze new functionality provided by change

•Analyze change(s) to safety functionality and safety data and structure

•Develop new, use or modify existing, test(s) to verify and validate existing system 

functionality to be maintained in regardless change

•Develop new, use or modify existing, test(s) to verify and validate existing safety 

functionality and safety data and structure

•Develop new, use or modify existing, test(s), if required, to verify and validate new 

safety functionality and safety data and structure

•Develop, or modify existing, test(s) to verify and validate new system functionality 

and safety data and structure

•Execute combined test(s)

NOTE 1: May be a stand-alone (in Sustained Engineering) or embedded 

process (in Software V&V)

NOTE 2: During certain fix-fly and Sustained Engineering this and V&V may 

iterate in smaller tighter loops than shown in the full process flow.

Regression Testing

Intermediate Flow Diagram (1 of 2)

Players: See Next Page
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Regression Testing
(Click here for Low Level Process Flow)

Preceding Process

•Multiple Entry Points

Next Process

•Multiple Exit Points

Regression Testing

Intermediate Flow Diagram (2 of 2)

Players:

 Project manager(Decision to regress, 

what to regress)

 Safety Manager (Finalizes test cases 

and updates to Hazard Tracking 

System)

 SSE (Derives test cases, updates 

hazard analyses)

 SWSE (Derives test cases, updates 

hazard analyses)

 Sys Eng (Modifies requirements

 S/W Eng (Reviews test results for 

anomalies)

 S/W Test engineer (Performs 

regression tests, compiles results)

 CM (Assures proper baseline 

introduced for regression)

 SQA (Maintains SQA requirements, 

sometimes performs tests)

 SSWG (Concurs with Regression Test 

regimen)
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Purpose:
Provide substantiated evidence to demonstrate software is safe in the 

system context prior to introduction (use). 

Processes:

Inputs: Outputs:

Exit Objective(s):

Entry Criteria:

Certification
(Click here for Low Level Process Flow)

Preceding Process

•Software Test & Validation

Next Process

•Sustained Engineering

•Customer integration test 

plans, descriptions and 

procedures

•Customer integration and 

operational evaluation test 

results

•Customer integration test 

anomalies and resolutions 

(STRs, SPRs, TORs, etc.)

•Customer integration test 

environment and 

configuration definitions

•Build definitions

•Completion of Factory 

Qualification Test

•Completed safety 

documentation (e.g., SAR, 

Hazard Tracking System, etc)

•Safety review authority TDP

•Formal acceptance of residual 

risk 

•Provide evidence to certify 

software as safe in the system 

and operational environment 

context

•Provide evidence to accept 

residual risk

•Provide evidence to obtain 

safety review authority 

concurrence with operational 

use

•Develop evidence to support residual risk assessment

•Document residual risk for acceptance

•Support customer integration and certification testing

•Analyze test results supporting certification

 Identify safety related anomalies

 Categorize safety related anomalies

•Update safety documentation (e.g., SAR, Hazard Tracking System, etc)

•Compile safety evidence for safety review authority to support request for 

operational use

•Support test readiness evaluations and reviews

•Support mission control panels (i.e., review board) and readiness reviews

•Respond to and resolve safety review authority action items

Certification

Intermediate Flow Diagram

Players:

 Project manager (Support Certification & 

RA Meetings)

 Safety Manager (Assemble Evidence, 

Gain Risk Acceptance for residual risk)

 SSE (Conduct Analyses / Gather Data)

 SWSE (Conduct Analyses / Gather Data) 

 Sys Eng (Gather Data)

 S/W Eng (Gather Data)

 SSWG (Adjudicate final residual risk)

 CM (Verify Compliance with Plans)

 QA (Verify Compliance with Plans)

 Domain Experts (Support Sys Eng)

 User (Support Sys Eng)

 Customer integration test team 

(Conduct Integration Testing)

 Safety Review Authority (Weigh 

safety evidence & concur or assign 

action 

 Certification authorities (Weigh 

evidence & concur or assign action)
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Purpose:
Assure that Development and Test Tools are Qualified in support of 

software development and safety verification, validation, and certification 

activities.  

Processes:

Inputs:
Outputs:

Exit Objective(s):Entry Criteria:

Tool & Environment Qualification
(Click here for Low Level Process Flow)

Preceding Process

•None

Next Process

•Software Test & 

Validation

•Tool and Environment 

Qualification plan

•Generic safety related 

requirements

•Proposed tools and 

environments

•Project specific safety 

requirements (e.g., ASIC 

reserves)

•Changes to tools and 

environments

•Tools identified for software 

development & test 

(Compilers, Simulators, 

Stimulators, etc…)

•Safety unique requirements for 

Tool and Environment 

Qualification

•Recommendations for changes 

to tools and environments

•Tool and Environment risk 

assessment section in SAR

•Ensure that the Tools and 

Environments adequately 

support safety verification, 

validation and certification

•Establish safety unique requirements for Tool & Environment Qualification

•Review results of Tool and Environment Qualification to ensure they meet intent of 

safety unique requirements

•Evaluate risk associated with TAE

•Evaluate changes to tools and environments for safety impact 

•(Note: must follow similar due diligence as in the COTS interoperability slide)

Tool & Environment Qualification

Intermediate Flow Diagram

Players:

 Safety manager (Identify software tools 

and test environments to support software)

 SSE (Establish Safety Requirements & 

review qualification results)

 SWSE (Establish Safety Requirements & 

review qualification results) 

 SSWG (Concur with tool & environment 

qualification regimen)

 Sys Eng (Define qualification 

regimen)

 S/W Eng (Define qualification 

regimen)

 S/W Test Engineers (Execute 

qualification tests)

 CM (Maintain list of qualified tools)

 QA (Ensure Tool & Qualification Plans 

are properly executed)
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Purpose:
Maintain acceptable level of safety risk throughout product lifecycle 

including: computer program upgrades, ECPs, product improvement plans, 

Technology Refresh, Technology Insertion, ORDALTS, SHIPALTS, or 

changes in operational environment. 

Processes:

Inputs:
Outputs:

Exit Objective(s):

Entry Criteria:

Sustained Engineering
(Click here for Low Level Process Flow)

Preceding Process

•Certification

Next Process

•Top Level Process 

(Scope Dependent)

•Fleet anomaly reports and 

associated corrections

•Computer program upgrades

•Engineering Change 

Proposals (ECPs)

•Product Improvement Plans 

(PIPs)

•Technology Refresh 

Proposal

•Technology Insertion 

Proposal

•Changes in operational 

environment

•Baseline safety 

documentation

•COTS used and unused 

functions lists

•Application specific 

modification guidance, for 

example, Navy: ORDALTS, 

SHIPALTS, TEMPALTS

•Product modification 

requested or required

•Entry point to safety process 

and recommendations

•Documentation of impact 

analysis

•Maintain acceptable level of risk 

during system lifecycle

•Perform safety impact analysis of anomalies and proposed changes (determine 

criticality of impact and action to take) (Re-visit COTS and Tech refresh processes)

 Identify changes or impacts to interfaces to safety related (SR) functions

 Identify changes or impacts to Safety Related functions

 Identify changes or impacts to Safety Related requirements

 Categorize and prioritize Safety Related  impacts

•Determine point of entry into the safety process, but always re-visit COTS and Tech 

Refresh slide processes

Sustained Engineering

Intermediate Flow Diagram

Players:

 Project manager (Communicate Change 

Request, provide safety funding)

 Safety manager (Identify potential 

changes and communicate to safety team)

 SSE (Conduct change risk assessments)

 SWSE (Conduct change risk 

assessments) 

 Sys Eng (Generate change proposal)

 S/W Eng (Generate change proposal)

 SSWG (Define safety program needs)

 Domain Experts (Support Sys Eng)

 User (Support Sys Eng)
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Purpose:
Assure that the introduction or update to existing technology does not 

present unacceptable risk to the new system baseline.

Processes:

Inputs:

Outputs:

Exit Objective(s):
Entry Criteria:

Technology Insertion / Refresh
(Click here for Low Level Process Flow)

Preceding Process

•Sustained Engineering

Next Process

•Top Level Process 

(Scope Dependent)

•Technology Insertion Proposal

•Baselined version(s) of 

hardware, software and tools 

suite(s)

•Supplier Data Sheets 

describing proposed 

technology (processor, 

memory, chip, etc.)

•Tools suite or Compiler Pre-

Qualification or Accreditation

•Hazard Tracking System and 

associated safety analyses

•Existing SHRI 

•Existing Software and 

Hardware engineering 

analyses

•Existing Regression Test suite

•Previous, if any, test results, 

STRs, etc.

•Previous Review Authority 

comments and lessons-

learned

•Decision to insert or refresh 

technology into existing 

baseline

•Recommendation(s) for further 

Safety Analysis and Test 

(insertion point on which sheet)

 Test recommendations

Updated Hazard Tracking 

System

Updated Hazard 

Analysis(es)

Updated baseline or 

configuration

Updated tools suite or 

compiler 

certifications/qualifications

Updated Requirements

Updated User Manuals 

and Training

Changed Residual Safety 

Risk

•Ensure acceptable level of risk 

in the introduction or insertion 

of new technologies into an 

existing baseline or system.

•Conduct Change Hazard/impact analysis

 New Functionality or Capability

 Hardware

• Timing margin

• Processor

• Memory

• Bus or Controller

• PLC, EPLD, FPGA, ASIC, EEPROM, etc.

 Software

• COTS (always include existing used/unused functions comparison 

analyses to new COTS used/unused functions), mitigation update costs

• Tools or Compiler

• New Language

•Determine process entry point

Technology Insertion / Refresh

Intermediate Flow Diagram

Players:

 Project manager (Approves and 

budgets technology proposal)

 Safety Manager (Determines 

Recommendation(s) for further Safety 

Analysis and Test, allocates 

resources)

 SSE (Re-works assigned analyses)

 SWSE (Re-works assigned analyses)

 S/W Eng (Re-qualifies tools, re-times 

and re-sizes, re-codes, re-compiles, re-

tests)

 CM (Updates baseline and configuration)

 QA (Process improvement and audits 

changes)

 HSI and HFE (Updates user manuals 

and training)
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Purpose:
Assure that a change in the operational environment of a system does not 

present unacceptable risk in the new environment.

Processes:
Inputs: Outputs:

Players:

Exit Objective(s):Entry Criteria:

Changes In Operational Environment
(Click here for Low Level Process Flow)

Preceding Process
•Sustained Engineering

Next Process

•Top Level Process 

(Scope Dependent)

Changes In Operational Environment

Intermediate Flow Diagram

•Documentation of Safety 

Impact Analysis 

•Description of New 

Environment or new use

•Hazard Tracking System and 

associated safety analyses

•Existing SHRI 

•Existing Software and 

Hardware engineering 

analyses

•Previous test results, STRs, 

etc.

•Previous Review Authority 

comments and lessons-

learned

•Decision to subject system / 

software to a change from 

approved environment

•Conduct Change Hazard/impact analysis

 Integration into new Systems of Systems Context

• Identify safety related interfaces, existing risk index versus new index, and 

any constraints

• Identify new interoperability and stakeholder safety requirements

 New Operational Environment

• Major Change (e.g., aircraft application to shipboard application, new 

interfaces)

• Minor Change (e.g., Open Seas to Littoral Warfare and does not directly 

affect any safety functionality except boundaries)

•Identify safety related environmental constraints and design assumptions, 

compare all old constraints and sequences to new

 New Operational use or application

• Major or Minor

•Identify old system level hazards with new interfaces or bounds, and new 

interfaces with any safety implications

•Integration test planning with new system

 Project manager (Approves and 

budgets technology proposal)

 Safety Manager (Determines 

Recommendation(s) for further Safety 

Analysis and Test, allocates 

resources)

 SWSE (Re-works assigned analyses)

 SSWG (Define safety program needs)

 Domain Experts (Support Sys Eng)

 User (Support Sys Eng)

 SSE (Re-works assigned analyses)

•Recommendation(s) for further 

Safety Analysis and Test 

(insertion point on which sheet)

 Test recommendations

Updated Hazard Tracking 

System

Updated Hazard 

Analysis(es)

Updated baseline or 

configuration

Updated Requirements

Updated User Manuals 

and Training

Changed Residual Safety 

Risk

•Ensure acceptable level of risk 

in the introduction or insertion 

of existing technologies into a 

new environment.
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Purpose:
Evaluate defects discovered in the fleet, identify safety risk, and propose 

near and long term mitigations.  

Processes:

Inputs:
Outputs:

Exit Objective(s):Entry Criteria:

Fleet Anomaly Reporting
(Click here for Low Level Process Flow)

Preceding Process

•Sustained Engineering

Next Process

•Defect Resolution

•Fleet anomaly reports 

•Changes in operational 

environment

•Baseline safety 

documentation

•Casualty reports

•Commanding Officer 

Narrative Reports (CONAR)

•Airborne Weapon Corrective 

Action Reports (AWCAPS)

•Safety Center data

•User defect identified and 

communicated to the In-

Service Engineering Agent

•Risk assessment

•Fleet notification

 Interim mitigation

•Evaluate anomalies discovered 

during system lifecycle

•Perform safety impact analysis of anomalies and proposed changes (determine 

criticality of impact and action to take)

 Identify interfaces to safety related functions

 Identify changes or impacts to safety related functions

 Identify changes or impacts to safety related requirements

 Categorize and prioritize safety related impacts

•Determine point of entry into the safety process

Fleet Anomaly Reporting

Intermediate Flow Diagram

Players:

 Safety Manager (Identify potential 

changes and communicate to safety team)

 SSE (Conduct risk assessments)

 SWSE (Conduct risk assessments) 

 Sys Eng (Identify root cause)

 S/W Eng (Identify root cause)

 Domain Experts (Support Sys Eng)

 User (Document identified deficiency)
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

SYSTEM DEFINITION & SAFETY PLANNING (1 of 2)

Program Lifecycle/System Development Activities/Milestones/Documentation

Start

Software Safety 

Certification

Contract SOW

Develop and/or 

tailor safety 

management 

plan

Safety 

Management 

Plan

Safety 

Program 

Plan

SD

2a

MS

Develop safety 

and software 

safety program 

plan,

Define safety 

precepts, 

establish SSWG

Allocate 

Safety 

Program 

Funding

SD

2b

Initial 

Capabilities 

Document Analysis results

SD

2

Software Safety Process

Define Initial 

Capabilities & 

Requirements

Analyze 

Alternatives

Acquisition 

Authority 
Approve 

Documents?

Resolve 

Acquisition 

Authority Actions

Develop Contract 

documents & Work 

Breakdown Structure 

(WBS)

N

Y

SD

1
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

Plans/ 

Procedures 

comply with 

SOW/ 

Contract

N

Y

N

Develop System 

Requirements 

Specification

Perform 

Functional 

Allocation

CM, QA, S/W Dev. 

Requirements, SOS 

Requirements From 

SOW
SF

1

SF

2

SYSTEM DEFINITION & SAFETY PLANNING (2 of 2)

System 

Requirements 

Specification

Functional 

Allocation

Y

Develop CM QA 

SDP T&E Plans

CM Plan

Conceptual 

Design Risk 

Assessments

Requirements 

Allocation Risk 

Assessments

Embed Safety 

Interface & Controls

Safety Program 

Programmatic Risk 

Assessment

SD

2b

SD

2a

Identify S/W 

Development & 

Test Processes / 

Tailor Safety 

Program to S/W 

Development & 

Test Processes

Conduct Safety 

Program 

Programmatic 

Risk Assessment

Conduct Conceptual 

Design Analysis
Conduct Functional 

Allocation Analysis

Plans 

Funded 

Adequately
SD

2

SD

1

TQ

1
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

Identify System 

Hazards & 

Mishaps

----------------

Identify System 

Level Safety 

Critical Functions

-----------------

Identify & Tailor 

Generic Safety 

Requirements

Develop 

Technical Data 

Package or 

Safety 

Assessment 

Report (SAR)

Review 

Authority 

Concur with 
progress

N

Y

Hazard Analysis Reports

(e.g., PHL Report)
SRCA

SYSTEM FUNCTIONAL HAZARD ANALYSIS (1 of 1)

SF

1

SF

2

SR

1

Safety Assessment

(e.g. FHA/PHA/SHA)

SRR

RA

Intro

SD

2a

SR

2

MS

“B”

Test & Evaluation 

Master Plan

Develop 

System/Subsystem 

Specifications

Develop Test & 

Evaluation Master Plan 

(TEMP)

Initiate 

Requirements 

Traceability / 

Safety 

Requirements 

Criteria Analysis

Analyze RA 

Recommendations

Analyze / Define 

Safety Requirements 

System & Software 

Architecture 

Recommendations 

(including COTS/NDI)

System/Subsystem 

Specifications

Define Safety 

Test Program

Define Safety 

Interface to 

Test Group

Note-Recommendations 

may not necessitate 

returning all the way 

back to SD 2a

CI

2

CI

1
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

Analyze 

Software 

Functions to 

Identify Safety 

Related 

Functions

(including 

COTS/NDI, HSI) 

SYSTEM SOFTWARE REQUIREMENTS HAZARD ANALYSIS (1 of 1)

SR

2

DI

2

DI

1
SR

1

Identify,

Categorize & 

Prioritize Hazard 

Causal Factors, 

including both used 

and unused COTS 

requirements and 

interface 

requirements as 

causal factors

PDR

SRCA

RA 

PDR

Review 

Authority 

Concur 

Progress

N

Y

PDR Safety 

Assessment

Develop Hazard 

Analysis Report &  

PDR Safety 

Assessment; highlight 

safety requirements, 

architecture, and 

interfaces

Software 

Requirements 

Specification

Develop 

Software 

Requirements 

Specification Interface 

Requirements 

Specification

Develop 

Interface 

Requirements 

Specification

Develop 

Mitigation 

Requirements 

(update generics); 

Identify V&V and 

Regression Test 

requirements

Assign SHRI to 

Software 

Functions

Hazard Analysis 

Update (e.g., 

SHA, SSHA)

Check 

Other 

Hazards

Confirm level of rigor 

equates to assigned risk 

index for all components 

and COTS in the system 

architecture and 

interfaces. Include in SAR.

Hazard Tracking System

SR

2a
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

Analyze

(Software Requirements 

and S/W Functions) versus 

(COTS Requirements and 

COTS Functions);

analyze used and unused 

COTS functions and 

requirements

COTS INTEROPERABILITY HAZARD ANALYSIS (1 of 2)

CI

1

Identify, Categorize & Prioritize 

New Req. and Functions 

imported by COTS (that is, not 

matched to current Req and 

Functions) as an unused 

function.

Software 

Requirements 

Specification

Obtain 

Development 

Documentation

Application & 

COTS

Assign SHRI to COTS 

Software Functions and 

COTS Requirements (used 

or unused) and COTS 

interfaces

Hazard Tracking System

Match ALL COTS 

Requirements and Functions to 

Current SW Requirements and 

Functions, and Hazard Causal 

Factors

*Review COTS product history for 

similarity, previous level of rigor, and 

hazard(s). Note previous system-level 

interlocks used to lower level of rigor.

Assign updated COTS level of rigor 

based on highest risk thread or on 

highest risk of unused COTS function 

(with or w/o mitigation or test or 

regression)

Assign interface level of rigor the 

same way.

*COTS history often not

available, nor hazard(s), and
may require reverse engineering

And special data handling of

Intellectual property (IP), i.e., costs

CI

2

Interface 

Requirements 

Specification

CI

2A

Supplier Data 

Sheets

COTS Application 

History

Note: This is a Parallel Process with System Software 

Hazard Analysis

SRCA
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

DI

2

All COTS 

(used and 

unused) 

Addressed in 

SHA and IHA

?

N

Y

Develop 

Mitigation 

Requirements 

(include monitor 

of unused 

functions), update 

generics, and 

Identify 

Verification and 

Regression Tests

Confirm level of 

rigor equates to 

assigned risk index

Analyze Functional and 

Behavioral Characteristics of 

both used and unused 

COTS Functions in ALL 

System Modes. Develop risk 

mitigations (“wrappers”, fault 

tolerance, etc.). Develop 

Regression Tests to assure 

Safety Risk Level is 

adequate,  including COTS 

behavior during System 

Modes and Mode 

Transitions, and at the  

Operator Interface

Analyze “dead code”, 

“unactivated options”, 

inserted test faults, etc. not 

used in this application of 

COTS

Identify,

Categorize & 

Prioritize 

Hazard 

Causal 

Factors and 

interfaces; 

confirm SHA 

and IHA 

levels of rigor 

are the same.

CI

2A

Hazard Tracking System

CI

2

Tool Suite 

available 

to modify 

COTS

N

Identify necessary

Changes to COTS 

Products (no longer 

COTS if modified), COTS 

interfaces, or “wrappers”, 

to Mitigate Potential 

Causal Factors in COTS

Y

TQ

1

COTS INTEROPERABILITY HAZARD ANALYSIS (2 of 2)

Note: This is a Parallel Process with System Software 

Hazard Analysis

SRCA

Provide Input to  (CDR) 

Safety Assessment 

(SAR) and to COTS 

buy/refresh criteria

Hazard Analysis Update 

(e.g., SHA, SSHA, IHA) SR

2a
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

DESIGN & IMPLEMENTATION  HAZARD ANALYSIS (1 of 3)

DI

2

DI

1A
DI

1

Conduct 

Subsystem Hazard 

Analysis

(software SSHA, 

display SSHA, etc.)

Hazard Tracking System

SRCA

Determine 

Software Rigor 

based on SHRI and 

Conduct Required 

Analyses

Software Design 

Documents

Develop 

Software Design 

Specification

All Hazards in 

design sufficiently 

mitigated by 

Requirements, 
including generics

Derive New 

Requirement (s)

New 

Requirements 

Satisfy 

Mitigation

N

N Y

Y

Create System 

and High Level 

SW Design

Select & Integrate 

COTS/NDI Code 

into System 

Design

Note Hazard causal factors 

Allocated to and caused by 

COTS/NDI used and 

unused functions

Determine 

Software Rigor 

based on SHRI / 

Conduct 

Required 

Analysis

Follow COTS 

interoperability 

processes

Note-May require 

system hardware 

changes

DI

2A
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

DI

2A

DI

1B

DI

1A

Conduct System 

Hazard Analysis

(SHA for 

network, 

operator, etc.)

Hazard Tracking System

New 

Requirements 

Satisfy 

Mitigation

N

N Y

SRCA

CDR

Develop 

Interface Design 

Specifications

Interface Design 

Specifications

Review 

Authority 

Concur 

Progress

DI

2B

Develop 

CDR Safety 

Assessment

Y

Y

N

RA 

CDR

Determine 

Software Rigor 

based on SHRI 

and Conduct 

Required 

Analysis

Select & Integrate 

COTS/NDI Code 

into Interface 

Design

DI

2

Note Hazard causal factors 

Allocated to and caused by 

COTS/NDI used and 
unused functions

Determine 

Software Rigor 

based on SHRI 

and Conduct 

Required 

Analysis

Follow COTS 
interoperability 

processes

DESIGN & IMPLEMENTATION  HAZARD ANALYSIS (2 of 3)

DI

1

All Hazards 

sufficiently 

mitigated by 
Interface and 

generic  

Requirements

Derive New 

Requirement (s)

CDR Safety 

Assessment
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

DI

2B

ST

2
DI

1B

Conduct 

Operating & 

Support Hazard 

Analysis

(O&SHA)

-------------

Review Hazards 

against 

documentation 

(Safety Note(s), 

Warnings, 

Cautions, 

Advisories, 

Workarounds, 

etc…)

Hazard Tracking System

Develop 

Software 

Safety Test 

Cases / Define 

Verification 

Criteria

Develop 

TRR(s) per 

Build, Fix, 

etc.

All Hazards 

Addressed by 

Documentation

New 

Documentation 
Mitigate 

Hazards

N

N

Y

Y

SRCA

Manuals

Training Curriculum

Simulator, Simulations

DESIGN & IMPLEMENTATION  HAZARD ANALYSIS (3 of 3)

Develop Operating & 

Support 

Documentation

Requirements 

Change

Required

Assess impact of 

accumulation of 

workarounds

(missing, erroneous, 

conflicting, ambiguous, 

etc.)

Modify 

Documentation

N

Y

DI

2A
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

SOFTWARE TESTING & VALIDATION (1 of 2)

ST

2

ST

1A
ST

1

Hazard Tracking System

ST

2A

Anomalies 

Detected

N

TRE

Conduct Software 

Unit Testing

Conduct Software 

Configuration 

Item Testing

Conduct Software 

Integration 

Testing

Conduct System 

Integration 

Testing

TRE TRE TRR/TRE

Anomalies 

Detected

Anomalies 

Detected

Anomalies 

Detected

N N N N

Y

Y

Y Y Y

DR

1

DR

1
DR

1

DR

1

DR

1

SRCA

Review Safety Test 

Results for 

expected results.

Review SPRs, 

TPRs, TARs, etc 

for safety 

anomalies

Safety 

Anomalies 

Detected
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

ST

2A

CT

1AA

ST

1A

Hazard Tracking System

Anomalies 

Detected

TRR

Conduct Formal 

Qualification 

Testing

N

Y

Review Safety Test 

Results for 

expected results.

Review SPRs, 

TPRs, TARs, etc 

for safety 

anomalies

Code/Build 

Release

DR

1

SOFTWARE TESTING & VALIDATION (2 of 2)

Code 

Acceptable 
to Release

Y

N

CT

2

Review 

Authority 
Concur With 

Release To 

Test

Y

N

Safety Review 

Required Prior 
To Customer 

Testing

Y

Update Safety 

Assessment for 

Test Event

N

Customer 

Integration 

Testing 
Required

Y

CT

1A

Program Lifecycle/System Development Activities/Milestones

Software Safety Process

N

Safety Assessment 

Update

(SHA and Test Event)

Complete Assigned 

RA Action Items
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

DR

1

Analyze test 

setup and 

procedures, test 

environment

Correct test setup 

and procedures, 

rerun test

Anomaly 

corrected

Unacceptable

/Undesirable

Safety 
Anomaly

Investigate possible causal 

factors (e.g., requirements, 

design, code, etc.)

Document Safety 

Risk

Hazard Tracking System

return

Anomaly 

Cause 

Identified
DR

2

DR

3

Y

N

Y

Y
Y

N

N N

DEFECT RESOLUTION (1 of 2)

Are Safety 
Issues 

Associated 

With 

Correction

Y

N

TQ

1

Anomaly 
Cause 

Identified
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

DR

2

Analyze 

Development Tool 

Suite, Compiler, 

build link list, etc.

Analyze Proposed 

Changes for 

potential safety 

impact

Potential 

Anomaly 

Cause 

Identified

Correct anomaly 

cause, recompile 

source code, 

rerun test

RT

1

RT

1

Hazard Tracking System

Y

N
DR

1

Change 

Request 

Approved

DR

3

Develop Change 

proposal

Analyze Proposed Changes for 

new hazards, develop 

mitigations, update hazard 

analysis(es)

Implement 

change in source 

code
RT

1

Y

N

DEFECT RESOLUTION (2 of 2)

SF

2
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

Identify safety related aspects of 

modified code and add to core 

safety functions to be maintained

RT

1

If required, develop 

tests and procedures 

to verify safety 

related functionality

Develop tests and 

procedures to verify 

essential functionality 

Identify essential functionality in 

unchanged code and changes 

caused by modified code

Execute 

regression tests ST

2A

REGRESSION TESTING (1 of 1)

Identify change(s) to requirements 

made by modified code

If required, develop 

tests and procedures 

to verify related 

functionality

Identify safety related data created 

for or used by the modified code 

and add to core safety functions to 

be maintained

If required, develop 

tests and procedures 

to verify safety 

related functionality
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

CERTIFICATION (1 of 2)

CT

2

CT

1AA

Hazard Tracking System

CT

2A

TRR

Conduct Customer 

Integration Testing

(System Integration)

DR

1

Review Safety Test 

Results for 

expected results.

Review SPRs, 

TPRs, TARs, etc 

for hazards

Unacceptable 
Anomalies 

Detected

N

Y

Document 

Safety Risk

DR

1
N

Y

CT

1B

Document 

Evidence of 

Compliance

Develop Safety 

Assessment 

Report/ Safety 

Case

Updated Safety 

Assessment 

Report/ Safety 

Case

Operational 

Evaluation

(as 

required)

CT

1A

Document Defect 

for Future 

Resolution

Program Lifecycle/System Development Activities/Milestones

Software Safety Process

Obtain Residual 

Risk Acceptance 

from proper 

authority

System SW 

Acceptable 
For Release

 



ANNEX F to 
AOP-52 

 

F-34 
Edition B Version 1 

 

33

Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

CERTIFICATION (2 of 2)

CT

2A

Hazard Tracking System

N

Y

Updated Safety 

Assessment

MS

Safety Review 

Authority 

Concur with 

Deployment

Complete 

Assigned Action 

Items

Discipline/ 

Focus Area 

Certification

(ilities)

System/Software

Safety Certification 

Recommendation

System/ 

Software 

Certification

Main Process

End 

Fleet Introduction

FA

1

Fleet Anomaly 

Reports

IOC

CT

1B

Includes Process Compliance 

Assessment, Product Compliance 

Assessment & Residual Risk 

Review and Concurrence

Operating & 

Support 

Procedures

Physical 

Configuration 

Audit

Capabilities & 

Limitations

Operational 

Evaluation 

Test Reports

FRP FOC

Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process
MS 
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

TOOL & ENVIRONMENT QUALIFICATION (TAEQ) (1 of 1)

TQ

1

Program Lifecycle/System Development Activities/Milestones

ReturnAnalyze TAE 

Suite

TAE 

Previously 

Qualified

Y

N Conduct TAE 

Qualification

TAE Meet  

Qualification 

& Safety 

Requirements

Fix or Select 

Alternate TAE 
N Y

34

Document 

Qualification 

Status in 

Safety Case

Enter Tool & 

Environment 

Qualification Status 

into CM

Develop TAE 

Qualification Plan

Establish safety 

requirements 

specific to TAEQ, 

including generics

Review results of 

TAEQ to ensure the 

qualifications meet 

intent of safety 

requirements

TAE Meet 

Safety

Requirements

N

Y

Software Safety Process

Note: This process should be invoked for any 

tool/environment used to document or validate software 

safety requirements.
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

SUSTAINED ENGINEERING (1 of 1)

Enter Process No 

Later Than:

35

Software Safety Process

Perform Safety 

Impact Analysis

Impact Analysis 

Documentation of 

Results

Major Computer 

Program Update 

with No Safety 

Impact

Software 

Testing and 

Validation

ST

2

Minor Computer 

Program Update 

with No Safety 

Impact

Regression 

Testing
RT

1

Minor Computer 

Program Update 

with Safety 

Impact

Design & 

Implementation 

Hazard Analysis

DI

2

Major Computer 

Program Update 

with Safety 

Impact

System 

Functional 

Hazard Analysis

SF

2

Minor Design 

Modification via 

ECP / PIP

Design & 

Implementation 

Hazard Analysis

DI

2

Major Design 

Modification via 

ECP / PIP

System 

Definition & 

Safety Planning

SD

2a

Technology 

Refresh / 

Insertion

Technology 

Refresh
TR

1

SE

1

Operational 

Environment 

Change

Changes In 

Operational 

Environment

OE

1
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

FA

1

Analyze 

operational 

environment 

procedures, 

equipment

Possible 

Anomaly 

Cause 

Identified

Duplicate 

operational 

environment,  

execute test

Anomaly 

replicated

Y

N

N Y

DR

1

Significant 
Safety 

Anomaly

Document Safety 

Risk

Hazard Tracking System

Y

N

FLEET ANOMOLY REPORTING (1 of 1)

Notify Fleet of 

Safety Anomaly
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity

TECHNOLOGY REFRESH (1 of 1)

New Function or 

Capability

COTS 

Operational 

Environment (OE)

COTS hardware 

(Processor, 

memory, network, 

PLD, FPGA, PLC, 

EEPROM, etc.)

Modified Option, 

Operational Use, 

or Configuration

New Language, 

Compiler or 

tool(s)

New Development 

Paradigm (Procedural >> 

OOPS, autogeneration)

Design & 

Implementation 

Hazard Analysis

System 

Functional 

Hazard Analysis

COTS 

Interoperability 

Hazard Analysis

Design & 

Implementation 

Hazard Analysis

System 

Functional 

Hazard Analysis

Design & 

Implementation 

Hazard Analysis

Enter Process At:

37

Software Safety Process

Tool & 

Environment 

Qualification

DI

2

Perform Safety 

Impact Analysis

Impact Analysis 

Documentation of 

Results

SF

2

DI

2

SF

2

TQ

1

DI

2

DI

2

TR

1
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Program Lifecycle/System Development Activities/Milestones/Documentation

Software Safety Process

Software Safety Documentation / Safety Program Milestones

Hazard Tracking Activity
38

Software Safety Process

CHANGES IN OPERATIONAL ENVIRONMENT OR USE (1 of 1)

Identify safety-related 

interface constraints and 

design assumptions 

associated with C&C type 

interface

Identify safety-related 

environmental constraints 

and design assumptions 

related to environment

Identify system level 

hazards associated with 

new operational use or 

application

System 

Functional 

Hazard Analysis

Software 

Testing and 

Validation

Software 

Testing and 

Validation

System 

Functional 

Hazard Analysis

Design & 

Implementation 

Hazard Analysis

Enter Process No 

Later Than:

System 

Functional 

Hazard Analysis

DI

2

SF

2

ST

2

Verify new system 

context maintains 

interface constraints, 

design assumptions

New hazard identified 

with new operational 

use or application

No significant hazards 

associated with 

change in operational 

use or application

Minimal potential 

safety impact 

associated with 

interface

SF

2

ST

2

SF

2

Integration into new 

System of Systems 

Context

New Operational 

Environment:  

Major change

New Operational 

Environment: Minor 

Change

New operational 

use or application: 

Major change

New operational 

use or application: 

minor change

Integration with 

new higher-level 

(e.g. Command 

and Control) 

system

Identify safety-related 

interface constraints and 

design assumptions 

associated with interface

Potential safety 

impact: Verify new 

system interface 

maintains interface 

constraints, design 

assumptions

Perform Safety 

Impact 

Analysis

Impact Analysis 

Documentation of 

Results

OE

1
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Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and in-depth safety-specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

SHRI 1

SHRI 2

SHRI 3

SHRI 4

Level of Rigor Determination
Software Criticality Matrix

39Hyperlinks: SR

2

CI

2

DI

2

DI

2A
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(SHRI = 1)

40

SAFETY 

CRITICAL 

FUNCTIONS

TOP LEVEL 

MISHAPS

REQUIREMENTS 

& DESIGN 

CHANGES

APPLICABLE 

STANDARDS 

(e.g., STANAG 

4404)

PERFORM 

REQUIREMENTS 

ANALYSIS

LESSONS 

LEARNED

INPUT

DEVELOP TEST 

PLAN & 

PROCEDURES

DESIGN 

ANALYSIS

CODE ANALYSIS

OPERATIONS & 

TEST ANALYSISREQUIREMENTS

TRACE MATRIX / SRCA

• Software Safety Requirements

• Criticality Matrix

• Traceability Matrix

• Preliminary Hazard Analysis

• Safety Requirements / Criteria Analysis

• Hazard Control Records

• Computer Program Change Requests

• Criticality Matrix Update

• Traceability Matrix Update

• Safety Test Requirements

• Subsystem Hazard Analysis

• Hazard Control Records

• Computer Program Change Requests

EXTENT OF ANALYSIS POSSIBLE PRODUCTS

• Criticality Matrix Update

• Traceability Matrix Update

• Subsystem Hazard Analysis Update

• System Hazard Analysis

• Hazard Control Records

• Computer Program Change Requests

• Systems Hazard Analyses with 

interfaces and Systems-of-systems

•Operating and Support Hazard Analysis

• Safety Assessment Report

• Safety Verification Report

• Hazard Control Records

• Computer Program Change Requests

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

SHRI 1

SHRI 2

SHRI 3

SHRI 4

Software Criticality Matrix

Hyperlinks: SR

2

CI

2

DI

2

DI

2A
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Level of Rigor Determination 

(SHRI = 2)

41

SAFETY 

CRITICAL 

FUNCTIONS

TOP LEVEL 

MISHAPS

REQUIREMENTS 

& DESIGN 

CHANGES

APPLICABLE 

STANDARDS 

(e.g., STANAG 

4404)

PERFORM 

REQUIREMENTS 

ANALYSIS

LESSONS 

LEARNED

DEVELOP TEST 

PLAN & 

PROCEDURES

DESIGN 

ANALYSIS

OPERATIONS & 

TEST ANALYSIS

• Software Safety Requirements

• Criticality Matrix

• Traceability Matrix

• Preliminary Hazard Analysis

• Safety Requirements / Criteria Analysis

• Hazard Control Records

• Computer Program Change Requests

• Criticality Matrix Update

• Traceability Matrix Update

• Safety Test Requirements

• Subsystem Hazard Analysis

• Hazard Control Records

• Computer Program Change Requests

• System Hazard Analysis 

• Operating and Support Hazard Analysis

• Safety Assessment Report

• Safety Verification Report

• Hazard Control Records

• Computer Program Change Requests

INPUT EXTENT OF ANALYSIS POSSIBLE PRODUCTS

REQUIREMENTS

TRACE MATRIX / SRCA

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

SHRI 1

SHRI 2

SHRI 3

SHRI 4

Software Criticality Matrix

Hyperlinks: SR

2

CI

2

DI

2

DI

2A
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Level of Rigor Determination 

(SHRI = 3)

42

SAFETY 

CRITICAL 

FUNCTIONS

TOP LEVEL 

MISHAPS

REQUIREMENTS 

& DESIGN 

CHANGES

APPLICABLE 

STANDARDS 

(e.g., STANAG 

4404)

LESSONS 

LEARNED

INPUT

DEVELOP TEST 

PLAN & 

PROCEDURES

DESIGN 

ANALYSIS

OPERATIONS & 

TEST ANALYSIS

• Preliminary Hazard Analysis

• Safety Test Requirements

• Subsystem Hazard Analysis

• Hazard Control Records

• Computer Program Change Requests

EXTENT OF ANALYSIS POSSIBLE PRODUCTS

• System Hazard Analysis 

• Operating and Support Hazard Analysis

• Safety Assessment Report

• Safety Verification Report

• Hazard Control Records

• Computer Program Change Requests

REQUIREMENTS

TRACE MATRIX / SRCA

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

SHRI 1

SHRI 2

SHRI 3

SHRI 4

Software Criticality Matrix

Hyperlinks: SR

2

CI

2

DI

2

DI

2A

 



ANNEX F to 
AOP-52 

 

F-44 
Edition B Version 1 

 

Level of Rigor Determination 

(SHRI = 4)

43

SAFETY 

CRITICAL 

FUNCTIONS

TOP LEVEL 

MISHAPS

REQUIREMENTS 

& DESIGN 

CHANGES

APPLICABLE 

STANDARDS 

(e.g., STANAG 

4404)

LESSONS 

LEARNED

INPUT

DEVELOP TEST 

PLAN & 

PROCEDURES

OPERATIONS & 

TEST ANALYSIS

EXTENT OF ANALYSIS POSSIBLE PRODUCTS

• System Hazard Analysis 

• Operating and Support Hazard Analysis

• Safety Assessment Report

• Safety Verification Report

• Hazard Control Records

• Computer Program Change Requests

REQUIREMENTS

TRACE MATRIX / SRCA

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

Low Risk – Requires high level safety testing

Medium Risk – Requires requirements analysis & safety specific testing

Serious Risk – Requires requirements analysis, design analysis & in-depth safety 

specific testing

High Risk – Safety verification requires requirements analysis, design analysis, 

code analysis and safety specific testing

No Safety Analysis Required.No Safety Involvement

SHRI 4SHRI 4SHRI 3SHRI 3Influential

SHRI 4SHRI 4SHRI 3SHRI 2
Semi-Autonomous with 

Redundant Back-Up

SHRI 4SHRI 3SHRI 2SHRI 1Semi-Autonomous

SHRI 4SHRI 2SHRI 1SHRI 1Autonomous

NegligibleMarginalCriticalCatastrophic

SOFTWARE CONTROL 
CATEGORY

MISHAP SEVERITY POTENTIAL

SHRI 1

SHRI 2

SHRI 3

SHRI 4

Software Criticality Matrix

Hyperlinks: SR

2

CI

2

DI

2

DI

2A
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