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Abstract. The Domain Name System (DNS) is vital for access to infor-
mation on the Internet. This makes it a target for attackers whose aim is
to suppress free access to information. This paper introduces the design
and implementation of the GNU Name System (GNS), a fully decen-
tralized and censorship-resistant name system. GNS provides a privacy-
enhancing alternative to DNS which preserves the desirable property
of memorable names. Due to its design, it can also double as a partial
replacement of public key infrastructures, such as X.509. The design of
GNS incorporates the capability to integrate and coexist with DNS. GNS
is based on the principle of a petname system and builds on ideas from the
Simple Distributed Security Infrastructure (SDSI), addressing a central
issue with the decentralized mapping of secure identifiers to memorable
names: namely the impossibility of providing a global, secure and mem-
orable mapping without a trusted authority. GNS uses the transitivity
in the SDSI design to replace the trusted root with secure delegation
of authority, thus making petnames useful to other users while operat-
ing under a very strong adversary model. In addition to describing the
GNS design, we also discuss some of the mechanisms that are needed to
smoothly integrate GNS with existing processes and procedures in Web
browsers. Specifically, we show how GNS is able to transparently sup-
port many assumptions that the existing HTTP(S) infrastructure makes
about globally unique names.

1 Introduction

The Domain Name System (DNS) is a unique distributed database and a vital
service for most Internet applications. While DNS is distributed, it relies on cen-
tralized, trusted registrars to provide globally unique names. As the awareness
of the central role DNS plays on the Internet rises, various institutions are us-
ing their power (including legal means) to engage in attacks on the DNS, thus
threatening the global availability and integrity of information on the Web [1].
This danger has also been recognized by the European Parliament, which has
emphasized the importance of maintaining free access to information on the Web
in a resolution [2]. Tampering with the DNS can cause collateral damage, too: a
recent study [3] showed that Chinese censorship of the DNS has had worldwide
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effects on name resolution. At the same time, we observe that the Internet’s im-
portance for free communication has dramatically risen: the events of the Green
Revolution in Iran and the Arab Spring have demonstrated this. Dissidents need
communication channels that provide the easy linking to information that is at
the Web’s core. This calls for a censorship-resistant name system which ensures
that names of Internet servers can always be resolved correctly.

DNS was not designed with security as a goal. This makes it very vulnera-
ble, especially to attackers that have the technical capabilities of an entire nation
state at their disposal. The follow are some of the most severe weaknesses that the
DNS exhibits even in the presence of the DNS Security Extensions (DNSSEC).
DNSSEC [4] was designed to provide data integrity and origin authentication
to DNS. DNSSEC maintains the hierarchical structure of DNS and thus places
extensive trust in the root zone and TLD operators. More importantly, DNSSEC
fails to provide any level of query privacy [5]: the content of DNS queries and
replies can be read by any adversary with access to the communication chan-
nel and can subsequently be correlated with users. On a technical level, current
DNSSEC deployment suffers from the use of the RSA crypto system, which leads
to large key sizes. This can result in message sizes that exceed size restrictions
on DNS packets, leading to additional vulnerabilities [6]. Finally, DNSSEC is
not designed to withstand legal attacks. Depending on their reach, governments,
corporations and their lobbies can legally compel operators of DNS authorities
to manipulate entries and certify the changes, and Soghoian and Stamm have
warned that similar actions might happen for X.509 server certificates [7]. There
can also be collateral damage: DNSSEC cannot prevent problems such as the re-
cent brief disappearance of thousands of legitimate domains during the execution
of established censorship procedures, in which the Danish police accidentally re-
quested the removal of 8,000 (legitimate) domain names from DNS and providers
complied. The underlying attack vector in these cases is the same: names in the
DNS have owners, and ownership can be taken away by different means.

This paper presents the GNU Name System (GNS), a censorship-resistant,
privacy-preserving and decentralized name system designed to provide a secure
alternative to DNS, especially when censorship or manipulation is encountered.
As GNS can bind names to any kind of cryptographically secured token, it
can double in some respects as an alternative to some of today’s Public Key
Infrastructures, in particular X.509 for the Web.

The foundation of the GNS system is a petname system [8], where each
individual user may freely and securely map names to values. In a petname sys-
tem, each user chooses a nickname as his preferred (but not necessarily globally
unique) name. Upon introduction, users adopt the nickname by default as a label
to refer to a new acquaintance; however, they are free to select and assign any
petname of their choice in place of—or, in addition to—the nickname. Petnames
thus reflect the personal choice of the individual using a name, while nicknames
are the preferred name of the user that is being identified.

The second central idea is to provide users with the ability to securely del-
egate control over a subdomain to other users. This simple yet powerful mech-
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anism is borrowed from the design of SDSI/SPKI. With the combination of
petname system and delegation, GNS does not require nor depend on a central-
ized or trusted authority, making the system robust against censorship attempts.
Decentralization and additional censorship resistance is achieved by using a dis-
tributed hash table (DHT) to enable the distribution and resolution of key-value
mappings. In theory, any DHT can be used. However, depending on the prop-
erties of the DHT in question, varying degrees of censorship resistance will be
the result. As such, the choice of the DHT is crucial to the system. Finally,
GNS is privacy-preserving since both key-value mappings as well as queries and
responses are encrypted such that an active and participating adversary can at
best perform a confirmation attack, and can otherwise only learn the expiration
time of a response.

While this combination yields a secure name system, it also violates a fun-
damental assumption prevailing on the Web, namely that names are globally
unique. Thus, together with the working implementation of GNS1, another key
contribution of our work is the construction of system components to enable the
use of GNS in the context of the Web. We provide ready-to-use components to
enable existing Web applications to use GNS (and DNS in parallel, if desired)
without any prior modifications and knowledge.

As a alternative public key infrastructure, GNS can also be combined with
existing PKI approaches (such as X.509, DANE, Tor’s “.onion” or the Web of
Trust) to either provide memorable names or alternative means for verification
with increased trust agility. In combination with TLSA records, GNS can replace
existing X.509 certification authorities as described in Appendix A.3.

2 Background

In order to present GNS, we must first discuss technical background necessary
to understand our design. We define the adversary model that GNS addresses
and then provide some brief background on DNS, DNSSEC, SDSI/SPKI and
distributed storage in P2P Networks.

2.1 Adversary Model

The adversary model used in this work is modeled after a state trying to limit
access to information without causing excessive damage to its own economy. The
goal of the adversary is to force name resolution to change in the respective name
system, by either making the resolution fail or by changing the value to which
an existing name (not originally under the control of the adversary) maps.

We allow the adversary to participate in any role in the name system. Note
that this excludes the possibility of a global trusted third party. In addition,
the adversary is allowed to assume multiple identities. We impose no bound
on the fraction of collaborating malicious participants, and we assume that the

1 Available under: https://gnunet.org/gns

https://gnunet.org/gns
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adversary can take control of names using judicial and executive powers (for
example by confiscating names or forcing third parties to misdirect users to
adversary-controlled impostor sites). Computationally, the adversary is allowed
to have more resources than all benign users combined.

The adversary may directly compromise the computers of individual users;
for the security of the system as a whole, we only require that the impact of
such attacks remains localized. The rationale for being able to make such an
assumption is that the economic and political cost of such tailored methods is
very high, even for a state actor. Similarly, the adversary cannot prevent the
use of cryptography, free software, or encrypted network communication. The
adversary is assumed to be unable to break cryptographic primitives. As far as
network communication is concerned, we assume that communication between
benign participants generally passes unhindered by the adversary.

Zooko’s triangle [9], an insightful conjecture that is often used to define the
possible design space of name systems, has important implications under this
adversary model: it means that no name system can provide globally unique
and memorable names and be secure [10]. It should be noted that in weaker
adversary models, these implications do not hold [11].

2.2 DNS and DNSSEC

The Domain Name System is an essential part of the Internet as it provides
mappings from host names to IP addresses, providing memorable names for
users. DNS is hierarchical and stores name-value mappings in so-called records
in a distributed database. A record consists of a name, type, value and expiration
time. Names consist of labels delimited by dots. The root of the hierarchy is the
empty label, and the right-most label in a name is known as the top-level domain
(TLD). Names with a common suffix are said to be in the same domain. The
record type specifies what kind of value is associated with a name, and a name
can have many records with various types. The most common record types are
“A” records that map names to IPv4 addresses.

The Domain Name System database is partitioned into zones. A zone is a
portion of the namespace where the administrative responsibility belongs to one
particular authority. A zone has unrestricted autonomy to manage the records
in one or more domains. Very importantly, an authority can delegate responsi-
bility for particular subdomains to other authorities. This is achieved with an
“NS” record, whose value is the name of a DNS server of the authority for the
subdomain. The root zone is the zone corresponding to the empty label. It is
managed by the Internet Assigned Numbers Authority (IANA), which is cur-
rently operated by the Internet Corporation for Assigned Names and Numbers
(ICANN). The National Telecommunications and Information Administration
(NTIA), an agency of the United States Department of Commerce, assumes the
(legal) authority over the root zone. The root zone contains “NS” records which
specify names for the authoritative DNS servers for all TLDs.

The Domain Name System Security Extensions add integrity protection and
data origin authentication for DNS records. DNSSEC does not add confiden-
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tiality nor denial-of-service protection. It adds record types for public keys
(“DNSKEY”) and for signatures on resource records (“RRSIG”). DNSSEC re-
lies on a hierarchical public-key infrastructure in which all DNSSEC operators
must participate. It establishes a trust chain from a zone’s authoritative server
to the trust anchor, which is associated with the root zone. This association
is achieved by distributing the root zone’s public key out-of-band with, for ex-
ample, operating systems. The trust chains established by DNSSEC mirror the
zone delegations of DNS. With TLD operators typically subjected to the same
jurisdiction as the domain operators in their zone, these trust chains are at risk
of attacks using legal means.

2.3 SDSI/SPKI

SDSI/SPKI is a merger of the Simple Distributed Security Infrastructure (SDSI)
and the Simple Public Key Infrastructure (SPKI) [12]. It defines a public-key
infrastructure that abandons the concept of memorable global names and does
not require certification authorities. SDSI/SPKI has the central notion of prin-
cipals, which are globally unique public keys. These serve as namespaces within
which local names are defined. A name in SDSI/SPKI is a public key and a local
identifier, e.g. K−Alice. This name defines the identifier Alice, which is only
valid in the namespace of key K. Thus, K1−Alice and K2−Alice are different
names. SDSI/SPKI allows namespaces to be linked, which results in compound
names: KCarol−Bob−Alice is Carol’s name for the entity which Bob refers to
as KBob−Alice. Bob himself is identified by Carol as KCarol−Bob. SDSI/SPKI
allows assertions about names by issuing certificates2. A name cert is a tuple
of (issuer public key, identifier, subject, validity), together with a signature by
the issuer’s private key. The subject is usually the key to which a name maps.
Compound names are expressed as certificate chains.

GNS applies these key ideas from SDSI/SPKI to a name resolution mech-
anism in order to provide an alternative to DNS. The transitivity at the core
of SDSI/SPKI is found in GNS as delegation of authority over a name. In both
systems, name resolution starts with a lookup in the local namespace.

2.4 Distributed Storage in P2P Overlay Networks

In peer-to-peer systems, it is common to use a DHT to exchange data with other
participants in the overlay. A DHT creates a decentralized key/value store to
make mappings available to other users and to resolve mappings not available
locally. GNS uses a DHT to make local namespace and delegation information
available to other users and to resolve mappings from other users. As mentioned
previously, the choice of DHT strongly affects the availability of GNS data.

2 Ultimately, SDSI/SPKI allows to create authorizations based on certificates and is
a flexible infrastructure in general, but we will focus only on the names here.
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3 Design of the GNU Name System

In the following, we describe the core concepts of GNS that are relevant to
users. The cryptographic protocol used to ensure query privacy is explained in
Section 4, and the protocol for key revocation in Section A.5.

3.1 Names, Zones and Delegations

GNS employs the same notion of names as SDSI/SPKI: principals are public
keys, and names are only valid in the local namespace defined by that key.
Namespaces constitute the zones in GNS: a zone is a public-private key pair and
a set of records. GNS records consist of a label, type, value and expiration time.
Labels have the same syntax as in DNS; they are equivalent to local identifiers
in SDSI/SPKI. Names in GNS consists of a sequence of labels, which identifies
a delegation path. Cryptography in GNS is based on elliptic curve cryptography
and uses the ECDSA signature scheme with Curve25519 [13].

We realise a petname system by having each user manage his own zones,
including, in particular, his own personal master zone.3 Users can freely manage
mappings for memorable names in their zones. Most importantly, they can del-
egate control over a subdomain to another user (which is locally known under
the petname assigned to him). To this end, a special record type is used (see
Section 3.5). This establishes the aforementioned delegation path. Each user uses
his master zone as the starting point for lookups in lieu of the root zone from
DNS. For interoperability with DNS, domain names in GNS use the pseudo-
TLD “.gnu”. “.gnu” refers to the GNS master zones (i. e. the starting point of
the resolution). Note that names in the “.gnu” pseudo-TLD are always relative.

Publishing delegations in the DHT allows transitive resolution by simply
following the delegation chains. Records can be private or public, and public
records are made available to other users via a DHT. Record validity is estab-
lished using signatures and controlled using expiration values. The records of a
zone are stored in a namestore database on a machine under the control of the
zone owner.

We illustrate the abstract description above with the example shown in Fig-
ure 1. The figure shows the paths Alice’s GNS resolver would follow to resolve
the names “www.dave.carol.gnu” and “www.buddy.bob.gnu”, both of which re-
fer to Dave’s server at IP “192.0.2.1”. For Carol, Dave’s server would simply be
“www.dave.gnu”. It is known to Alice only because both Bob and Carol have
published public records indicating Dave, and Alice can resolve the respective
delegation chain via her known contacts. Recall that zones are identified using
public keys and records must be cryptographically signed to ensure authenticity
and integrity.

3 Each user can create any number of zones, but must designate one as the master
zone.
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Bob 
(TX12)

buddy, PKEY, L1G6

Carol
(QXDA)

dave, PKEY, L1G6

Alice
(RTA7)

bob, PKEY, TX12
carol, PKEY, QXDA

Dave 
(L1G6)

www, A, 192.0.2.1

.bob
.buddy

.dave
.carol

Fig. 1. Name resolution graph in GNS. Each user is shown with a fingerprint of his
master zone and the public records from this zone in the format name, type, value.

3.2 Zone Management with Nicknames and Petnames

Suppose Alice runs a web server and wants to make it available with GNS. In the
beginning she sets up her master zone using GNS. After the public-private key
pair is generated, Alice can create a revocation notice to be able to immediately
revoke their GNS zone in case she gets compromised. Suppose Alice wants to
propose that her preferred nickname is “carol” to other users. She therefore uses
the new “NICK” record that GNS provides. For her web server, she creates an
appropriate public “A” record under the name “www”. This “A” record is the
same as in DNS. To make it resolvable by other users, this record is marked as
public and published in the DHT.

Now suppose we have a second user, Bob. He performs the same setup on his
system, except that his preferred nickname is just “bob”. Bob gets to know Alice
in real life and obtains her public key. To be able to contact Alice and access her
web server, he then adds Alice to his zone by adding a new delegation using the
new “PKEY” record. Bob can choose any name for Alice’s zone in his zone. Nev-
ertheless, Bob’s software will default to Alice’s preferences and suggest “carol”,
as long as “carol” has not already been assigned by Bob. This is important as
it gives Alice an incentive to pick a nickname that is (sufficiently) unique to be
available among the users that would delegate to her zone. By adding Alice’s
public key under “carol”, Bob delegates queries to the “*.carol.gnu” subdomain
to Alice. Thus, from Bob’s point of view, Alice’s web server is “www.carol.gnu”.
Note that there is no need for Alice’s nickname “carol” to be globally unique,
they should only not already be in use within Alice’s social group.

3.3 Relative Names for Transitivity of Delegations

Users can delegate control over a subdomain to another user’s zone by indicating
this in a new record, “PKEY”. Suppose Dave is Bob’s friend. Dave has added
a delegation to Bob with a “PKEY” record under the name “buddy”—ignoring
Bob’s preference to be called “bob”. Now suppose Bob wants to put on his
webpage a link to Alice’s webpage. For Bob, Alice’s website is “www.carol.gnu”.
For Dave, Bob website is “buddy.gnu”. Due to delegation, Dave can access Alice’s
website under “www.carol.buddy.gnu”. However, Bob’s website cannot contain
that link: Bob may not even know that he is “buddy” for Dave.
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We solve this issue by having Bob use “www.carol.+” when linking to Al-
ice’s website. Here, the “+” stands for the originating zone. When Dave’s client
encounters “+” at the end of a domain name, it should replace “+” with the
name of the GNS authority of the site of origin. This mechanism is equivalent
to relative URLs, except that it works with hostnames.

3.4 Absolute Names

In GNS, the “.gnu” pseudo-TLD is used to provide secure and memorable names
which are only defined relative to some master zone. However, introducing new
zones into the system ultimately requires the ability to reference a zone by an
absolute identifier, which must correspond to the public key of the zone. To
facilitate dealing with public keys directly, GNS uses the pseudo-TLD “.zkey”,
which indicates that the specified domain name contains the public key of a GNS
zone. As a result, the “.zkey” pseudo-TLD allows users to use secure and globally
unique identifiers. Applications can use the “.zkey” pseudo-TLD to generate a
domain name for a GNS zone for which the user does not (yet) have a memorable
name. A label in the “.zkey” pseudo-TLD is the public key of the zone encoded
within the 63 character limitations for labels imposed by DNS.

3.5 Records in GNS

As GNS is intended to coexist with DNS, most DNS resource records from
[14,15] (e. .g., “A”, “MX”) are used with identical semantics and binary format in
GNS. GNS defines various additional records to support GNS-specific operations.
These records have record type numbers larger than 216 to avoid conflicts with
DNS record types that might be introduced in the future. Details on all record
types supported by our current implementation can be found in our technical
report [16].

4 Query Privacy

To enable other users to look up records of a zone, all public records for a given
label are stored in a cryptographically signed block in the DHT. To maximize
user privacy when using the DHT to look up records, both queries and replies
are encrypted. Let x ∈ Zn be the ECDSA private key for a given zone and
P = xG the respective public key where G is the generator of the elliptic curve.
Let n := |G| and l ∈ Zn be a numeric representation of the label of a set of
records Rl,P . Using

h : = x · l mod n (1)

Ql,P : = H(hG) (2)

Bl,P : = Sh(EHKDF(l,P )Rl,P ), hG (3)

we can then publish Bl,P under Ql,P in the DHT, where Sh represents signing
with the private key h, HKDF is a hash-based key derivation function and E
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represents symmetric encryption based on the derived key. Any peer can validate
the signature (using the public key hG) but not decrypt Bl,P without knowledge
of both l and P . Peers knowing l and P can calculate the query

Ql,P = H(lP ) = H(lxG) = H(hG) (4)

to retrieve Bl,P and then decrypt Rl,P .
Given this scheme, an adversary can only perform a confirmation attack;

if the adversary knows both the public key of the zone and the specific label,
he can perform the same calculations as a peer performing a lookup and, in
this specific case, gain full knowledge about the query and the response. As the
DHT records are public, this attack cannot be prevented. However, users can use
passwords for labels to restrict access to zone information to authorized parties.
The presented scheme ensures that an adversary that is unable to guess both
the zone’s public key and the label cannot determine the label, zone or record
data.

5 Security of GNS

One interesting metric for assessing the security of a system is to look at the size
of the trusted computing base (TCB). In GNS, users explicitly see the trust chain
and thus know if the resolution of a name requires trusting a friend, or also a
friend-of-a-friend, or even friends-of-friends-of-friends—and can thus decide how
much to trust the result. Naturally, the TCB for all names can theoretically
become arbitrarily large—however, given the name length restrictions, for an
individual name it is always less than about 125 entities. The DHT does not
have to be trusted; the worst an adversary can do here is reduce performance
and availability, but not impact integrity or authenticity of the data.

For DNS, the size of the TCB is first of all less obvious. The user may think
that only the operators of the resolvers visible in the name and their local DNS
provider need to be trusted. However, this is far from correct. Names can be
expanded and redirected to other domains using “CNAME” and “DNAME”
records, and resolving the address of the authority from “NS” records may re-
quire resolving again other names. Such “out-of-bailiwick” “NS” records were
identified as one main reason for the collateral damage of DNS censorship by
China [3]. requires correct information from “x.gtld-servers.net” (the author-
ity for “.com”), which requires trusting “X2.gtld-servers.net” (the authority for
“.net”). While the results to these queries are typically cached, the respective
servers must be included in the TCB, as incorrect answers for any of these
queries can change the ultimate result. Thus, in extreme cases, even seemingly
simple DNS lookups may depend on correct answers from over a hundred DNS
zones [17]; thus, with respect to the TCB, the main difference is that DNS is
very good at obscuring the TCB from its users.

In the following, we discuss possible attacks on GNS within our adversary
model. The first thing to note is that as long as the attacker cannot gain direct
control over a user’s computer, the integrity of master zones is preserved. Attacks
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on GNS can thus be classified in two categories: attacks on the network, and
attacks on the delegation mechanism.

Attacks on the network can be staged as Eclipse attacks. The success depends
directly on the DHT. Our choice, R5N , shows a particularly good resistance
against such attacks [18].

Concerning the delegation mechanism, the attacker has the option of tricking
a user into accepting rogue mappings from his own zones. This requires social
engineering. We assume that users of an anti-censorship system will be moti-
vated to carefully check whose mappings they trust. Nevertheless, if the attacker
succeeds, some damage will be done: all users that use this mapping will be af-
fected. The effect thus depends on the “centrality” of the tricked user in the GNS
graph. It is difficult to give estimates here, as the system is not deployed yet. In
order to maximize the effects of his attack, the attacker would have to carry out
his social engineering many times, which is naturally harder. Comparing this to
DNSSEC, we note that even when a compromise has been detected, DNS users
cannot choose whose delegations to follow. In GNS, they can attempt to find
paths in the GNS graph via other contacts. The system that is most similar and
in deployment is the OpenPGP Web of Trust. Ulrich et al. found that the Web
of Trust has developed a strong mesh structure with many alternative paths [19].
If GNS develops a similar structure, users would greatly benefit.

Finally, censorship does not stop with the name system, and for a complete
solution we thus need to consider censorship at lower layers. For example, an
adversary might block the IP address of the server hosting the critical informa-
tion. GNS is not intended as an answer to this kind of censorship. Instead, we
advocate using tools like Tor [20] to circumvent the blockade.

6 Related Work

Timeline-based systems in the style of Bitcoin [21] have been proposed to create
a global, secure and memorable name system [11]. Here, the idea is to create a
single, globally accessible timeline of name registrations that is append-only. In
the Namecoin system [22], a user needs to expend computational power on find-
ing (partial) hash collisions in order to be able to append a new mapping. This
is supposed to make it computationally infeasible to produce an alternative valid
timeline. It also limits the rate of registrations. However, the Namecoin system
is not strong enough in our adversary model, as the attacker has more computa-
tional power than all other participants, which allows him to create alternative
valid timelines. Note that our adversary model is not a far-fetched assumption
in this context: it is conceivable that a nation-state can muster more resources
than the small number of other entities that participate in the system, especially
for systems used as an alternative in places where censorship is encountered or
during the bootstrapping of the network, when only a small number of users
participate.

The first practical system that improves confidentiality with respect to DNS
queries and responses was DNSCurve [5]. In DNSCurve, session keys are ex-
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changed using Curve25519 [13] and then used to provide authentication and en-
cryption between caches and servers. DNSCurve improves the existing Domain
Name System with confidentiality and integrity, but the fundamental issues of
DNS with respect to the adversary trying to modify DNS mapping is not within
its focus.

GNS has much in common with the name system in the Unmanaged Internet
Architecture (UIA) [23], as both systems are inspired by SDSI. In UIA, users
can define personal names bound to self-certifying cryptographic identities and
can access namespaces of other users. UIA’s focus is on universal connectivity
between a user’s many devices. With respect to naming, UIA takes a clean-
slate approach and simply assumes that UIA applications use the UIA client
library to contact the UIA name daemon and thus understand the implications
of relative names. In contrast, GNS was designed to interoperate with DNS as
much as possible, and we have specifically considered what is needed to make
it work as much as possible with the existing Internet. In terms of censorship
resistance, both systems inherit basic security properties from SDSI with respect
to correctness.

7 Summary and Conclusion

GNS is a censorship resistant, privacy-enhancing name system which avoids the
use of trusted third parties. GNS provides names that are memorable, secure
and transitive. Placing names in the context of each individual user eliminates
ownership and effectively eliminates the possibility of executive or judicial control
over these names.

GNS can be operated alongside DNS and begins to offer its advantages as
soon as two parties using the system interact, enabling users to choose GNS or
DNS based on their personal trade-off between censorship-resistance and conve-
nience.

GNS and the related tools are available to the public as part of the GNUnet
peer-to-peer framework and are free software under the GNU General Public
License. The current implementation includes all of the features described in
this paper. In the future, we will begin deployment to actual users and perform
experiments to find out which usability problems arise with GNS.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under ENP GR

3688/1-1. We thank Kenneth Almquist, Jacob Appelbaum, Daniel Bernstein, Ludovic

Courtès, Tanja Lange, Luke Leighton, Simon Josefsson, Nikos Mavrogiannopoulos, On-
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A Special Features

This appendix describes some additional special features in GNS that are used
to deal with corner cases that a practical system needs to deal with, but that
might only be relevant for a subset of the users.

A.1 Automatic Shortening

Once Dave’s client translates “www.carol.+” to “www.carol.buddy.gnu”, Dave
can resolve “carol.buddy.gnu” to Alice’s public key and then lookup the IP ad-
dress for Alice’s server under the respective key in the DHT. At this point,
Dave’s GNS system will also learn that Alice has set her “NICK” record to
“carol”. It will then check if the name “carol” is already taken in Dave’s zone,
and—if “carol” is free—offer Dave the opportunity to introduce a PKEY record
into Dave’s zone that would shorten “carol.buddy.gnu” to “carol.gnu”.

Alternatively, the record could be automatically added to a special shorten
zone that is, in addition to the master zone, under Dave’s control. In this case,
Alice would become available to Dave under “carol.shorten.gnu”, thus highlight-
ing that the name was created by automatic shortening within the domain name.

In either case, shortening eliminates Bob from the trust path for Dave’s future
interactions with Alice. Shortening is a variation of trust on first use (TOFU),
as compromising Bob afterwards would no longer compromise Dave’s path to
Alice.

A.2 Relative Names in Record Values

GNS slightly modifies the rules for some existing record types in DNS. In par-
ticular, names in DNS values are always absolute; GNS allows the notation
“.+” to indicate that a name is relative. For example, consider “CNAME”
records in DNS, which map an alias (label) to a canonical name: as specified
in RFC 1035 [14], the query can (and in GNS will) be restarted using the spec-
ified “canonical name”. The difference between DNS and GNS is that in GNS,
the canonical name can be a relative name (ending in “.+”), an absolute GNS
name (ending in “.zkey”) or a DNS name.

As with DNS, if there is a “CNAME” record for a label, no other records
are allowed to exist for the same label in that zone. Relative names using the
“.+” notation are not only legal in “CNAME” records, but in all records that
can include names. This specifically includes “MX” and “SOA” records.

A.3 Dealing with Legacy Assumptions: Virtual Hosting and TLS

In order to integrate smoothly with DNS, GNS needs to accommodate some
assumptions that current protocols make. We can address most of these with
the “LEHO” resource record. In the following, we show how to do this for Web
hosting. There are two common practices to address here; one is virtual hosting
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(i. e. hosting multiple domains on the same IP address); the other is the practice
of identifying TLS peers by their domain name when using X.509 certificates.

The problem we encounter is that GNS gives additional and varying names
to an existing service. This breaks a fundamental assumption of these proto-
cols, namely that they are only used with globally unique names. For exam-
ple, a virtually hosted website may expect to see the HTTP header Host:

www.example.com, and the HTTP server will fail to return the correct site if
the browser sends Host: www.example.gnu instead. Similarly, the browser will
expect the TLS certificate to contain the requested “www.example.gnu” domain
name and reject a certificate for “www.example.com”, as the domain name does
not match the browser’s expectations.

In GNS, each user is free to pick his own petname for the service. Hence,
these problems cannot be solved by adding an additional alias to the HTTP
server configuration or the TLS certificate. Our solution for this problem is to
add the legacy hostname record type (“LEHO”) for the name. This record type
specifies that “www.example.gnu” is known in DNS as “www.example.com”. A
proxy between the browser and the web server (or a GNS-enabled browser) can
then use the name from this record in the HTTP Host: header. Naturally, this
is only a legacy issue, as a new HTTP header with a label and a zone key could
also be introduced to address the virtual hosting problem. The LEHO records
can also be used for TLS validation by relating GNS names to globally unique
DNS names that are supported by the traditional X.509 PKI. Furthermore, GNS
also supports TLSA records, and thus using TLSA records instead of CAs would
be a better alternative once browsers support it.

A.4 Handling TLSA and SRV records

TLSA records are of particular interested for GNS, as they allow TLS appli-
cations to use DNSSEC as an alternative to the X.509 CA PKI. With TLSA
support in GNS, GNS provides an alternative to X.509 CAs and DNSSEC using
this established standard. Furthermore, GNS does not suffer from the lack of
end-to-end verification that currently plagues DNSSEC.

However, to support TLSA in GNS a peculiar hurdle needs to be resolved.
In DNS, both TLSA and SRV records are special in that their domain names
are used to encode the service and protocol to which the record applies. For
example, a TLSA record for HTTPS (port 443) on www.example.com would be
stored under the domain name 443. tcp.www.example.com.

In GNS, this would be a problem since dots in GNS domain names are
supposed to always correspond to delegations to another zone. Furthermore,
even if a special rule were applied for labels starting with underscores, this
would mean that say the A record for www.example.com would be stored under
a different key in the DHT than the corresponding TLSA record. As a result,
an application would experience an unpredictable delay between receiving the A
record and the TLSA record. As a TLSA record is not guaranteed to exist, this
would make it difficult for the application to decide between delaying in hope of
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using a TLSA record (which may not exist) and using traditional X.509 CAs for
authentication (which may not be desired and likely less secure).

GNS solves this problem by introducing another record type, the BOX record.
A BOX record contains a 16-bit port, a 16-bit protocol identifier, a 32-bit embed-
ded record type (so far always SRV or TLSA) and the embedded record value.
This way, BOX records can be stored directly under www.example.com and the
corresponding SRV or TLSA values are thus never delayed — not to mention
the number of DHT lookups is reduced. When GNS is asked to return SRV or
TLSA records via DNS, GNS recognizes the special domain name structure, re-
solves the BOX record and automatically unboxes the BOX record during the
resolution process. Thus, in combination with the user interface (Figure 2) GNS
effectively hides the existence of BOX records from DNS users.

We note that DNS avoids the problem of indefinite latency by being able
to return NXDOMAIN in case a SRV or TLSA record does not exist. However,
in GNS NXDOMAIN is not possible, largely due to GNS’s provisions for query
privacy. Furthermore, DNS can solve the efficiency problem of a second lookup by
using its “additional records” feature in the reply. Here, a DNS server can return
additional records that it believes may be useful but that were not explicitly
requested. However, returning such additional records might not always work, as
DNS implementations can encounter problems with the serious size restrictions
(often just 512 bytes) on DNS packets. As GNS replies can contain up to 63 kB
of payload data, we do not anticipate problems with the size limit in GNS even
for a relatively large number of unusually big TLSA records.

Fig. 2. The user can remain unaware of the behind-the-scenes boxing when creating
TLSA records in the GNS zone management interface.
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A.5 Revocation

In case a zone’s private key gets lost or compromised, it is important that the key
can be revoked. Whenever a user decides to revoke a zone key, other users must
be notified about the revocation. However, we cannot expect users to explicitly
query to check if a key has been revoked, as this increases their latency (especially
as reliably locating revocations may require a large timeout) and bandwidth
consumption for every zone access just to guard against the relatively rare event
of a revoked key. Furthermore, issuing a query for zone revocations would create
the privacy issue of revealing that a user is interested in a particular zone.
Existing methods for revocation checks using certificate revocation lists in X.509
have similar disadvantages in terms of bandwidth, latency increase and privacy.

Instead of these traditional methods, GNS takes advantage of the P2P overlay
below the DHT to distribute revocation information by flooding the network.
When a peer wants to publish a revocation notice, it simply forwards it to all
neighbors; all peers do the same when the receive previously unknown valid
revocation notices. However, this simple-yet-Byzantine fault-tolerant algorithm
for flooding in the P2P overlay could be used for denial of service attacks. Thus,
to ensure that peers cannot abuse this mechanism, GNS requires that revocations
include a revocation-specific proof of work. As revocations are expected to be
rare special events, it is acceptable to require an expensive computation by the
initiator. After that, all peers in the network will remember the revocation forever
(revocations are a few bytes, thus there should not be an issue with storage).

In the case of peers joining the network or a fragmented overlay reconnecting,
revocations need to be exchanged between the previously separated parts of the
network to ensure that all peers have the complete revocation list. This can be
done using bandwidth proportional to the difference in the revocation sets known
to the respective peers using Eppstein’s efficient set reconciliation method. In
effect, the bandwidth consumption for healing network partitions or joining peers
will then be almost the same as if the peers had always been part of the network.

This revocation mechanism is rather hard to disrupt for an adversary. The
adversary would have to be able to block the flood traffic on all paths between
the victim and the origin of the revocation. Thus, our revocation mechanism
is not only decentralized and privacy-preserving, but also much more robust
compared to standard practice in the X.509 PKI today, where blocking of access
to certificate revocation lists is an easy way for an adversary to render revocations
ineffective. This has forced vendors to include lists of revoked certificates with
software updates.

A.6 Shadow Records

GNS records can be marked as “shadow records”; the receiver only interprets
shadow records if all other records of the respective type have expired. This is
useful to ensure that upon the timeout of one set of records the next set of
records is immediately available. This may be important, as propagation delays
in the DHT are expected to be larger than those in the DNS hierarchy.
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