
HARPO:
Learning to Subvert Online Behavioral Advertising

Jiang Zhang, Konstantinos Psounis
University of Southern California
{jiangzha, kpsounis}@usc.edu

Muhammad Haroon, Zubair Shafiq
University of California, Davis
{mharoon, zshafiq}@ucdavis.edu

Abstract—Online behavioral advertising, and the associated
tracking paraphernalia, poses a real privacy threat. Unfortu-
nately, existing privacy-enhancing tools are not always effective
against online advertising and tracking. We propose HARPO,
a principled learning-based approach to subvert online behav-
ioral advertising through obfuscation. HARPO uses reinforcement
learning to adaptively interleave real page visits with fake pages to
distort a tracker’s view of a user’s browsing profile. We evaluate
HARPO against real-world user profiling and ad targeting models
used for online behavioral advertising. The results show that
HARPO improves privacy by triggering more than 40% incorrect
interest segments and 6× higher bid values. HARPO outperforms
existing obfuscation tools by as much as 16× for the same
overhead. HARPO is also able to achieve better stealthiness to
adversarial detection than existing obfuscation tools. HARPO
meaningfully advances the state-of-the-art in leveraging obfus-
cation to subvert online behavioral advertising.

I. INTRODUCTION

Online behavioral advertising poses a real privacy threat
due to its reliance on sophisticated and opaque tracking tech-
niques for user profiling and subsequent ad targeting [1]–[6].
The tracking information compiled by data brokers for the
sake of online behavioral advertising is often outright creepy
and scarily detailed [7]–[10]. Furthermore, the surveillance
capitalism business model of the “free” web naturally aligns
with mass surveillance efforts by governments [5], [11]–[14].
Finally, beyond privacy, the targeting capabilities of online
behavioral advertising are routinely abused for discrimination
[15]–[17] and manipulation [18]–[21].

To address the privacy concerns of online behavioral ad-
vertising, some platforms now allow users to opt in/out of
tracking. Notably, iOS 14.5 introduced a new App Tracking
Transparency feature that requires apps to get permission from
users to track them for targeted advertising [22]. Unfortunately,
the vast majority of data brokers do not give users any
meaningful choice about tracking. The privacy community
has also developed privacy-enhancing tools to enable users to
outright block online advertising and tracking. These blocking
tools, available as browser extensions such as uBlock Origin
[23] and Ghostery [24], are now used by millions of users.
However, advertisers and trackers can often circumvent these

blocking tools, e.g., by evading blocking rules [25]–[31] or
bypassing these tools altogether [32]–[34]. Thus, blocking is
not the silver bullet against online behavioral advertising.

The privacy community has recently started to leverage
obfuscation to subvert online behavioral advertising without
resorting to outright blocking or to complement blocking [35],
[36]. Unfortunately, existing privacy-enhancing obfuscation
tools have limited effectiveness. For example, AdNauseam
[35], [37] by Howe and Nissenbaum obfuscates a user’s brows-
ing profile by randomly clicking on ads. As another example,
TrackThis [36] by Mozilla obfuscates a user’s browsing profile
by visiting a curated set of URLs. The effectiveness of these
(and other relevant approaches, e.g., [38]–[40], discussed in
Section VII) is limited because they are not principled and
also prone to adversarial detection.

We propose HARPO, a privacy-enhancing system that helps
users obfuscate their browsing profiles to subvert online behav-
ioral advertising. To this end, HARPO interleaves real page
visits in a user’s browsing profile with fake pages. Unlike
prior obfuscation tools, HARPO takes a principled learning-
based approach for effective obfuscation. More specifically,
HARPO leverages black-box feedback from user profiling and
ad targeting models to optimize its obfuscation strategy. In
addition, and equally importantly, HARPO’s obfuscation is able
to adapt to the user’s persona. This principled and adaptive
approach helps HARPO minimize its overhead by introducing
the most effective fake page visit at each opportunity, and
enhances its stealthiness against adversarial detection.

At its core, HARPO leverages reinforcement learning (RL)
to obfuscate a user’s browsing profile. HARPO trains an RL-
based obfuscation agent by analyzing a user’s browsing profile
using an embedding and then optimizing the reward by inter-
acting with a black-box user profiling or ad targeting model.
HARPO’s trained RL agent is then used to introduce fake page
visits into the user’s browsing profile at a budgeted rate. A key
challenge in designing HARPO is that the state space of the
underlying Markov Decision Process (MDP) is prohibitively
large. We use a recurrent neural network (NN), together with a
convolutional NN as an encoder, and two fully connected NNs
as decoders to alleviate the state space explosion of the MDP.
Another key challenge in implementing HARPO is that we
have limited black-box access to real-world user profiling and
ad targeting models. We overcome this challenge by training
surrogate user profiling and ad targeting models and leveraging
them to train the RL agent.

We evaluate HARPO against real-world user profiling and

Network and Distributed Systems Security (NDSS) Symposium 2022
27 February – 3 March 2022
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2022.23062
www.ndss-symposium.org

ar
X

iv
:2

11
1.

05
79

2v
1

 [
cs

.L
G

]
 9

 N
ov

 2
02

1

ad targeting models [41], [42]. We find that HARPO is able to
successfully mislead user profiling models by triggering more
than 40% incorrect interest segments among the obfuscated
personas. We find that HARPO is able to successfully mislead
ad targeting models by triggering 6× higher bid values. We
also find that HARPO outperforms existing obfuscation tools by
as much as 16× for the same overhead and by up to 13× with
2× less overhead. We also demonstrate that HARPO achieves
better stealthiness against adversarial detection than existing
obfuscation tools.

We summarize our key contributions as follows:

• We propose HARPO, a principled RL-based approach to
adaptively obfuscate a user’s browsing profile.

• We develop surrogate ML models to train HARPO’s RL
agent with limited or no black-box access to real-world
user profiling and ad targeting models.

• We demonstrate the success of HARPO against real-world
user profiling and ad targeting models in terms of privacy,
overhead, and stealthiness.

Paper Organization: The rest of the paper is organized
as follows. Section II describes the threat model. Section
III presents the design and implementation of HARPO. We
describe the experimental setup, including data collection and
training process for HARPO and baselines, in Section IV.
Section V presents the evaluation results. We discuss ethical
issues and limitations in Section VI. Section VII summarizes
prior literature before concluding with Section VIII.

II. THREAT MODEL

The goal of the obfuscation system is to protect the privacy
of a user against profiling and targeting models of a tracker.
To this end, the obfuscation system interleaves the user’s real
page visits with fake pages to distort the tracker’s view of the
user’s browsing profile.

User. The user’s goal is to routinely browse the web while
not misleading the tracker so it cannot accurately profile their
interests and subsequently target ads. Users protect themselves
by installing a modified user agent (i.e., browser or browser
extension) that obfuscates a user’s browsing profile by inserting
fake page visits into the user’s real page visits. The design
goals for this obfuscation system are:

• it should be seamless in that it should not require any
modifications to the user’s real page visits.

• it should be principled in that misleading the tracker’s
profiling and targeting models is guaranteed.

• it should be adaptive to the real page visits so the fake
page visits are not trivially always the same.

• it should be stealthy so that it is not possible for the
tracker to detect obfuscation and discount fake page visits.

• it should have low overhead to preserve user experience.

We start by assuming that the user has black-box access
to the actual profiling and targeting models of the tracker. To
relax this assumption, we assume that the user can train a
surrogate model that is different from the actual model but
can reasonably replicate its output.

Tracker. The tracker is typically a third-party that is included
by first-party publishers to provide advertising and tracking
services on their sites. We assume that the tracker is able to link
the user’s different page visits by using well-known cross-site
tracking techniques such as cookies or browser fingerprinting.
We consider a strong threat model by assuming that the tracker
has complete coverage of a user’s browsing profile. While
a tracker typically does not have complete coverage, prior
literature has shown that some trackers indeed have significant
coverage of top sites and that even trackers with smaller
individual coverage collaborate with each other to improve
their coverage [3], [5], [43], [44]. The tracker is also assumed
to have substantial computational resources to train machine
learning models on the user’s browsing profile to effectively
profile the user’s interests and target relevant ads [45].1

We also assume that the tracker’s goal is to train machine
learning models to profile and target arbitrary users rather than
a particular user with a known identity (e.g., email address,
account identifier). In the latter case, the tracker can trivially
gather information by collaborating with a first-party publisher
(e.g., social network or e-commerce site). We assume that it is
not the case. Even when this assumption is invalid, we contend
that a privacy-conscious user would be able to leverage data
deletion requests under privacy regulations, such as GDPR
[46] or CCPA [47], to remove their identity or information.
In summary, we assume that the tracker does not have the
user’s non-obfuscated browsing profile to begin with.

III. PROPOSED APPROACH

In this section, we present the design and implementation
of our proposed obfuscation approach called HARPO.

A. Overview

HARPO inserts a fake page visit at random times, where
the percentage of fake versus real user’s page visits is a
configurable system parameter. We refer to the corresponding
URLs as obfuscation versus user URLs, respectively. Every
time a fake page is to be visited, HARPO needs to decide
which URL to pick as the obfuscation URL. The decision
of HARPO depends on the user’s current browsing profile,
which is modeled as a random process because neither the
user URLs nor the sequence of obfuscation and user URLs are
deterministic. Clearly, HARPO’s decisions impact the accuracy
of the tracker’s profiling and targeting models—the less their
accuracy the better the effectiveness of HARPO.

We formulate the selection of obfuscation URLs as a
Markov Decision Process (MDP) which selects URLs to
maximize the distortion of the tracker’s estimate of the user’s
interests. This MDP is not analytically tractable because the ex-
act mechanism that trackers use to create profiles is unknown.
Moreover, even if a good tracker model were available, the
state space of this MDP is prohibitively large to be solved
analytically. The obvious choice hence is to use Reinforcement
Learning (RL) [48], which uses feedback from the tracker to
train the RL agent that then selects suitable obfuscation URLs.

1Note that while tracking may take place via additional modalities like
location, browsing profile based profiling and targeting remains one of the
most important modalities currently used in the online advertising ecosystem.
See Section VI-B for more discussion.

2

1. Content feature extraction

Document
embedding

Environment

Policy
𝜋(⋅ |𝑠!)

Page content

2. RL agent

Obfuscation URL 𝑝!"#$

Action 𝑎!

User persona

state 𝑠!

3. URL
agent

Reward 𝑟! Harpo

…

… …
𝑝#% 𝑝&$ 𝑝!% 𝑝!"#$

Tracker

𝑐#% 𝑐&$ 𝑐!%

User

Fig. 1: Overview of HARPO’s workflow. Note that the ith URL,
pi, can be a user or an obfuscation URL, denoted by pui and
poi respectively. cui / coi represents the embedding vector of the
ith real (blue) / fake (green) page, respectively.

Figure 1 illustrates HARPO’s workflow. HARPO starts by
parsing the content from the pages of the visited URLs, and
featurizes it using an embedding. It then trains an RL agent
that selects obfuscation URLs to optimize its reward based on
the extracted features. After training, the RL agent is used by
a URL agent that inserts obfuscation URLs, interleaving them
with user URLs.

B. System Preliminaries

User persona. We define user persona simply as the set of
visited URLs. We denote the user URL set, obfuscation URL
set, and the full URL set by Pu, Po, and P respectively, where
P = Pu ∪ Po. Since we are interested in the URL selection
rather than the time interval between consecutive URLs, we
focus at URL insertion times and work with time steps. We
represent a user persona at time step t by Pt = [p1, · · · , pt],
where pi represents the ith visited URL. At every time step i,
1 ≤ i ≤ t, we select an obfuscation URL with probability α,
denoted by poi ∈ Po, or a user URL with probability 1 − α,
denoted by pui ∈ Pu, where α is a parameter to control
the percentage of obfuscation URLs. For each obfuscated
persona there is a corresponding base persona without the
obfuscation URLs, and we denote those personas by P ot and
Put respectively.

User profiling and ad targeting models. Many advertis-
ers provide interest segments, such as “travel-europe”, “pets-
dogs”, “health-dementia”, inferred by their user profiling mod-
els for transparency [49], [50]. Furthermore, the bids placed
by advertisers as part of the real time bidding (RTB) protocol
are often visible in the browser [51]. We leverage this black-
box access to user profiling (i.e., interest segments) and ad
targeting models (i.e., bid values2) to collect the data needed
to train our own surrogate models. Specifically, we extract the
interest segments made available by the Oracle Data Cloud
Registry [41] which gathers data based primarily on cookies,
and the bid values placed by advertisers in the Prebid.js header
bidding implementation [42], [52]. Note that Oracle is a well-
established data broker that combines data from more than
70 partners/trackers [53] and is accessible without needing a

2The bid values are measured in cost per thousand impressions (also known
as CPM).

cumbersome sign-up process. Furthermore, segments are added
and removed regularly to reflect the user’s latest profile. To
collect bids from multiple bidders efficiently, we select the
three popular header bidding enabled sites (www.speedtest.net,
www.kompas.com, and www.cnn.com), each of which contains
multiple bidders.

Privacy Metrics. At a high level, we use as privacy metric the
distortion in the tracker’s user profiling or ad targeting model
estimate, expressed as an accuracy loss.

For the user profiling model, we consider as distortion the
addition of new interest segments and the removal of existing
interest segments, when comparing the user profile under the
base persona and its obfuscated version. To define loss metrics
along these lines, we consider Ns interest segments in total
and define the interest segment vectors of P ot and Put as
Xo = [xo1, . . . , x

o
Ns

] and Xu = [xu1 , . . . , x
u
Ns

] respectively,
where xji , i ∈ {1, . . . , Ns}, j ∈ {o, u}, are binary variables
representing whether the ith interest segment is triggered or
not (1: triggered, 0: not triggered). Then, we define the fol-
lowing loss for the tracker, which represents the percentage of
segments of the obfuscated persona which were not segments
of the base persona:

L1(X
o, Xu) =

∑Ns

i=1 1{xo
i=1,xu

i =0}∑Ns

i=1 x
o
i

. (1)

Here, the numerator is the number of incorrect segments
(1A = 1 if A is true and 0 otherwise) and the denominator is
the total number of segments of the obfuscated persona.3

We also define a second loss metric for the tracker which
aims to quantify the profile distortion:

L2(X
o, Xu) =

Ns∑
i=1

xoi ⊕ xui . (2)

This loss metric equals the number of different segments
between the original (Xo) and obfuscated (Xu) profiles. It is
maximized if all the interest segments of the base persona are
removed by the profile and all the remaining segments are
triggered, thus maximally distorting the profile.

For both L1 and L2, the more base persona segments are
removed and the more obfuscated persona segments are added,
the higher their value. The difference is that, L1 measures the
portion of the triggered segments for the obfuscated persona
that have no value for the tracker and equals 100% when all
base persona segments are removed, while L2 reports the total
number of different segments and thus represents the profile
distortion. Clearly, the higher the L1 and L2 values are, the
lesser the sensitive information contained in the obfuscation
profile and the higher the resulting privacy.

For the ad targeting model, we consider as distortion the
deviation of the bid values placed by a bidder under the base
persona and its obfuscated version. It is worth noting that bid
values represent a bidder’s confidence about whether a user’s
interests match the targeted ad. By manipulating a user’s profile
to distort bid values, our goal is to make bidders place bids
that are inconsistent with the user’s interests (e.g., place a high

3Note that L1 is undefined if the obfuscated persona has no segments,
which is a corner case of no practical relevance.

3

bid value for an ad that is actually irrelevant to the user). This
inconsistency means that the bidder has incorrectly profiled the
user’s interests and thus represents a better privacy outcome
for the user. To maximize the deviation one may attempt to
either increase or decrease the bidding values by appropriately
selecting obfuscation URLs. We choose to attempt to increase
the bid values because bidders tend to significantly place more
low bid values than high bid values, thus there is much more
room to distort low bid values.4

To define practical loss metrics along these lines, we first
group the bid values into two classes. Suppose the mean and
variance of all the bid values we collect from a bidder are
µ and σ respectively. Then, we use µ + σ to split the bid
values into low and high value bid classes. If a bid value is
larger than µ + σ, we classify it as high, else we classify
it as low. Now, consider a total of Nb bidders bidding for
ads based on the current user browsing profile. We define vji ,
i ∈ {1, . . . , Nb}, j ∈ {o, u}, as the bid value placed by bidder i
for an obfuscated (j = o) or non-obfuscated (j = u) persona.
We also define bji = 1vji≥µi+σi

to indicate whether the bid
value for bidder i is below (bi = 0) or above (bi = 1) the
threshold µi+σi, where µi and σi are the mean and variance of
bid values placed by bidder i. Then, we use as loss the increase
of the proportion of high bids in the obfuscated persona as
compared to the corresponding base persona, i.e.,

L3({boi , bui }
i=Nb
i=1) =

1

Nb

Nb∑
i=1

(boi − bui). (3)

To directly quantify how much the bid values change, we
also use the average ratio of bid values of an obfuscated
persona over its corresponding base persona and denote it by
L4. Specifically,

L4({voi , vui }
i=Nb
i=1) =

∑Nb

i=1 v
o
i∑Nb

i=1 v
u
i

. (4)

C. System Model

As discussed earlier, we formulate the selection of obfus-
cation URLs as an MDP. In a nutshell, MDP is a standard
framework for modeling decision making when outcomes are
partly stochastic and partly under the control of a decision
maker. We describe in detail all components of the MDP below.

Obfuscation step. MDPs are discrete-time processes evolving
in time steps. Recall that we assume time evolves in steps
every time a URL is visited. We refer to a time step as an
obfuscation step, if the visited URL at this time step is an
obfuscation URL, and use obfuscation steps as the time steps
of the MDP. In the rest of the section we use t to denote
obfuscation steps, and let Nt denote the total number of URLs
(i.e., user and obfuscation URLs) visited by the persona under
consideration up to obfuscation time step t. 5

State. MDPs transition between states. We define the state at
obfuscation step t as st = [p1, · · · , pNt

] ∈ S , which consists

4We discuss ethical considerations regarding the potential infliction of
economic pain to bidders by this in Section VI.

5Note that to keep the notation in Figure 1 simple, we have used t to
represent time steps corresponding to both user and obfuscation URLs, in a
slight abuse of notation.

of the visited URLs up to time step t, where S denotes the
state space of the MDP. Note that this state definition means
the state space will grow indefinitely. Yet we do so because the
retention time of URLs by data brokers, including the Oracle
Data Cloud Registry, are often in the order of 12 to 18 months
[50]. Thus, we want to select an obfuscation URL based on
the entire browsing profile of a persona. While such a state
space complicates analytical treatment, as we discuss later in
Section III-D, we use a recurrent model as part of our RL
model which allows us to handle this effectively.

Action. MDPs choose an action at each step, based on a policy.
At obfuscation step t, the action at is the selection of an
obfuscation URL poNt+1 from the set of Po, which is the action
space.

State transition. The transition between states of an MDP is
dictated by a state transition function T (·|S,A) : S × A ×
S → R, which outputs the probability distribution of state
st+1 given the previous state st and the action at. Note that
state st+1 consists of all visited URLs up to step t (st), of the
obfuscation URL poNt+1, and of the user URLs visited between
obfuscation step t and t+ 1.

Reward. Every time there is an action, there is a reward
associated with it. We use as reward of obfuscation step t
the difference of the loss of the tracker between this and the
previous step. Specifically, let Lt denote the loss of the tracker
at obfuscation step t. Lt can be any of the privacy metrics
defined above. Then, the reward rt equals Lt − Lt−1.

To avoid selecting a small set of high-reward obfuscation
URLs repeatedly as this may affect stealthiness, we may use
the following reward function which penalizes the selection
of the same URLs: rt = Lt − Lt−1 − δ ∗ (N(p) − 1), where
N(p) represents the number of times the obfuscation URL p
has been selected in the past and δ is a parameter controlling
the diversity of selected URLs, see Section V-D for related
performance results.

Policy. We define the policy of the MDP as π(·|S) : S ×A →
R, where at ∼ π(·|st). That is, the policy is the probability
distribution of the obfuscation URL selection for each state st.
Specifically, let No = |Po| be the total number of available
obfuscation URLs. Then, π(·|st) is a multinomial distribution
with parameter At = [a1t , · · · , a

No
t], where ait is the probability

of selecting the ith obfuscation URL, and
∑No

i=1 a
i
t = 1. We

design the policy π(·|st) with the objective of maximizing the
accumulated expected reward over a finite time horizon. In
the RL implementation of the MDP, the finite time horizon
equals the number of obfuscation steps during training of the
RL agent.

D. System Design

HARPO consists of 4 modules: (i) a content feature ex-
traction module that converts text to a document embedding,
(ii) an RL agent which gets document embeddings as input
and outputs obfuscation URLs, (iii) a surrogate model, trained
to replicate real-world user profiling and ad targeting models,
which is used for fast training of the RL agent, and (iv) a URL
agent which inserts obfuscation URLs in the web browsing

4

Document embedding

Latest 𝑤
URLs

Content feature 𝐶!

a.com
b.com

…
t.com

…
z.com

Persona 𝑃!

…

Conv Concat

CNN encoder

LSTM

FCNN + Softmax

Actor: 𝐴!
a" ∼ 𝜋 ⋅ 𝑠!

Critic: 𝑉!
𝑡 − 1

𝑡

Reward:
𝑟! 𝑠!, 𝑎!

RL
agent

FC
N

N𝜙!#(𝑠!)

𝜙!#([𝑠!, 𝑎!])

b) Encoder for both RL agent and surrogate model c) Decoders for RL agent and surrogate model

URL set: {𝑈𝑅𝐿$}

Document set

Parse out text contents

Document embedding:
𝑈𝑅𝐿$ → 𝑐$

Train doc2vec model

a) Content feature extraction

𝜙!#
𝜙!%

Surrogate
model

Fig. 2: Neural network structures for RL agent and surrogate model. Both the RL agent and the surrogate model take the content
features Ct (document embedding output by doc2vec model) of the latest w URLs in user persona Pt as input, and then utilize
CNN as encoder to convert Ct into feature vector φit as the input of decoders. The decoder of the RL agent is a LSTM followed
by two FCNN, representing actor and critic networks respectively. And the decoder of the surrogate model is a FCNN with
Softmax activation function, which outputs the binary classification result as the reward for the RL agent.

profile of personas. We describe in detail each module below,
and present an overview of HARPO’s workflow in Figure 1.

Feature Extraction. To extract the features of a visited URL,
we train a document embedding model for HARPO, whose
input is the textual content on the page of each visited URL
pi and the output is the document embedding ci ∈ Rd (a real
vector with dimension d). More specifically, as demonstrated in
Figure 1, for each URL in our URL set, we first parse the text
content from its rendered HTML page as a text document. We
then train a doc2vec embedding model [54] via unsupervised
learning by utilizing the extracted text documents of all URLs
in P . Finally, HARPO uses the trained doc2vec model to map
each URL to an embedding, which represents the features of
the page corresponding to the URL.

We only consider textual content during feature extraction
for two reasons. First, text content is the basis of HTML
files and can convey the information in the web pages that is
relevant for user profiling and ad targeting models [55], [56].
Second, it is easier and faster to process text content than
other types of multimedia content. Moreover, since a page
typically contains thousands of word tokens, we choose to
train a document embedding model instead of word embedding
or sentence embedding models, so that the dimension of
embedding vectors can be reduced.

RL Structure and Implementation. At a high level, the
RL agent consists of a CNN (Convolutional Neural Network)
as an encoder, followed by an LSTM (Long-short Term
Memory) neural network and two FCNNs (Fully-Connected
Neural Networks) as decoder, which represent actor and critic
networks respectively. The actor network will determine which
obfuscation URL to select at each obfuscation step based on
the current state, while the critic network will estimate the
future cumulative reward based on the current state and the
action chosen by the actor network.

Specifically, as illustrated in Figures 2b and 2c, the input
of the CNN Ct consists of the document embeddings of the
latest w URLs (Ct ∈ Rw×d) and the output of the CNN
φ1t is an encoded real vector with m elements (φ1t ∈ Rm).
φ1t is the input of the LSTM, which outputs a decoded real
vector φ2t with n elements (φ2t ∈ Rn). φ2t will further be
the input of the actor and critic networks, which output the
probability distribution of selecting each obfuscation URL
At ∈ RNo (recall there are No obfuscation URLs in total)

and the estimate of the expectation of the future accumulated
reward Vt ∈ R (a real number), respectively. We train the
actor critic networks via the A2C (Advantage Actor and Critic)
algorithm [57], which is one of the most popular on-policy RL
algorithms. Note that we select on-policy RL algorithms since
they are more memory efficient and adaptive to the dynamic
web environment as compared to off-policy RL algorithms.

We choose CNN as the encoder of the document em-
bedding since it has fewer training parameters compared
with other Deep Neural Networks (DNNs) and prior works
demonstrate its effectiveness on text classification (e.g., [58]).
Furthermore, we use an LSTM because it is a recurrent neural
network which allows us to maintain information about the
whole browsing profile despite the input to the RL agent being
the w most recent pages only. Prior work has also used an
LSTM when the MDP state is only partially observable by
an RL agent [59], [60]. Note that The RL agent’s input at
each obfuscation step is an embedding matrix consisting of
a sequence of doc2vec embeddings. Adding a CNN before
the LSTM can extract the local features of the embedding
matrix efficiently and reduce the input feature space of the
LSTM (from a 2D matrix to a vector) at each obfuscation step.
Prior research [61] has also demonstrated the effectiveness of
combining CNN with LSTM.

Surrogate model. To train the RL agent, we would need
ample access to a real-world user profiling or ad targeting
model. However, as outlined in the threat model, we may
have limited or no access to the real-world user profiling
or ad targeting models in practice. To address this issue, we
propose to train surrogate models that can reasonably replicate
the output of real-world user profiling or ad targeting models.
These surrogate models are then used to train the RL agent.
The surrogate models also help improve the efficiency of RL
agent training by providing a virtual environment, which is
much faster than querying real-world user profiling or ad
targeting models.6 Next, we describe in detail the surrogate
models for user profiling and ad targeting systems.

For the user profiling model, we train a separate model
for each interest segment in the Oracle Data Cloud Registry
to predict whether this interest segment will be triggered by

6While profile registries like the Oracle Data Cloud Registry are required
by law to allow users access to their profiles, these profiles may be updated
every few days. Thus, it would take months to collect enough samples to train
the RL agent solely by accessing such registries.

5

the most recent w URLs in the web browsing profile of a
persona. Note that we use the latest w URLs rather than
the complete web browsing profile, because it is hard to
accurately train models with very long and variable length
inputs. More precisely, for a user persona with a browsing
profile of Nt URLs at obfuscation step t, PNt

= [p1, · · · , pNt
],

we extract the document embedding of the latest w URLs,
Ct = [cNt−w+1, . . . , cNt

], and feed them as input into the
model. The model, which we refer to as a segment predictor
henceforth, outputs a 1 if the segment is expected to be
triggered, and a 0 otherwise.

For the ad targeting model, as discussed already, we first
group continuous bid values into a low- and a high-bid class.
Then, we train a binary classifier to predict the bid class and
refer to this model as the bid predictor. Similar to the segment
predictor models, the bid predictor takes Ct as the input and
outputs either 0 (low bid class) or 1 (high bid class).

The detailed structure of surrogate models are demon-
strated in Figures 2b and 2c, which consist of a CNN and
FCNN with Softmax activation. Specifically, the CNN has the
same structure as that in the RL agent, which takes Ct as input
and outputs φ1t (see Section III-D). The decoder, which is the
FCNN, takes φ1t as input and outputs the binary classification
value (0 or 1) of each surrogate model.

To train the bid and segment predictors, we start by
randomly constructing a set of user personas. Then, we collect
training data (by the Oracle Registry for the user profiling
model and multiple bidders for the ad targeting model) and
use supervised learning, see Section IV for more details.

URL Agent. The URL agent creates user personas consisting
of both user and obfuscation URLs through an i.i.d random
process. At each time slot, with probability α the URL is
an obfuscation URL selected by HARPO and with probability
1− α it is a user URL, randomly picked from the user URL
set. In practice, the URL agent would not generate user and
obfuscation URLs in discrete time slots. Instead, it would
estimate the arrival rate of user URLs, call it λu. Then, to target
an obfuscation “budget” α, it would create a random process
with arrival rate λo = λu∗α

1−α to specify the insertion times
of obfuscation URLs. For example, a Poisson process with
rate λo can be used for that purpose, or, a non-homogeneous
Poisson process can be used to adapt λo (more precisely, λo(t)
in this case) to the current user behavior (i.e., if the user is
not engaged in an active browsing session, very few or no
obfuscation URLs would be inserted).

E. System Implementation

We implement HARPO as a browser extension. Its archi-
tecture has a passive monitoring component and an active
obfuscation component. The monitoring component uses a
background script to access the webRequest API to inspect
all HTTP requests and responses as well as a content script to
parse the DOM and extract innerHTML [62]. This capability
allows us to implement the content extraction module, which is
responsible for computing document embedding for each vis-
ited page. The monitoring component sends this information to
the obfuscation component, which is responsible to implement
the other 3 modules of HARPO (RL agent, surrogate model,
and URL agent). The RL agent and surrogate model modules

run in the background, the former to select an obfuscation
URL that is visited by the URL agent module, and the later
to train the RL agent. To visit the obfuscation URL in the
background so user experience is seamless, we open the URL
in a background tab that is hidden from the user’s view.7
Note that our implementation does not simply use AJAX to
simulate clicks [35], it realistically loads pages by executing
JavaScript and rendering the page content. HARPO’s browser
extension is implemented to minimize adverse impact on user
experience. We evaluate the system overhead of HARPO’s
browser extension implementation later in Section V-C.

IV. EXPERIMENTAL SETUP

A. User Persona Model

We need to gather realistic web browsing profiles to
experimentally evaluate HARPO and baselines. While we could
try to directly use real-world web browsing traces, this would
pose two problems from a practical standpoint. First, we need
to restrict the total number of distinct URLs to a manageable
number that we can crawl in a reasonable amount of time.
Second, it is preferable to train a model that can work for
general user types than individual users. To address these
problems, we first use real-world web browsing traces to train
a user persona model, and then use this model to generate
a large number of web browsing profiles from a manageable
pool of distinct URLs and user types.

Specifically, we start with the AOL dataset [63] which con-
sists of millions of distinct URLs and web browsing profiles of
millions of users.8 We then randomly sample users with more
than 100 visited URLs each, and leverage WhoisXMLAPI [64]
to map each URL into one of the 16 IAB categories from Alexa
[65]. We observe that real web browsing profiles consist of
URLs from a handful of preferred URL categories. Motivated
by this, we use a Markov Chain (MC) model to generate web
browsing profiles as follows: a MC state dictates the category
from which a URL is selected. We assign a separate state
to each of the most popular categories, and a single state
collectively to the rest of the categories. As the MC transits
from state to state, a URL is randomly selected from the URL
category (or categories) that corresponds to the current state.

To specify the model parameters, first we need to decide
how many popular categories will have their own state. We
do so by assigning a separate state to categories whose URLs
represent more than 10% of the total URLs in the dataset.
Figure 3a plots the percentage of URLs in a user’s web
browsing profile from the ith most popular URL category for
this user, averaged over all users. From the figure we conclude
that the 3 most popular categories satisfy our criteria. Thus,
we set the total number of states of the MC to 4, one for each
of the 3 most popular categories and one collectively for the
13 remaining categories.

Next, we need to decide the order of the MC. In general,
a higher order MC has the ability to model longer term
correlations between states, as the transition probability from

7In Section VI-B, we discuss how to prevent a tracker from using side-
channels associated with background tabs to detect HARPO.

8While the AOL dataset is somewhat dated, it is one of the largest publicly
available datasets of real-world user browsing profiles and captures well the
browsing behavior of a large, diverse set of users.

6

1 6 11 16
The i

th
 most popular URL category

0%

20%

40%
A

v
er

g
e

p
er

ce
n
ti

le

(a) Percentage of URLs from ith

most popular category.

0 1 2 3 4 5

K

0

0.5

1

A
u

to
c
o

rr
e
la

ti
o

n AOL dataset

1
st

 order MC

2
nd

 order MC

3
rd

 order MC

(b) Autocorrelation for different
order MCs.

Fig. 3: Selecting parameters of the MC model. Note that the
autocorrelation with lag K measures the correlation between
states that are K time steps apart.

0.14

0.140.090.26

0.50

0.27

0.33

0.10

0.08

0.25

0.28

0.14

0.27
0.51 0.35

0.28

State 1 (1st popular
URL category)

State 2 (2nd popular
URL category)

State 3 (3rd popular
URL category)

State 4 (The rest URL
categories)

Fig. 4: The MC model and its state transition probability
diagram for simulating user personas.

one state to another for a jth-order MC depends on the j most
recent states. That said, the higher the order the higher the
complexity of the MC, as the state space grows exponentially,
see, for example, [66]. Following standard practice, we use the
autocorrelation function to measure the correlation in the AOL
dataset and experiment with different order MCs to identify the
smallest order required for a good fit. Figure 3b shows that a
1st order MC is enough to achieve a good fit. Last, given the
order and number of states of the MC, we fit the stationary
distribution and transition probabilities of our MC model to the
statistics of the dataset (see Figure 4 for the final MC model).

In the rest of the paper, we use the aforementioned model
to generate web browsing profiles for user personas. Since the
most popular categories are not necessarily the same for each
user persona, we select the 100 most common combinations of
the 3 most popular URL categories from the AOL dataset and
define 100 user types. Then, every time we want to generate a
web browsing profile for a user persona, we randomly select
one user type which sets the specific 3 most popular categories
for this user, and use the MC model to generate the user URLs
as described above.

B. Data Collection and Preparation

Persona URLs. The web browsing profiles of user personas
consist of user and obfuscation users. User URLs are generated
by the user persona model described above. Note that for each
of the 16 IAB categories, we keep the 100 most popular URLs
within each category as ranked by Alexa [65], thus there are a
total of 1600 user URLs to pick from every time a user URL
is selected.

Obfuscation URL categories depend on the obfuscation
scheme (HARPO or one of the baseline approaches described

in Section IV-E) and we consider three different categories:
TrackThis, AdNauseam, and intent URL categories. The
TrackThis category contains 400 obfuscation URLs from [36].
For the AdNauseam category, we collect all the third-party
URLs from the 1,600 pages corresponding to the 1600 URLs
of the 16 IAB categories we described above, and identify
advertising URLs using EasyList [67]. In total, we collect
2,000 advertising URLs. For the intent category, we randomly
crawl 1,930 product URLs through Google shopping (10 URLs
for each one of the 193 shopping categories, which we will
refer to as intent URL subcategories henceforth).

Data collection for surrogate models. We construct 10,000
personas to collect data from real-world user profiling and ad
targeting models in order to train the surrogate models. The
proportion of obfuscation URLs, α, in each persona varies
between 0 and 0.2.

Collecting data from real-world models is a costly opera-
tion. Thus, we determine the suitable length of a persona based
on the following analysis, keeping data collection efficiency
in our mind. Let N be the average number of URLs per
persona, which we wish to determine. Let n be the fraction
of personas for which we are able to collect some feedback
(i.e., the trackers return no feedback for the rest). 10, 000 ·n is
the total number of personas we can collect feedback for and
10, 000 ·N is the total number of URLs among all personas.
We choose to select N such that we maximize n/N for the
following reason: While longer personas with more URLs will
likely trigger more feedback, computational overheads (e.g.,
CPU and memory) are also proportional to the total number
of URLs. Thus, the most efficient choice is to maximize the
feedback we collect per URL, and n/N represents the number
of personas with non-empty feedback per URL. The above
procedure yields a value of N equal to 20, and we use the MC
model described above to select the user URLs, and HARPO
to select obfuscation URLs from the intent URL category, for
a total of 20 URLs per user persona.

Using these personas we collect feedback from real-world
user profiling and ad targeting models as follows: For each
persona, we start with a fresh browser profile in OpenWPM
[4]. For ad targeting, we access bidding sites to collect the
triggered bids immediately after visiting the 20 URLs. For
user profiling, since we observe that it takes on average two
days for triggered interest segments to appear in Oracle Data
Cloud Registry, we save the browser state after visiting the 20
URLs and reload it after 2 days to collect the triggered interest
segments. In total, we collect 184 different interest segments
from the Oracle Data Cloud Registry and bids placed by 10
different bidders on 16 different ad slots. Note that for each
bidding site, there could be multiple bidders that might place
different bids for different ad slots.

Data preparation for surrogate models. We first clean the
data by removing unrelated interest segments such as those
related to geographic location or device type, and by removing
zero bids. Then, for each user persona for which we collected
some feedback, we extract content features from the visited
web pages, concatenate the document embedding vectors of
all visited URLs of the persona into an embedding matrix,
and use this matrix as the input to the surrogate models. We
use a surrogate model for each interest segment, where the

7

label is a binary variable with 1/0 representing that the user
persona will/will not trigger the segment, respectively. We also
use a surrogate model for each bidder and ad slot pair, where
the label is a binary variable with 1/0 representing that the
user may trigger a high/low bid, respectively.

Section IV-C discusses how we train the surrogate models
using supervised learning. Let a dataset refer to all the user per-
sona embedding matrices and the associated labels collected.
If the percentage of labels with value 1 in a dataset is less
than 5%, we remove it because it is likely not sufficient for
training surrogate models later. We end up with 121 interest
segment datasets and 50 bid datasets for training a total of 171
surrogate models.

Data collection for RL agent. We construct 15,000 personas,
50 for each of 300 training rounds of the RL agent, to train
the RL agent. Each persona consists of 100 URLs. Recall
that user URLs are selected using the MC model from the
IAB categories, and the obfuscation URLs are selected from
the intent category based on the actions generated by the RL
agent. The first 20 URLs are selected randomly from the user
URL set for initialization. The remaining 80 URLs are either
obfuscation URLs (with probability α) or user URLs (with
probability 1−α). Thus, we have on average 80·α obfuscation
URLs per persona.

A word on the selection of the α value is in order.
Clearly, the smaller the α the lower the overhead. Also,
one may conjecture that the smaller the α the higher the
stealthiness. However, too small of an α value may not yield
enough obfuscation URLs to have a large impact. We start our
evaluation by choosing α = 0.1 for both user profiling and ad
targeting. In Section V-C and Section V-D we study the impact
of α on obfuscation effectiveness, overhead and stealthiness.

System configuration. We use OpenWPM [4] to implement
our crawling system in an automated and scalable manner.
The experiments are run on servers with 32 CPUs and 128GB
memory on an AMD Ryzen Threadripper 3970X server with
3.7GHz clockspeed.

C. Training and Testing

We report the neural network parameter values of surrogate
model and RL agent in Table V of Appendix A, and describe
the training and testing process of the surrogate models and
the RL agent in this subsection.

Surrogate models. For each of the 176 surrogate models (121
interest segment and 55 bid models), we utilize 80% of the data
collected from the 10,000 personas for training and 20% for
testing. We train each model via stochastic gradient descent
[68] with a batch size of 32 personas for 30 training rounds,
where all the training data are used once at each training round.

RL agent. We train and test the RL agent with the data
collected from the 15,000 personas. Specifically, we train the
RL agent using the surrogate models to collect the reward and
run the training for 300 rounds. We test the RL agent using
surrogate models for 10 rounds. At each training or testing
round we generate a batch of 50 personas.

In addition to testing the RL agent using surrogate models,
we also test it against real-world user profiling and ad targeting

models. To this end, we create 100 personas with 100 URLs
each. For each persona we start with a fresh browser profile in
OpenWPM [4]. For ad targeting, we immediately collect the
triggered bid values as we visit the 100 URLs of the persona.
For user profiling, we save the browser state after visiting all
100 URLs of the persona, and wait for 2 days to access the
Oracle Data Cloud Registry and collect the triggered interest
segments.

Recall that HARPO selects obfuscation URLs from the
intent URL category which consists of 1930 URLs (10 URLs
from each of the 193 intent URL subcategories). For scalability
reasons we wish to reduce the number of possible decisions,
thus implement the RL agent to select on of the intent URL
subcategories, and then HARPO randomly selects one of the
URLs within the selected intent URL subcategory. Note that by
construction, URLs within the same intent URL subcategory
have similar content.

Training cost. We note that it takes about 2 minutes to train the
surrogate model from scratch and less than 1 minute to train
the RL agent per-round on our server. While the exact training
time would vary depending on the user’s system specifications,
we do not expect it to take longer than a few minutes.

D. Accuracy of Surrogate Models

We study the accuracy of the surrogate models we trained
for user profiling and ad targeting and report the true positive
rate (TPR) and false positive rate (FPR) metrics. Out of the
121 interest segment models we select the 20 most accurate,
and out of the 55 bid models we select the 10 most accurate.
We then use those models to train and evaluate HARPO in the
context of user profiling and ad targeting.

User profiling. In general, the trained surrogate user profiling
models have reasonable accuracy. As reported in Table I, the
average FPR and TPR of the 20 most accurate surrogate
user profiling models are 3.92% and 96.57% respectively. The
FPRs of these 20 surrogate user profiling models ranges from
1.82% to 19.23% and the TPRs vary from 81.43% to 100.00%.
Last, among the 20 datasets training the top 20 surrogate user
profiling models, the percentage of data points with label value
1 (positive data, indicating the segment is triggered) varies
from 3.91% to 15.87%, with an average value of 7.04%.

Ad targeting. Compared with user profiling surrogate models,
we observe that ad targeting surrogate models are less accurate
in general. This is expected since the bids placed by each
bidder are likely affected by other auction dynamics, and
their values have larger variance making it more difficult to
predict accurately [51]. However, we still obtain 10 surrogate
ad targeting models with good accuracy, which achieve 18.28%
FPR and 73.43% TPR on average as shown in Table I. The
FPRs of these 10 surrogate models range from 12.37% to
16.93% and the TPRs vary from 70.27% to 78.35%. Last,
among the 10 datasets training the top 10 surrogate ad targeting
models, the percentage of positive data (indicating a high bid
is triggered) is 11.26% on average, ranging from 8.55% to
15.38%.

8

TABLE I: Accuracy of surrogate user profiling and ad targeting
models. FPR and TFP denote false positive and true positive
rates.

Model type User profiling Ad targeting
Number of models 20 10

Dataset size 10,000 10,000
Positive data 7.04% 11.26%
Average FPR 3.92% 18.28%
Average TPR 96.57% 73.43%

E. Baselines

We compare the performance of HARPO against four other
baseline approaches. Two of these approaches (AdNauseam
and TrackThis) have their own set of obfuscation URLs
whereas the other two (Rand-intent and Bias-intent) use dif-
ferent selection techniques on the set of obfuscation URLs
used by HARPO, see IV-B for more details on these sets of
obfuscation URLs. The four approaches are as follows:

AdNauseam. Every time an obfuscation URL is needed, we
uniformly randomly select one of the AdNauseam URLs.

TrackThis. Every time an obfuscation URL is needed, we
uniformly randomly select one of the TrackThis URLs.

Rand-intent. Every time an obfuscation URL is needed,
we uniformly randomly select one of the 193 intent URL
subcategories and pick one URL from this subcategory at
random.

Bias-intent. Every time an obfuscation URL is needed, we
randomly select one of the 193 intent URL subcategories with
the probability proportional to the average reward triggered
by URLs in this subcategory, and pick one URL from this
subcategory uniformly randomly.

It is noteworthy that the aforementioned AdNauseam and
TrackThis baselines are not exactly the same as the original
implementations. The original AdNauseam implementation
clicks on ad URLs that are on the current page, making it hard
to control the budget and diversity of obfuscation URLs. The
original TrackThis implementation opens 100 preset URLs. We
try to adapt these approaches to our experimental setup as best
as possible. To this end, we first use the original implementa-
tions to generate the AdNauseam and TrackThis URL sets as
described in the URL set subsection, and then randomly select
obfuscation URLs from these sets with uniform probability, as
already discussed.

V. EVALUATION

Figure 5 summarizes HARPO’s evaluation process. We first
use the user persona model of Section IV-A to generate a large
number of diverse web browsing profiles. Next, we use the 4
HARPO modules discussed in Section III-D in the following
order: (i) we use the doc2vec embedding model to extract
features for pages visited by each persona, (ii) we crawl data to
train surrogate user profiling and ad targeting models and use
them to train the RL agent, (iii) we use the RL agent to select
obfuscation URLs, and (iv) we use the URL agent to create
obfuscated personas. Then, we evaluate HARPO’s effectiveness
in protecting user privacy as compared to the baselines against
real-world user profiling and ad targeting models. Finally, we

analyze HARPO’s performance from three key perspectives:
overhead, stealthiness (using an adversarial detection model
introduced later in Section V-D), and adaptiveness.

A. Privacy

Table II reports the effectiveness of HARPO and baselines
in protecting user privacy against surrogate user profiling (L1

and L2) and ad targeting (L3 and L4) models. Here, we only
report the results for α = 0.1. Section V-C reports the results
for varying values of α. Note that the Control represents a
persona that does not deploy obfuscation.

User profiling. We note that HARPO outperforms all four
baselines with respect to both L1 and L2 metrics. HARPO
triggers an average of 36.31% (L1) interest segments that
were not present in the corresponding Control persona. The
obfuscated persona has on average 4.40 (L2) different interest
segments from the corresponding Control persona, where on
average 4.17 are new segments and 0.23 are removed segments
from the Control persona.9 While Rand-intent and Bias-intent
fare much better than AdNauseam and TrackThis, HARPO
outperforms all of the baselines by at least 1.41× and up
to 2.92× in terms of L1. Similarly, HARPO outperforms all
baselines by at least 1.46× and up to 4.00× in terms of L2.

Ad targeting. We again note that HARPO outperforms all four
baseline approaches in terms of L3 metric.10 HARPO increases
high bids by 38.96% as compared to the Control persona.
HARPO again outperforms all of the baselines. Bias-intent is
the most competitive baseline triggering 24.72% high bids on
average. However, HARPO is able to outperform it significantly
by triggering 1.58× more high bids.

TABLE II: Evaluation results with surrogate models w.r.t. L1

(percent of false segments in obfuscated persona), L2 (number
of different segments between base and obfuscated persona),
L3 (percentage increase of high bids in obfuscated persona),
L4 (average ratio of obfuscated persona over base persona bid
values).

Approaches Metrics
L1 L2 L3 L4

Control 0.00% 0.00 0.00% –
AdNauseam 12.42% 1.10 2.78% –
TrackThis 17.76% 1.42 11.00% –

Rand-intent 23.06% 1.75 14.84% –
Bias-intent 25.71% 3.01 24.72% –

HARPO 36.31% 4.40 38.96% –

B. Transferability

Next, we evaluate the effectiveness of HARPO and base-
lines against real-world user profiling and ad targeting models.
To this end, we replace surrogate models with the real-world
user profiling model by Oracle Data Cloud Registry and ad
targeting models of 10 different bidders. Table IIIa reports the
effectiveness of HARPO and baselines against real-world user
profiling (L1 and L2) and ad targeting (L3 and L4) models.

9While the vast majority of different segments between the Control and
obfuscated persona are newly added segments here, when evaluating HARPO
against real-world user profiling and ad targeting models 25% of different
segments are due to removals, see Section V-B.

10Note that we do not report results for L4 because the surrogate model
can only predict whether the bid is high or low, and not its actual value. We
evaluate L4 in Section V-B.

9

User persona
model

Document
embedding model

RL agent

Surrogate tracker models
User profiling Ad targeting Adversarial detection model

Non-obfuscated
personas

Privacy
evaluation

Stealthinessevaluation

Content
features URL agentObfuscated

personas

Harpo

Train RL

Real-world tracker models

Oracle Bidders

Fig. 5: Overview of HARPO’s evaluation process.

TABLE III: Transferability results w.r.t. L1 (percent of differ-
ent segments between base and obfuscated profile), L2 (percent
of false segments in obfuscated profile), L3 (percentage in-
crease of high bids in obfuscated profile), L4 (average ratio of
obfuscated persona over base persona bid values), CPM (cost
per thousand impressions in dollar, the unit of bid values).

(a) Effectiveness against real-world tracker models used in train-
ing, with synthetic user personas as inputs

Approaches Metrics
L1 L2 L3 L4 (CPM)

Control 0.00% 0.00 0.00% 1.00 ($0.29)
AdNauseam 12.85% 1.53 2.70% 1.21 ($0.35)
TrackThis 32.67% 2.81 -1.50% 0.89 ($0.26)

Rand-intent 33.10% 3.18 8.40% 1.69 ($0.49)
Bias-intent 31.27% 3.19 10.30% 2.07 ($0.60)

HARPO 43.24% 5.22 43.30% 6.28 ($1.82)

(b) Effectiveness against real-world tracker models not used in
training, with synthetic user personas as inputs

Approaches Metrics
L1 L2 L3 L4 (CPM)

Bias-intent with L1 – – 3.60% 1.40 ($0.40)
HARPO with L1 – – 10.20% 2.06 ($0.59)

Bias-intent with L2 – – 9.6% 1.73 ($0.50)
HARPO with L2 – – 10.10% 2.10 ($0.61)

Bias-intent with L3 24.70% 2.55 – –
HARPO with L3 46.72% 2.97 – –

(c) Effectiveness against real-world tracker models using real
user personas from AOL dataset

Approaches Metrics
L1 L2 L3 L4 (CPM)

Control 0.00% 0.00 0.00% 1.00 ($0.09)
AdNauseam 5.50% 0.60 1.30% 1.27 ($0.15)
TrackThis 12.97% 1.58 0.00% 0.84 ($0.11)

Rand-intent 24.24% 2.24 0.90% 2.22 ($0.20)
Bias-intent 19.39% 1.75 16.00% 6.67 ($0.60)

HARPO 45.06% 5.14 49.10% 18.96 ($1.71)

User profiling. We again note that HARPO outperforms all
four baselines with respect to both L1 and L2 metrics, as
shown in Table IIIa. In fact, HARPO’s margin of improvement
over baselines further increases against real-world models as
compared to surrogate models. HARPO now triggers an average
of 43.24% (L1) interest segments that were not present in the
corresponding Control persona. The obfuscated persona now
has on average 5.22 (L2) different interest segments from the
corresponding Control persona, where 3.89 on average are new
interest segments and 1.33 are removed segments from the
Control persona. HARPO outperforms all baselines by at least
1.31× and up to 3.36× in terms of L1. Similarly, HARPO
outperforms all of the baselines by at least 1.64× and up to
3.41× in terms of L2.

Ad targeting. As reported in Table IIIa, HARPO increases
high bids by 43.30% (L3) and bid values by 6.28× (L4) as
compared to the Control persona. We again note that HARPO’s

margin of improvement over baselines further increases against
real-world models as compared to surrogate models. HARPO
significantly outperforms all baselines by up to 16.04× in
terms of L3 and 7.06× in terms of L4. Bias-intent is again
the most competitive baseline, but it increases high bids by
only 10.30% and bid values by only 2.07. HARPO is able to
outperform it significantly by triggering 4.03× more high bids
and 3.03× higher bid values.

Cross-validation against real-world tracker models. Our
transferability analysis so far has demonstrated that HARPO’s
effectiveness against user profiling/ad targeting surrogate mod-
els can be transferred to the real-world user profiling/ad target-
ing models well. To further investigate HARPO’s transferability
performance, we cross-validate HARPO by testing it against
different real-world tracker models than those used to train it.

Table IIIb reports two type of results. In the first four rows,
HARPO is trained with user profiling models (w.r.t. L1 or
L2) and tested against other models (e.g. against real-world
ad targeting models, see L3 and L4 results). In the last two
rows, HARPO is trained with ad targeting models (w.r.t. L3)
and tested against real-world user profiling models (see L1

and L2 results). As expected, its effectiveness is somewhat
lower when it is tested against different models than the ones
it was trained with, see Table IIIa versus IIIb results. That said,
HARPO performs well regardless. For example, it increases the
average bid values by more than 2× when trained with user
profiling models, and it creates obfuscated personas which
have on average 2.97 different interest segments from the
corresponding Control persona when trained with ad targeting
models. When comparing cross validation results for HARPO
and baselines (the table shows results only for Bias-intent as
for the rest of the baselines the results do not change from
those in Table IIIa), when trained with user profiling models
HARPO outperforms baselines by up to 3.76× in terms of L3

and 2.34× in terms of L4 (i.e. against real-world ad targeting
models). Similarly, when trained with ad targeting models,
HARPO outperforms all of the baselines against real-world user
profiling models, by at least 1.17× and up to 2.79× in terms
of L1 and L2 on average.

Evaluation using real user personas. We have thus far
evaluated HARPO’s effectiveness using synthetic user personas.
Next, we evaluate HARPO’s effectiveness using real user
personas. To this end, we randomly sample 100 real-world
user personas from the AOL dataset and use them as non-
obfuscated personas. Then, we use HARPO and baselines
approaches to generate 100 obfuscated personas and evaluate
the effectiveness of obfuscation against real-world tracker
models.

Table IIIc shows that HARPO continues to significantly
outperform all baselines. Specifically, HARPO outperforms
all baselines against real-world user profiling models by up
to 8.19× and 8.57× in terms of L1 and L2, respectively.

10

Also, HARPO outperforms all baselines against real-world ad
targeting models by up to 54× and 22.57× in terms of L3

and L4, respectively. These results demonstrate that HARPO
under real personas achieves comparable results in terms of L1

and L2 and better results in terms of L3 and L4 as compared
to under synthetic personas, which demonstrates HARPO’s
transferability under real user personas. Note that the CPM
value for Control in Table IIIc is lower than that for synthetic
personas in Table IIIa yielding a large gap between the value
of L4 under Table IIIa and IIIc, but the actual CPM value for
HARPO is comparable between the two tables.

In conclusion, our results demonstrate that HARPO’s per-
formance transfers well to different real-world tracker models
encountered in the wild as well as to real user personas. The
trends are largely consistent across surrogate and real-world
models and across synthetic and real user personas. In fact, the
performance gap between HARPO and baselines widens in the
real-world evaluation. It is worth mentioning that real-world
user profiling and ad targeting models may change over time.
While our results here demonstrate that HARPO transfers well
to real-world models, it might be prudent to update HARPO
from time to time to account for significant changes. We
remark that HARPO’s RL agent is amenable to be updated
in an online fashion and can also leverage transfer learning
techniques to avoid training from scratch.

C. Overhead

Obfuscation overhead. Our evaluation thus far has used the
obfuscation budget of α = 0.1. Next, we investigate the impact
of varying the obfuscation budget, controlled by the parameter
α, on the effectiveness of HARPO and baselines. Figure 6 plots
the impact of varying α between 0.1 and 0.2 on real-world user
profiling and ad targeting models. While there is a general
increase in the effectiveness for a larger obfuscation budget, it
is noteworthy that some baselines actually degrade when α is
increased from 0.1 to 0.2. We note that HARPO’s effectiveness
generally improves for the larger obfuscation budget and it
continues to outperform the baselines. HARPO’s effectiveness
improves by 1.33× for L1, 1.03× for L2, 1.41× for L3, and
1.23× for L4 when α is increased from 0.1 to 0.2. In fact,
HARPO outperforms baselines even with a lower obfuscation
budget. Overall, HARPO at α = 0.1 outperforms baselines at
α = 0.2 by at least 1.47× in terms of L2 on average and up
to 13.27× in terms of L3 on average.

System overhead. We evaluate the system overhead of HARPO
to assess its potential adverse impact on user experience.
We study HARPO’s system overhead in terms of resource
consumption (CPU and memory usage) and overall user expe-
rience (page load time). We launch a total of 300 browsing
sessions on a commodity Intel Core i7 laptop with 8 GB
memory on a residential WiFi network, without HARPO as
control and with HARPO for α = 0.1 and 0.2. Each browsing
session involved visiting a series of 20 pages, with the next
page being loaded as soon as the first page finished loading.
For each page visit during the browsing session, we measure
the CPU and memory consumption as well as the page load
time. The average percentage increase in CPU usage over
control is 5.3% and 8.8% for α = 0.1 and 0.2, respectively. The
average percentage increase in memory usage over control is

3.9% and 4.0% for α = 0.1 and 0.2, respectively. The average
percentage increase in page load time over control is 0.20 and
0.26 seconds for α = 0.1 and 0.2, respectively. We conclude
that increasing values of α has a modest impact on the CPU
and memory but a minimal impact on overall user experience.
This is because HARPO’s browser extension implementation
(model and fake page visits) uses a separate background thread
that does not directly interrupt the browser’s main thread.
Overall, we expect HARPO’s implementation to have negligible
system overheads on reasonably well-provisioned devices.

D. Stealthiness

Next, we introduce the notion of stealthiness to reason
about potential countermeasures by the tracker against HARPO.
More specifically, we expect the tracker to try to detect the
usage of HARPO using purpose-built ML models. We evaluate
the stealthiness of HARPO and baselines as well as study the
trade-off between stealthiness and obfuscation budget (α).

Adversarial detection. To build a supervised detection model,
the tracker needs to gather training data comprising of both
non-obfuscated and obfuscated browsing profiles. To this end,
we assume a strong adversary that has access to sufficient
non-obfuscated browsing profiles as well as black-box access
to obfuscators (including HARPO) that can be used to gather
obfuscated browsing profiles. To train the classification model,
we assume that the tracker extracts embedding based content
features for all the URLs in the available positive and negative
labeled browsing profiles. Thus, we assume that the tracker:
(1) can track all the URLs in a user’s browsing profile; (2)
is able to extract content features for any URL that a user
may visit; and (3) has sufficient resources to gather training
data and train an ML-based supervised detection model. Based
on these assumptions, we design a binary ML classifier that
uses the doc2vec embeddings as features of a user browsing
profile and outputs a binary detection decision to indicate
whether or not a given persona is obfuscated by HARPO (or
other obfuscators under consideration). We gather a dataset of
obfuscated and non-obfuscated personas containing a total of
20,000 URLs and use a similar 80-20 split to train and test
this detector. We then use the detection error as a metric to
measure stealthiness–obfuscation is more/less stealthy if the
detection error is higher/lower.

Privacy-stealthiness trade-off. We evaluate privacy and
stealthiness of HARPO and baselines as we vary α ∈
{0.05, 0.10, 0.15, 0.20} in Figure 7. We note that stealthiness
generally degrades for larger values of α. As also shown in
Section V-C, we again note that privacy generally improves
for larger values of α. Thus, we get the privacy-stealthiness
trade-off curve as α is varied. This trade-off is intuitive as
the higher the obfuscation budget (α), the higher the privacy.
Additionally, it should be easier for the detector to identify the
presence of obfuscation when α is higher, leading to lower
stealthiness. It is noteworthy that HARPO achieves the best
privacy-stealthiness trade-off (towards the top right of Figure
7) as compared to baselines. More specifically, for the same
level of stealthiness, HARPO outperforms all baselines with
respect to various privacy metrics. Similarly, for the same level
of privacy, it achieves better stealthiness than baselines.

HARPO achieves both high privacy and stealthiness and is

11

A
d
N

au
seam

T
rack

T
h
is

R
an

d
-in

ten
t

B
ias-in

ten
t

H
arp

o

0%

20%

40%

60%
P

ri
v
ac

y
 (

L
1
)

=0.1

=0.2

(a) User profiling loss w.r.t. L1

A
d
N

au
seam

T
rack

T
h
is

R
an

d
-in

ten
t

B
ias-in

ten
t

H
arp

o

0

2

4

6

P
ri

v
ac

y
 (

L
2
)

=0.1

=0.2

(b) User profiling loss w.r.t. L2

A
d
N

au
seam

T
rack

T
h
is

R
an

d
-in

ten
t

B
ias-in

ten
t

H
arp

o

0%

20%

40%

60%

P
ri

v
ac

y
 (

L
3
)

=0.1

=0.2

(c) Ad targeting loss w.r.t. L3

A
d
N

au
seam

T
rack

T
h
is

R
an

d
-in

ten
t

B
ias-in

ten
t

H
arp

o

0

2

4

6

8

P
ri

v
ac

y
 (

L
4
)

=0.1

=0.2

(d) Ad targeting loss w.r.t. L4

Fig. 6: Loss under different obfuscation budgets for the user profiling and ad targeting models. Note that the reported loss values
(L1, L2, L3) are all against real-world user profiling and ad targeting models.

0% 10% 20% 30% 40% 50%

Stealthiness (detection error)

10%

20%

30%

40%

P
ri

v
ac

y
 (

L
1
)

Harpo

Bias-intent

Rand-intent

AdNauseam

TrackThis

Stealthy

=0.2

=0.05

=0.1

=0.15

(a) Privacy and stealthiness trade-off w.r.t.
L1

0% 10% 20% 30% 40% 50%

Stealthiness (detection error)

1

2

3

4
P

ri
v
ac

y
 (

L
2
)

Harpo

Bias-intent

Rand-intent

AdNauseam

TrackThis

(b) Privacy and stealthiness trade-off w.r.t.
L2

0% 10% 20% 30% 40% 50%

Stealthiness (detection error)

0%

10%

20%

30%

40%

50%

P
ri

v
ac

y
 (

L
3
)

Harpo

Bias-intent

Rand-intent

AdNauseam

TrackThis

(c) Privacy and stealthiness trade-off w.r.t.
L3

Fig. 7: Stealthiness evaluation results. Note that the α values from left to right of each curve in each figure are 0.2, 0.15, 0.1
and 0.05 respectively. The reported privacy values (L1, L2, L3) are against surrogate user profiling and ad targeting models.

more stealthy than baselines because it ensures that obfuscation
URLs are varied by disincentivizing the selection of same
URLs and URL categories thanks to the way we have designed
the reward of the RL agent and the corresponding MDP
(see Section III-C). Note that by varying δ, the adjustable
parameter in the reward function which controls the diversity
of URL selection, from 0.001 to 0.1, HARPO may achieve a
range of privacy and stealthiness results. While Bias-intent and
Rand-intent are in the same ballpark as HARPO, we note that
AdNauseam and TrackThis by far achieve the worst privacy-
stealthiness trade-off (towards the bottom left of Figure 7).
AdNauseam is not stealthy because it always selects an ad
URL, which perhaps stands out to the obfuscation detector.
Note that this occurs in spite of the fact that, to account
for real world user behavior, we make sure non-obfuscated
personas include 5% of advertising URLs, thus there are ad
URLs in both the original and obfuscated profiles. Similarly,
our TrackThis implementation randomly selects one of the
obfuscation URLs from a curated set.11

We conclude that HARPO is able to achieve better privacy-
stealthiness trade-off as compared to baselines. This is in
part because HARPO is able to achieve better privacy for a
given obfuscation budget due to its principled learning based
approach. To further provide insights into HARPO, we next
analyze obfuscation URLs selected by HARPO and two of the
most competitive baselines (Bias-intent and Rand-intent).

11The original TrackThis implementation uses four fixed set of curated
obfuscation URL sets, and selects one of those to injected all its ≈ 100
URLs at the same time for obfuscation, which can be trivially detected.

E. Adaptiveness

Our analysis thus far has not looked at whether and how the
obfuscation URLs selected by HARPO and baselines adapt to
different user personas. To study adaptiveness of obfuscation,
we conduct a controlled experiment using a sample of 20
different personas (see Section IV-A for details). To quantify
the differences in selection of obfuscation URLs across each
pair of personas, we visualize the distance between their
distributions of obfuscation URL categories12 in Figure 8.
Rows and columns here represent different persona types, and
each cell in the matrix represents the normalized Euclidean
distance between the corresponding pair of distributions of
obfuscation URL categories. If an obfuscation approach is
not adaptive to different personas, we expect the values in
the matrix to be closer to 0. Figure 8 shows that HARPO
is clearly more adaptive across personas than our two most
competitive baselines (Bias-intent and Rand-intent). The aver-
age adaptiveness of Bias-intent and Rand-intent is respectively
1.53× and 1.51× worse than HARPO. Rand-intent and Bias-
intent are less adaptive because they use a fixed distribution
(uniform or weighted) to select obfuscation URL categories.
Overall, together with its principled nature, we believe that
HARPO’s superior adaptiveness helps it achieve better privacy-
stealthiness trade-off as compared to baselines.

F. Personalization

A user may disallow HARPO from distorting certain seg-
ments. This may be because the user wants to preserve a

12Recall from Section IV-C that HARPO and baseline randomly select
obfuscation URLs from a pool of 193 URL subcategories.

12

 4 8
1
2

1
6

2
0

4

8

12

16

20

(a) Adaptiveness of Rand-intent

 4 8

1
2

1
6

2
0

4

8

12

16

20

(b) Adaptiveness of Bias-intent

 4 8
1

2
1

6
2

0

4

8

12

16

20 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) Adaptiveness of HARPO

Fig. 8: Adaptiveness of HARPO and two of the most competitive baselines (Rand-intent and Bias-intent) against ad targeting
models. The color of each cell represents the normalized Euclidean distance between a pair of obfuscation URL category
distributions. Warmer colors (red; higher values) represent superior adaptiveness.

TABLE IV: Personalization results. Lallowed2 and Ldisallowed2
denote the distortion on allowed segments and disallowed
segments respectively. Note that HARPO is trained to maximize
Lallowed2 + Ldisallowed2 , while personalized HARPO is trained
to maximize Lallowed2 − wdLdisallowed2 .

Lallowed
2 Ldisallowed

2
HARPO 3.74 0.71

Personalized HARPO 4.06 0.12

segment in his/her profile such that, for example, he/she may
receive related ads [69]. Or, it may be because the user does not
want his/her profile to include a sensitive incorrect segment.
Motivated by this, we conducted an additional experiment
where we trained HARPO to distort allowed segments while
preserving disallowed segments. Among the 20 considered
interest segments, we select 15 as allowed and 5 as disallowed.

We denote the L2 distortion on allowed and disallowed
segments by Lallowed2 and Ldisallowed2 respectively. Then, we
train HARPO to maximize Lallowed2 − wdLdisallowed2 , i.e., to
maximize the distortion in allowed segments while minimizing
the distortion in disallowed segments. Note that wd is an
adjustable parameter controlling how aggressive HARPO is
in distorting segments.13 As shown in Table IV, personal-
ized HARPO is able to trigger the same level of distortion
for allowed segments compared to non-personalized HARPO.
However, personalized HARPO is able to preserve disallowed
segments much better than non-personalized HARPO. Such
personalized obfuscation would provide HARPO users more
fine-grained control over their user profiles and subsequent ad
targeting.

VI. DISCUSSION

A. Ethical Considerations

We make a case that potential benefits of HARPO to users
outweigh potential harms to the online advertising ecosystem.

Benefits to users. We argue that HARPO meaningfully con-
tributes to improving privacy for users who have no other
recourse. The web’s current business model at its core has
been described as surveillance capitalism [11], [70], [71].
The true extent of pervasive tracking and surveillance for
the sake of online targeted advertising is unknown to lay
users, who cannot be reasonably expected to understand the
details buried in incomprehensible privacy policies [72], [73]

13We set wd to 0.1 for this experiment.

or make the informed choices due to deceptive practices [74].
A vast majority of online advertising platforms do not support
privacy-by-design features or attempt to circumvent privacy-
enhancing blocking tools. Thus, the practice of falsification
in a privacy-enhancing obfuscation tool, such as HARPO, is
ethically justified from the user’s perspective [75].

Harms to online advertising ecosystem. We argue that
potential harms of HARPO to online advertising ecosystem
are lower than existing obfuscation approaches or other al-
ternatives. HARPO does introduce additional costs/overheads
for publishers and advertisers. Since HARPO reduces the
effectiveness of user profiling and ad targeting, advertisers may
have to spend more on advertising to achieve the same level of
conversions. Publishers, in turn, may also notice a reduction in
their advertising revenues. In the worst case where behavioral
targeting is completely ineffective, advertisers may have to re-
sort to contextual advertising that is reportedly about 52% less
valuable [76], [77]. However, we note that obfuscation is more
viable as compared to other alternatives such as ad/tracker
blocking, where advertisers and publishers essentially lose all
advertising revenue. Moreover, unlike AdNauseam, HARPO is
designed to not explicitly click on ads, thereby not engaging
in overt ad fraud.

Thus, we argue that HARPO provides an ecologically
viable (though less profitable) path for the online advertising
ecosystem while providing clear privacy benefits to users.

B. Limitations

We discuss some of the limitations of HARPO’s design,
implementation, and evaluation.

Side-channels. There are side-channels that can be used to
undermine HARPO’s stealthiness. Specifically, since HARPO
uses background tabs to load obfuscation URLs, an adversary
can use the Page Visibility API [78] or timing information via
Performance API [79] to determine whether the tab is open in
the background and detect the use of HARPO. More generally,
HARPO’s browser extension implementation is susceptible to
extension fingerprinting attacks [80]–[83]. HARPO’s imple-
mentation can be hardened against these attacks by patching
the APIs that leak such information.

Tracking modalities. Trackers use multiple modalities (brows-
ing profile, page interactions, location, sensors, etc.) to profile
user interests and subsequently target ads. While HARPO is
currently designed to only obfuscate users’ browsing profiles,
it can be extended to obfuscate other modalities in the future.

13

User traces. We evaluated HARPO using both real user traces
from the 15 year old AOL dataset and synthetic traces based on
our user persona model. We acknowledge that the character-
istics of the AOL and synthetic traces might be different than
those of current real users. A future line of research would be
to evaluate HARPO by recruiting real users.

VII. RELATED WORK

In this section, we contextualize our work with respect to
prior literature on enhancing user privacy in online behavioral
advertising. Online advertising platforms typically do not allow
users to meaningfully opt in/out of tracking. The notable
exception is Apple’s newly introduced App Tracking Trans-
parency feature that requires apps to get permission from users
to track them for targeted advertising [22]. Unfortunately, a
vast majority of data brokers do not give users any meaningful
choice about tracking. Thus, as we discuss next, the privacy
community has developed a number of privacy-enhancing
blocking and obfuscation tools geared towards online behav-
ioral advertising.

A. Privacy-enhancing blocking tools

The privacy community has a long history of developing
privacy-enhancing tools to counter online advertising and
tracking through blocking. These blocking tools have seen
widespread adoption, with hundreds of millions of users across
uBlock Origin [23], AdBlock Plus [84], and Ghostery [24].
In fact, several privacy-focused browsers such as Firefox [85]
and Brave [86] now provide built-in blocking features. An
established line of research aims to improve the effectiveness
of these blocking tools [25], [44], [87]–[92]. In addition
to blanket blocking of advertising and/or tracking, selective
blocking tools aim to give users control over the trade-off
between privacy and utility. Tools such as MyTrackingChoices
[93] and TrackMeOrNot [94] enable users to block tracking
of private interests while allowing tracking of non-private
interests. Thus, these selective blocking tools can help users
still receive personalized ads for non-private interests while
protecting their private interests.

Unsurprisingly, advertisers and trackers consider blocking
a threat to their business model. The ensuing arms race over
the last few years has seen advertisers and trackers leveraging a
myriad of ways to circumvent blocking [25], [26], [28], [29].
First, blocking tools that rely on signatures (e.g., EasyList)
can be trivially evaded by simply modifying the signature
(e.g., randomizing domain names or URL paths) [28]. Second,
new circumvention techniques to bypass blocking techniques
are often devised before being eventually patched [32]–[34].
Finally, prior work has demonstrated the non-stealthy nature
of most forms of ad blocking as they can be reliably detected
by publishers, allowing them to retaliate using anti-adblocking
paywalls [95], [96]. Thus, blocking is not the silver bullet
against online advertising and tracking.

B. Privacy-enhancing obfuscation tools

Closer to our focus in this paper, the privacy community
has also developed privacy-enhancing obfuscation tools to
counter online advertising and tracking [97]. We discuss prior
obfuscation approaches in terms of whether the obfuscation

approach is: (1) adaptive to the user’s browsing profile, (2)
principled in attacking the tracker’s profiling/targeting model,
(3) stealthy against detection and potential countermeasures by
the tracker, and (4) cognizant of obfuscation overheads.

In a seminal work, Howe and Nissenbaum [35] pre-
sented AdNauseam that combined blocking with obfuscation
to “protest” against online targeted advertising. The main aim
is to protect user privacy by confusing user profiling and ad
targeting systems used in online targeted advertising. To this
end, AdNauseam obfuscates a user’s browsing behavior by
deliberately clicking on a controllable fraction of encountered
ads. While AdNauseam’s obfuscation approach is adaptive to
the user’s browsing and allows control of overheads, it is not
principled and stealthy—it injects a random subset of ad URLs
in a user’s browsing profile without any awareness of the user
profiling or ad targeting model. In the same vein, Mozilla
recently launched TrackThis [36] to “throw off” advertisers
and trackers by injecting a curated list of obfuscation URLs.
TrackThis is more primitive than AdNauseam—it is further not
adaptive or stealthy because it injects a fixed set of curated
obfuscation URLs that do not change across different user
browsing profiles.

In an early work that does not specifically focus on online
targeted advertising, Xing et al. [98] proposed an attack
to “pollute” a user’s browsing profile and impact first-party
personalization on YouTube, Google, and Amazon. Building
on this work, Meng et al. [99] implemented and deployed
this polluting attack against online targeted advertising. Their
obfuscation approach randomly injects curated URLs that
are likely to trigger re-targeting. In another attack on online
targeted advertising, Kim et al. [100] proposed to create fake
browsing profiles to waste an advertiser’s budget on fake ad
slots. While similar to Meng et al. [99] in that they aim
to trigger more expensive re-targeted ads, their attack does
not seek to enhance user privacy and is squarely focused on
wasting the budget of advertisers. While these obfuscating
approaches were shown to impact ad targeting, they share the
same limitations as TrackThis.

Degeling and Nierhoff [38] designed and evaluated an
obfuscation approach to “trick” a real-world user profiling
system. While their obfuscation approach injects a curated
set of obfuscation URLs, it is principled because it relies on
feedback from the advertiser’s user profiling model to select
obfuscation URLs. Their obfuscation approach was shown to
induce incorrect interest segments in BlueKai’s user profiling
model. While their obfuscation approach is principled and
somewhat adaptive to a user’s browsing profile, it is neither
stealthy nor cognizant of obfuscation overheads.

In a related obfuscation-through-aggregation approach,
Biega et al. [39] proposed to use a proxy to interleave
browsing profiles of multiple users to protect their privacy
through “solidarity.” Their approach mixes browsing profiles of
different users based on the similarity between their browsing
profiles. Their approach is adaptive and stealthy because it tries
to mix browsing profiles of similar users. However, it is neither
principled nor it is cognizant of obfuscation overheads.

Beigi et al. [40] proposed to use greedy search to suitably
obfuscate a user’s browsing profile. Their approach is adaptive
and principled since it uses a greedy search approach that is

14

essentially equivalent to our Bias-intent baseline. However, it
does not consider sequential dependencies [101] in a user’s
browsing profile or allow control over obfuscation overheads.

VIII. CONCLUSION

In this paper we presented HARPO, a principled reinforce-
ment learning-based obfuscation approach to subvert online
targeted advertising. HARPO significantly outperforms existing
obfuscation tools by as much as 16× for the same overhead.
Additionally, for the same level of privacy, HARPO provides
better stealthiness against potential countermeasures. Thus, the
privacy protections offered by HARPO are better suited for the
arms race than existing obfuscation tools. We hope that HARPO
and follow-up research will lead to a new class of obfuscation-
driven effective, practical, and long lasting privacy protections
against online behavioral advertising. To facilitate follow-up
research, we plan to release HARPO’s source code and browser
extension implementation.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez,
Arvind Narayanan, and Claudia Diaz. The Web Never Forgets:
Persistent Tracking Mechanisms in the Wild. In ACM Conference
on Computer and Communications Security (CCS), 2014.

[2] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting
the fingerprinters: Learning to detect browser fingerprinting behaviors.
IEEE Symposium on Security & Privacy (S&P), 2021.

[3] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos.
Cookie synchronization: Everything you always wanted to know but
were afraid to ask. In The World Wide Web Conference (WWW), 2019.

[4] Steven Englehardt and Arvind Narayanan. Online Tracking: A 1-
million-site Measurement and Analysis. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[5] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zim-
merman, Jonathan Mayer, Arvind Narayanan, and Edward W Felten.
Cookies that give you away: The surveillance implications of web
tracking. In International Conference on World Wide Web (WWW),
2015.

[6] Lukasz Olejnik, Minh-Dung Tran, and Claude Castelluccia. Selling
off privacy at auction. In Network and Distributed Systems Security
(NDSS) Symposium, 2014.

[7] Federal Trade Commission. Data brokers: A call for transparency and
accountability. 2014.

[8] Tami Kim, Kate Barasz, and Leslie K John. Why Am I Seeing This
Ad? The Effect of Ad Transparency on Ad Effectiveness. Journal of
Consumer Research, 45(5):906–932, 05 2018.

[9] Tobias Dehling, Yuchen Zhang, and Ali Sunyaev. Consumer percep-
tions of online behavioral advertising. In 2019 IEEE 21st Conference
on Business Informatics (CBI). IEEE, 2019.

[10] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay,
and Yang Wang. Smart, useful, scary, creepy: perceptions of online
behavioral advertising. In Symposium on Usable Privacy and Security
(SOUPS, 2012.

[11] Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for
a Human Future at the New Frontier of Power. 2019.

[12] Types of cookies used by Google. https://policies.google.com/techno
logies/types.

[13] Ashkan Soltani and Barton Gellman. New documents show how
the NSA infers relationships based on mobile location data. The
Washington Post, 2013.

[14] S. Farrell and H. Tschofenig. Pervasive Monitoring Is an Attack. IETF
RFC 7258, 2014.

[15] Noam Scheiber. Facebook accused of allowing bias against women in
job ads. The New York Times, 2018.

[16] Chris Stokel-Walker. Facebook’s ad data may put millions of gay
people at risk. New Scientist, 2019.

[17] Julia Angwin and Terry Parris Jr. Facebook lets advertisers exclude
users by race. ProPublica, 2016.

[18] S. C. Matz, M. Kosinski, G. Nave, and D. J. Stillwell. Psychological
targeting as an effective approach to digital mass persuasion. Pro-
ceedings of the National Academy of Sciences, 114(48):12714–12719,
2017.

[19] Dan Gizzi. The ethics of political micro-targeting, 2018.
[20] Donie O’Sullivan and David Shortell. Exclusive: The fbi is running

facebook ads targeting russians in washington. 2019.
[21] Naomi LaChance. Program to deradicalize jihadis will be used on

right-wingers. The Intercept, 2018.
[22] App Tracking Transparency. https://developer.apple.com/documentat

ion/apptrackingtransparency.
[23] Raymond Hill. An efficient blocker for Chromium and Firefox. Fast

and lean, uBlock Origin. https://github.com/gorhill/uBlock\#ublock-o
rigin, 2019.

[24] Ghostery. https://www.ghostery.com/.
[25] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun

Qian, and Zubair Shafiq. Adgraph: A graph-based approach to ad
and tracker blocking. IEEE Symposium on Security & Privacy (S&P),
2020.

[26] Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu
Zhang, and Patrick Eugster. Webranz: Web page randomization
for better advertisement delivery and web-bot prevention. In ACM
International Symposium on Foundations of Software Engineering
(FSE), 2016.

[27] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis,
Sebastian Neuner, Martin Schmiedecker, and Edgar Weippl. Block
me if you can: A large-scale study of tracker-blocking tools. In 2017
IEEE European Symposium on Security & Privacy (Euro S&P), 2017.

[28] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. Errors,
misunderstandings, and attacks: Analyzing the crowdsourcing process
of ad-blocking systems. In ACM Internet Measurement Conference
(IMC), 2019.

[29] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos.
Detecting filter list evasion with event-loop-turn granularity javascript
signatures. In IEEE Symposium on Security & Privacy (S&P), 2021.

[30] Peter Snyder, Antoine Vastel, and Ben Livshits. Who filters the filters:
Understanding the growth, usefulness and efficiency of crowdsourced
ad blocking. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 4(2):1–24, 2020.

[31] Hieu Le, Athina Markopoulou, and Zubair Shafiq. CV-Inspector: To-
wards Automating Detection of Adblock Circumvention. In Proceed-
ings of the Symposium on Network and Distributed System Security
(NDSS), 2021.

[32] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William
Robertson, and Christo Wilson. How tracking companies circumvented
ad blockers using websockets. In ACM Internet Measurement Confer-
ence (IMC), 2018.

[33] Ha Dao, Johan Mazel, and Kensuke Fukuda. Characterizing CNAME
Cloaking-Based Tracking on the Web. In Traffic Measurement and
Analysis Conference (TMA), 2020.

[34] Karthika Subramani, Xingzi Yuan, Omid Setayeshfar, Phani Vadrevu,
Kyu Hyung Lee, and Roberto Perdisci. Measuring abuse in web push
advertising. arXiv:2002.06448, 2020.

[35] Daniel C Howe and Helen Nissenbaum. Engineering Privacy and
Protest: A Case Study of AdNauseam. In International Workshop on
Privacy Engineering (IWPE), 2017.

[36] Hey advertisers, track THIS. https://blog.mozilla.org/firefox/hey-adv
ertisers-track-this, 2019.

[37] AdNauseam - Clicking Ads So You Don’t Have To. https://adnausea
m.io/.

[38] Martin Degeling and Jan Nierhoff. Tracking and tricking a profiler:
Automated measuring and influencing of bluekai’s interest profiling.
In Workshop on Privacy in the Electronic Society (WPES), 2018.

15

[39] Asia J. Biega, Rishiraj Saha Roy, and Gerhard Weikum. Privacy
through solidarity: A user-utility-preserving framework to counter
profiling. SIGIR ’17, page 675–684, New York, NY, USA, 2017.
Association for Computing Machinery.

[40] Ghazaleh Beigi, Ruocheng Guo, Alexander Nou, Yanchao Zhang,
and Huan Liu. Protecting user privacy: An approach for untrace-
able web browsing history and unambiguous user profiles. CoRR,
abs/1811.09340, 2018.

[41] Oracle Data Cloud Registry Information. https://datacloudoptout.orac
le.com.

[42] Michalis Pachilakis, Panagiotis Papadopoulos, Evangelos P. Markatos,
and Nicolas Kourtellis. No More Chasing Waterfalls: A Measurement
Study of the Header Bidding Ad-Ecosystem. In ACM Internet
Measurement Conference (IMC), 2019.

[43] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster:
Exploring the ecosystem of web-based device fingerprinting. In IEEE
Symposium on Security & Privacy (S&P), 2013.

[44] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol.
Tracking the trackers. In International Conference on World Wide
Web (WWW), 2016.

[45] Web-scale ML : learning is not the (only) point. https://labs.criteo.co
m/2018/05/ml-model-deployment/.

[46] General Data Protection Regulation (GDPR). https://gdpr-info.eu/.
[47] California Consumer Privacy Act (CCPA). https://oag.ca.gov/privacy

/ccpa.
[48] Richard Sutton and Andrew Barto. Reinforcement Learning: An

Introduction. MIT Press, 1998.
[49] Muhammad Ahmad Bashir, Umar Farooq, Maryam Shahid, Muham-

mad Fareed Zaffar, and Christo Wilson. Quantity vs. quality: Evalu-
ating user interest profiles using ad preference managers. In Network
and Distributed Systems Security (NDSS) Symposium, 2019.

[50] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and
Norbert Pohlmann. A study on subject data access in online adver-
tising after the GDPR. In International Workshop on Data Privacy
Management. 2019.

[51] Panagiotis Papadopoulos, Nicolas Kourtellis, Pablo Rodriguez Ro-
driguez, and Nikolaos Laoutaris. If you are not paying for it, you are
the product: How much do advertisers pay to reach you? In Internet
Measurement Conference (IMC), 2017.

[52] John Cook, Rishab Nithyanand, and Zubair Shafiq. Inferring tracker-
advertiser relationships in the online advertising ecosystem using
header bidding. Privacy Enhancing Technologies Symposium (PETS),
2020.

[53] Oracle Data Cloud Registry 2019 Data Directory. https://www.oracle
.com/us/solutions/cloud/data-directory-2810741.pdf.

[54] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International Conference on Machine Learning
(ICML), 2014.

[55] Taher H. Haveliwala, Glen M. Jeh, and Sepandar D. Kamvar. Targeted
advertisements based on user profiles and page profile, 2012.

[56] Darrell Anderson, Paul Buchheit, Alexander Paul Carobus, Yingwei
Cui, Jeffrey A. Dean, Georges R. Harik, Deepak Jindal, and Narayanan
Shivakumar. Serving advertisements based on content, 2006.

[57] OpenAI Baselines: ACKTR & A2C. https://openai.com/blog/baseline
s-acktr-a2c/.

[58] Yoon Kim. Convolutional neural networks for sentence classification.
In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

[59] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for
Partially Observable MDPs. AAAI Conference on Artificial Intelligence
(AAAI), 2015.

[60] Zhiyuan Xu, Jian Tang, Chengxiang Yin, Yanzhi Wang, and Guoliang
Xue. Experience-driven congestion control: When multi-path tcp
meets deep reinforcement learning. IEEE Journal on Selected Areas
in Communications, 37(6):1325–1336, 2019.

[61] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau.
A c-lstm neural network for text classification. arXiv preprint
arXiv:1511.08630, 2015.

[62] Anatomy of an extension. https://developer.mozilla.org/en-US/docs/M
ozilla/Add-ons/WebExtensions/Anatomy of a WebExtension.

[63] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of
search. In Proceedings of the 1st international conference on Scalable
information systems, pages 1–es, 2006.

[64] WhoisXMLAPI for URL categorization. https://whois.whoisxmlapi.co
m/.

[65] Alexa - Top Sites by Category: The top 500 sites on the web. https:
//www.alexa.com/topsites/category.

[66] Paul A Gagniuc. Markov chains: from theory to implementation and
experimentation. John Wiley & Sons, 2017.

[67] EasyList. https://easylist.to/.
[68] Léon Bottou. Large-scale machine learning with stochastic gradient

descent. In International Conference on Computational Statistics.
2010.

[69] Farah Chanchary and Sonia Chiasson. User perceptions of sharing,
advertising, and tracking. In Eleventh Symposium On Usable Privacy
and Security ({SOUPS} 2015), pages 53–67, 2015.

[70] Bennett Cyphers and Gennie Gebhart. Behind the One-Way Mirror: A
Deep Dive Into the Technology of Corporate Surveillance. Electronic
Frontier Foundation, 2019.

[71] Amnesty International. Surveillance giant: How the business model
of google and facebook threatens human rights. 2019.

[72] Ryan Amos, Gunes Acar, Elena Lucherini, Mihir Kshirsagar, Arvind
Narayanan, and Jonathan Mayer. Privacy policies over time: Curation
and analysis of a million-document dataset. arXiv:2008.09159, 2020.

[73] Matthew W Vail, Julia B Earp, and Annie I Antón. An empirical
study of consumer perceptions and comprehension of web site privacy
policies. IEEE Transactions on Engineering Management, 55(3):442–
454, 2008.

[74] Arunesh Mathur, Gunes Acar, Michael J Friedman, Elena Lucherini,
Jonathan Mayer, Marshini Chetty, and Arvind Narayanan. Dark pat-
terns at scale: Findings from a crawl of 11k shopping websites. ACM
Conference on Computer-Supported Cooperative Work and Social
Computing (CSCW), 2019.

[75] Finn Brunton and Helen Nissenbaum. Political and ethical perspectives
on data obfuscation. Privacy, due process and the computational turn:
The philosophy of law meets the philosophy of technology, 2013.

[76] Garrett A Johnson, Scott K Shriver, and Shaoyin Du. Consumer
privacy choice in online advertising: Who opts out and at what cost
to industry? Marketing Science, 39(1):33–51, 2020.

[77] Deepak Ravichandran and Nitish Korula. Effect of disabling third-
party cookies on publisher revenue. Google, 2019.

[78] Mozilla page visibility API. https://developer.mozilla.org/en-US/docs
/Web/API/Page Visibility API.

[79] Tab throttling and more performance improvements in Chrome M87.
[80] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos,

and Nick Nikiforakis. Fingerprinting in style: Detecting browser
extensions via injected style sheets. In 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[81] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason
Polakis. Carnus: Exploring the privacy threats of browser extension
fingerprinting. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS), 2020.

[82] Oleksii Starov and Nick Nikiforakis. Xhound: Quantifying the
fingerprintability of browser extensions. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 941–956. IEEE, 2017.

[83] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discov-
ering browser extensions via web accessible resources. In Proceedings
of the Seventh ACM on Conference on Data and Application Security
and Privacy, pages 329–336, 2017.

[84] Surf The Web With No Annoying Ads. https://adblockplus.org, 2019.
[85] Trackers and scripts Firefox blocks in Enhanced Tracking Protection.

https://www.ghostery.com/.
[86] Brave browser. https://brave.com/features/.
[87] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan.

The future of ad blocking: An analytical framework and new tech-
niques. arXiv:1705.08568, 2017.

16

[88] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent
Lenders. An automated approach for complementing ad blockers’
blacklists. Privacy Enhancing Technologies Symposium (PETS), 2015.

[89] Jason Bau, Jonathan Mayer, Hristo Paskov, and John C Mitchell. A
promising direction for web tracking countermeasures. Workshop on
Web 2.0 Security and Privacy, 2013.

[90] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kaafar,
Anirban Mahanti, and Balachandar Krishnamurthy. Towards seam-
less tracking-free web: Improved detection of trackers via one-class
learning. Privacy Enhancing Technologies Symposium (PETS), 2017.

[91] Anastasia Shuba, Athina Markopoulou, and Zubair Shafiq. NoMoAds:
Effective and efficient cross-app mobile ad-blocking. Privacy Enhanc-
ing Technologies Symposium (PETS), 2018.

[92] Qianru Wu, Qixu Liu, Yuqing Zhang, Peng Liu, and Guanxing Wen.
A machine learning approach for detecting third-party trackers on the
web. In Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas,
and Catherine Meadows, editors, European Symposium on Research
in Computer Security (ESORICS), 2016.

[93] Jagdish Prasad Achara, Javier Parra-Arnau, and Claude Castelluccia.
Mytrackingchoices: Pacifying the ad-block war by enforcing user
privacy preferences, 2016.

[94] Wei Meng, Byoungyoung Lee, Xinyu Xing, and Wenke Lee. Trackme-
ornot: Enabling flexible control on web tracking. In Proceedings of the
25th International Conference on World Wide Web, WWW ’16, page
99–109, Republic and Canton of Geneva, CHE, 2016. International
World Wide Web Conferences Steering Committee.

[95] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. De-
tecting anti ad-blockers in the wild. Privacy Enhancing Technologies
Symposium (PETS), 2017.

[96] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo
Vallina-Rodriguez, Marjan Falahrastegar, Julia E Powles, Emiliano
De Cristofaro, Hamed Haddadi, and Steven J Murdoch. Adblocking
and counter blocking: A slice of the arms race. In USENIX Workshop
on Free and Open Communications on the Internet (FOCI), 2016.

[97] Finn Brunton and Helen Nissenbaum. Obfuscation: A User’s Guide
for Privacy and Protest. 2015.

[98] Xingyu Xing, Wei Meng, Dan Doozan, Alex C. Snoeren, Nick
Feamster, and Wenke Lee. Take this personally: Pollution attacks
on personalized services. In 22nd USENIX Security Symposium
(USENIX Security 13), pages 671–686, Washington, D.C., August
2013. USENIX Association.

[99] Wei Meng, Xinyu Xing, Anmol Sheth, Udi Weinsberg, and Wenke
Lee. Your online interests: Pwned! a pollution attack against targeted
advertising. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, page 129–140,
New York, NY, USA, 2014. Association for Computing Machinery.

[100] I Luk Kim, Weihang Wang, Yonghwi Kwon, Yunhui Zheng, Yousra
Aafer, Weijie Meng, and Xiangyu Zhang. Adbudgetkiller: Online
advertising budget draining attack. In Proceedings of the 2018
World Wide Web Conference, WWW ’18, page 297–307, Republic
and Canton of Geneva, CHE, 2018. International World Wide Web
Conferences Steering Committee.

[101] Flavio Chierichetti, Ravi Kumar, Prabhakar Raghavan, and Tamas
Sarlos. Are web users really markovian? In Proceedings of the
21st International Conference on World Wide Web, WWW ’12, page
609–618, New York, NY, USA, 2012. Association for Computing
Machinery.

17

APPENDIX

TABLE V: Parameter values of neural networks for RL agent
and surrogate model in HARPO.

Parameter description Configuration
Dimension of document embedding d = 300
Dimension of encoder vector m = 300
Dimension of decoder vector n = 256
Dimension of CNN input w × d = 20× 300
Kernel size in CNN {i× i× 1× 100}i=3,4,5

18

