
Reality
A Platform for Distributed SCADA

Developer's Guide
(Preliminary Information)

Reality: Developer's Guide (preliminary information)
Version 0.4.3
Published 2007-05-08
Copyright © 2006-2007 NC Engineering Ltd.

ii

Table of Contents
Introduction..1

System Architecture..1
Design Principles..2

Security Model..2
Core Concepts..3

Reality Server...3
Producers..3
Consumers..3
Nodes..3
States..3
Sessions..4
Permissions...4

The Application Programming Interface (API)...5
Making Requests...5
Request Parameters...5
Result codes..6
Recovering from Errors...6
XML Format...7
JSON Format..9
Node References...9
Specifiers..10
Timestamp Formats...13
Time Ranges...13

Operational Scenarios...14
Consuming Real-Time Data Updates...14
Producing Real-Time Data..16
Passing Messages Between Machines...18
Embedding Reality Data in Web Pages..19

Query Reference...20
state (GET)..20
history (GET)..21
set (POST)..22
write (POST)...22
open (POST)...23
close (POST)...24
events (GET)...25
touch (POST)..26
signal (POST)..26
sub (POST)...26
unsub (POST)..27
exec (POST)..28

iii

Introduction
Reality is a platform for distributed SCADA applications. Reality aims to solve many of
the problems associated with distributed SCADA applications, such as performance,
network configuration and security.

With Reality it is possible to integrate a variety of platforms in disparate locations,
including mobile devices, using a unique architecture which allows machines to
communicate securely without requiring additional network configuration, such as VPN’s.

In Reality, data items are first-class citizens, each variable having its own URI, or universal
resource identifier. URI’s make it easy to track, analyze, extract, and otherwise manipulate
real-time and historical data. Reality generates historical reports on the fly, in a variety of
text and graphic formats.

Reality lets clients subscribe to specific nodes and receive change events as soon as
changes occur. The system also makes it easy for data producers such as PLC’s and other
remote terminal units (RTU’s) to track live sets of variables, relieving them of the burden
of managing client state.

System Architecture
Reality makes it possible to connect together various machines to create a SCADA
application by using a network topology with clearly-defined machine roles; implementing
a zero-configuration hierarchical namespace for all application variables and parameters;
and providing an HTTP-based protocol to synchronize application state between machines.
In fact, the Reality architecture makes it possible to keep configuration of each machine
down to a single parameter: the server URI, which acts as the entry point to the system.

Reality utilizes a centralized network topology, in which one or more servers are used to
manage the application state and synchronize all machines in the application. A consumer
is a machine which monitors application variables. A producer is a machine which is
usually directly connected to a PLC, and generates the state of application variables, and
also handles write requests to change those variables. A single machine can operate as both
a consumer and a producer at the same time. The Reality server maintains the current
application state, logs historical records, and manages subscriptions.

1

Design Principles
Reality was designed with the following principles in mind:

• Platform independence – The system should be accessible from as many computing
platforms as is possible. The API should be accessible using any development tool (i.e.,
not tied to a specific development platform.)

• Location transparency – Machines can be placed anywhere and be accessed from
anywhere.

• Simplicity – The system should be as simple as possible to operate and manage.

• Minimum configuration effort – The users should be relieved of unnecessary
configuration.

• Secure operation – The security model should provide a way to set fine-grained
permissions to specific users for specific variables.

• Fault tolerance – The System should make it easy to recover from failures. It should
also fail gracefully.

• Near-zero maintenance – The system should be able to keep ticking without human
intervention (as much as possible.)

Security Model
Reality includes a fine-grained access control mechanism that can be used to ensure only
specific users have access to specific parts of the namespace. Users can furthermore be
allowed only certain kinds of actions on specific nodes. For example, a user can be allowed
to read the value of a node, but not to change it.

All clients are expected to provide user credentials when accessing the server. If no
credentials are supplied, the default set of permissions is assumed. Once a client signs in
with user credentials, the server creates a session for the client, which acts as a security
context. The session is temporary and must be renewed from time to time by signing in
again. The client can also close its session at any time. Sessions are identified by a session
key (skey), a special string which is valid only for the client’s IP address and expires after a
set amount of time. User credentials are passed only at login, and are not stored or
transferred in response bodies or cookies.

Users are identified by a node path. In fact, users are special nodes. The hierarchical
arrangement of users in the namesapce allows one to grant or revoke permissions to groups
of users instead of having to repeat the configuration for each user, while leaving open the
possibility of changing the permissions for a single user.

Reality also logs user operations to a database for security auditing.

2

Core Concepts
Reality Server

The Reality server is a single machine or an array of machines that forms the center of the
Reality system. The server is responsible for maintaining application state, providing data
to clients, and coordinating consumers and producers.

For application developers, the Reality server provides an opaque service which can be
accessed with a URI using the HTTP protocol.

Producers
A producer is a client that generates real-time data. A producer can receive events from the
server that tell it what nodes are currently being monitored by other clients. The Reality
server takes on the task of consolidating subscription lists from all consumers, letting the
producer concentrate on supplying the real-time data.

A producer can own a part of the application namespace, so that any write requests to any
node in that part is sent to the producer as an event.

A producer can also receive free-form messages from other clients to perform special
operations.

Consumers
A consumer is a client that consumes real-time and historical data. A client can be a
consumer and a producer simultaneously. A consumer can subscribe to nodes and receive
events whenever the a node's state changes.

Nodes
A node is a single variable that has a single state at any given time. A node is referenced
using a node path, much like a directory path. All nodes are related to each other and are
arranged in a hierarchical tree-like structure called the namespace, at the top of which is
the root node. A node can have zero or more sub-nodes. The hierarchical arrangement of
nodes is significant for the inheritance of the node’s configuration, such as the default
sample rate or other producer specific configuration.

Nodes can be created on the fly, simply by referencing it. Nodes can also be removed,
browsed, searched, configured and otherwise manipulated using the Reality API.

Nodes are identified by node paths. Node paths work similarly to directory paths. The
components of a node path are delimited by forward slashes. Node paths make it easy to
refer to nodes by providing a uniform and universal format.

States
A state represents the condition of a node at a specific time. A state has the following
attributes:

• Stamp – the time and date the condition was encountered.

• Quality – the kind of condition: unknown, good, bad, invalid, forced or simulated.

3

• Value – the node’s value.

• Data type – an optional number denoting the value’s data type: text, number or
boolean.

Since in a distributed system the real-time value of a variable can only be estimated,
Reality provides the last known state instead. By default, all state transitions are recorded
to a historical states table, and can be recalled by using historical queries.

Sessions
A session represents a conversation between a client and the reality server. A session
provides a temporary security context for accessing the server. A client can create a new
session by providing user credentials - i.e. a user name and a password. Sessions are
identified by a session key (skey for short), and are valid only for a specific IP address.

A sessions will automatically expire if it is older than 3 hours or haven't been used for 30
minutes. If a client discovers its sessions has expired, it can simply create a new one by
signing in again.

A session also provides a context for event-based messaging between machines. Clients
can use sessions to subscribe to specific nodes, send messages to other clients, or update
node states.

Sessions can be mounted at a specific node in order to create an end-point that can receive
messages from other clients. This technique is also used by data producers to receive
consolidated subscription lists from the server. Once a session has been mounted at a node,
the client is considered the owner of the node and all of its sub-nodes. The server generates
events to keep the client updated with the list of items required by other clients at any
given moment.

Permissions
Permissions can be granted or revoked for certain users to perform specific operations on
specific nodes. The system currently supports three kinds of permissions: read, write and
configure.

When a client issues a request to access a specific node, the Reality server calculates
permissions for the client's user account and the specified node. If the client is not signed
in, the anonymous user account is used.

Permissions are automatically inherited so they can be defined only once per user. For
example, if a user was granted permission to read from /cex, the user would by default
have permission to read from /cex/40130 or any other subnode of /cex.

Another form of permission inheritance is when setting permissions for groups of users.
Since user accounts are nodes, they can be arranged hierarchically like all other nodes. For
example, if the system administrator grants configure rights on /cex to the /users user
account, then /users/david, or any user inside /users would be granted configure rights
on /cex as well.

4

The Application Programming Interface (API)
Making Requests

The Reality API is based on HTTP. Rather than exposing an object model, the API strives
to follow a functional design, and make it easy to get at the needed data.

Each request is made of the following elements:

• HTTPmethod – in the Reality API we only use GET and POST. The GET method is
used for querying (“reading”) the server, and the POST method is used for changing
(“writing”) data on the server.

• URL Path – the path of the node to be accessed. As you shall see, if multiple nodes are
to be accessed in a single request, the node path signifies the base path for resolving
relative paths specified elsewhere in the request.

• Parameters – an optional set of parameters to further qualify the request.

The response returned for a request depends on the parameters passed in the request. The
HTTP protocol allows the transfer of a variety of data formats in the response body, and
the Reality API takes advantage of this to a great extent. The client can specify the desired
data format to be returned in the response.

Reality allows parameters to be passed in a variety of ways. By default parameters are
encoded as part of the URL. This is especially beneficial for GET operations because it
allows a user to bookmark highly nuanced URLs that can be used to receive complex
responses. Parameters can also be passed in the request body. This is the default for POST
operations. By default parameters are URL-encoded, but can also be specified in XML
format.

In order for the Reality server to process parameters in the request body, the client sohuld
include a Content-Type header specifying the format used. For URL-encoded parameters,
the format should be application/x-www-form-urlencoded. For XML, the format should
be text-xml. The XML format for request parameters is discussed in detail on page 9.

Request Parameters
The API specifies a number of parameters that can be used in most of the different types of
requests in order further qualify the request. In addition, each request type can use
additional parameters for further specialization. Some parameters are optional and can be
omitted from the request. If a parameter is omitted, a default value is assumed.

The following parameters provide the basic semantics for Reality API requests:

Name Default value Description
query/q node_state for GET

requests, node_write
for POST requests.

The type of query to perform.

flavor/f usually xml, but
depends on the specific
query.

The data format for rendering the response.

skey n/a The session key obtained by the client upon successful
login.

5

Name Default value Description
nodes/
node/n

n/a One or more node paths on which to perform the query,
separated by an exclamation mark (!). The paths
specified can be either relative or absolute. If this
parameter is omitted, the path of the request is used as
the target node path.

mode/m normal The synchronization mode to use. Some requests
support blocking on the server until a condition is
fulfilled or until a timeout period has elapsed.

The query, flavor, nodes and mode parameters can be specified by their shorthand
notation, q, f, n and m respectively.

Result codes
The API defines a standard set of result codes. The result code signifies whether the
request has been executed successfully, or whether a specific error has occurred. Result
codes are included in XML and JSON requests.

If an error occurs, the response will include the result code and a message describing the
error. If a flavor other than XML or JSON is requested or implied, an HTML page is
rendered with the error information.

The following result codes are defined:

Code Description
OK The request was executed successfully.
InvalidHTTPMethodError An invalid method was used to perform the specified

query. Each query type specifies the HTTP method to
use (GET or POST.)

InvalidNodeError An invalid node was referenced.
InvalidNodeDepthError An invalid node depth was specified.
InvalidQueryError An invalid query was specified.
InvalidFlavorError An invalid flavor was specified. Please note that each

query type supports a different set of flavors.
InvalidQueryParameterError An invalid parameter value was specified.
MissingQueryParameterError Amandatory parameter was not included in the

request.
InvalidCredentialsError Invalid user credentials were supplied (user name

and/or password.)
AccessDeniedError The client does not have permission to perform the

request.
InvalidSessionError An invalid or expired session eky was specified.

Recovering from Errors
The handling of errors can change depending on the kind of client involved. For example,
an unattended client, such as an RTU, would retry the request or drop it, according to the
specific type of error. An HMI client might, on the other hand, display an error message to
the user.

6

There are, however, some errors which can be recovered from by following a standard
procedure. These are discussed in the following paragraphs.

AccessDeniedError
This result code is returned when the client is refused permission to perform the specified
query on the specified node or nodes. If the client has not yet logged in, it should log in
with user credentials and retry the request with the newly received session key. If the client
has already logged in, it can inform the user that the request failed because permission was
refused.

InvalidSessionError
This result code is returned usually when the specified session has expired. As a matter of
principle all sessions expire in order to increase security. When a session has expired, the
client should issue a new open request with the user credentials, and retry the request using
the newly received session key. If the client was subscribed to any nodes, it should renew
its subscription.

XML Format
The XML format used in response follows the following principles:

• Namespaces are not used.

• Tag attributes are not used.

• The character encoding used is UTF-8.

• The response is enclosed in a <reality> tag.

• A <result> tag contains the result code.

• A <message> tag contains the error message in case of an error.

• Null or empty values are omitted from the response.

A normal XML response looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<reality>

<result>OK</result>

<node>

<id>12</id>

<path>/cex/41030</path>

<quality>1</quality>

<stamp>Thu Jun 15 16:44:39 UTC 2006</stamp>

<value>331</value>

<datatype>1</datatype>

</node>

</reality>

An XML error response might look like this:

<?xml version="1.0" encoding="UTF-8"?>

7

<reality>

<result>InvalidNodeError</result>

<message>Invalid node (/ads)</message>

</reality>

Specifying Request Parameters in XML Format
The Reality server can also accept request parameters in XML format instead of the
normally used URL encoding. The format for specifying queries is a tag with the query
specifier enclosing multiple tags for each of the query values. For example, the following
query:

/cex/40301?q=history&t=lastmonth&f=js

Can be specified in XML as follows:

<history>

<path>/cex/40301</path>

<t>lastmonth</t>

<f>js</f>

</history>

When parameters are specified in XML format, the application must set the Content-type
HTTP header to text/xml.

Multiple Queries in a Single Request
A client can specify multiple queries in a single request by using XML formatting for
request parameters. In the current API version, this is limited to POST requests only. To
execute multiple queries, the client should enclose all queries in a <execute> tag, as in the
following example:

<execute>

<write>

<path>/cex/40130</path>

<v>23</v>

<dt>integer</dt>

</write>

<sub>

<path>/cex/9843</path>

</sub>

</execute>

A client can also use relative paths to reference nodes by including a context path tag
inside <execute>, and using <node> or <nodes> instead of <path> for each query:

<execute>

<path>/cex</path>

<write>

<node>40130</node>

<v>23</v>

8

</write>

<sub>

<node>/cex/9843</node>

</sub>

</execute>

JSON Format
The JSON format is much more compact than XML, and though it lacks parsers in many
languages (especially “old” ones), it is extremely beneficial to Javascript clients, since it
can be evaled directly without any parsing. The JSON format, like XML, allows nested
structures to be defined, but unlike XML, each structure can include only one value for any
'tag'. To solve this we use arrays:

{

"result": "OK",

"nodes": [

{"quality": 5, "datatype": 0, "value": "331",

"stamp": 1150379079.45837, "path": "/cex/41030"},

{"quality": 0, "datatype": 0, "value": null,

"stamp": 1150379081.34813, "path": "/cex/41031"}

]

}

(The example above includes line breaks and indented nested elements for the sake of
visual clarity. These are omitted in the actual server response.)

In the example above, separate node structures are contained in a nodes array. Contrast this
to the use of several <node> tags in an XML response. Also notice that field values are
formatted differently - the quality and datatype fields are expressed as integers, and the
stamp field is expressed as a floating-point number.

An error response in JSON format would look like this:

{

"result": "InvalidNodeError",

"message": "Invalid node (/ads)"

}

Node References
Nodes can be referenced either by path or by id. A node id is an internal number the server
assigns to each node. The id is guaranteed to stay the same as long as the node exists. If the
node has been deleted and recreated, its id might be different. As of this version of the API,
the use of id's for reference is not recommended, though the server will always include a
node's id whenever it is referenced in a response.

9

A node path is a text string made of multiple components delimited by forward slashes.
Each component denotes a nested level in the application namespace. For example, the
node path /west/tank 1/level denotes a node named 'level' nested inside a node named
'tank 1' nested inside a node named 'west' nested inside the root node. The root node is
referenced by a single slash (/). The last component of a path denotes the node's name. The
only node which has no name is the root node. All other nodes must have a name.

Absolute and Relative Paths
Absolute node paths start with a forward slash. Relative node paths omit the first slash.
Relative node paths can be used in the node/nodes parameter, as discussed above. When
relative paths are specified, they are considered by the server to stem from the path of the
request. For example, if the following request URI has been specified:

GET /cex?q=state&nodes=40130!40131

The server will return the node state for both /cex/40130 and /cex/40131.

Node path are validated according to the following rules:

• A path component cannot contain any of the following characters: :, /, \, #, |, !, { and
}. This also means that these characters cannot be used in node names.

• A path cannot contain two consecutive slashes, that is a path component cannot be
empty.

• A path cannot end with a slash (except for the root path.)

Specifiers
Specifiers are values that have special meaning in the Reality API. Specifiers can be used
in both request parameters and responses. Some specifiers can be expressed by either a
code - a short lowercase word - or a corresponding integer number. In that case, either can
be used as a paramter value when performing a request.

Query Specifier
Query specifiers are used to tell the server what action the client would like to perform on
the referenced node. Queries are grouped in several categories. The query specifier in
most cases includes the category name and the action name, separated by an underscore.
Some queries, especially the frequently-used ones, also have a shorthand notation.

10

Following is a list of the currently available query types:

Code Description
Node-related Queries
state Retrieve a node's current state.
history Retrieve a node's history.
set Set a node's current state.
write Issue a write request for the node.
Session-related Queries
open Open a session.
close Close a session.
events Retrieve events for the session.
touch Update time stamps for all produced nodes for the session.
sub Subscribe to a node.
unsub Unsubscribe to a node.
signal Request updates for all subscribed nodes.
Miscellaneous Queries
execute Execute multiple queries at once.
help Retrieve API documentation.

Flavor Specifier
The flavor specifier is used to tell the server in which format to render the response. If the
flavor specifier is omitted, the default flavor will vary according to the query specified. In
addition, each query type supports a different set of flavors. The flavor used also affects the
Content-Type HTTP header that is returned together with the response.

Currently the system supports the following flavors:

Code Content-Type Description
xml text/xml XML format
js text/javascript JSON format
html text/html HTML format
html_partial text/html HTML format (without <html> and <body> tags)
csv text/csv
gif image/gif
png image/png

Quality Specifier
The quality specifier signifies the kind of condition a node is in at the time it was recorded.
Qualities are specified by code number. The following qualities are defined:

11

Code Number Description
unknown 0 The state of the node is unknown.
good 1 The node value was sampled successfully.
bad 2 The node value could not be sampled. This code is used by a

producer to denote a communication error with an RTU, or a
similar condition.

invalid 3 The node is considered invalid. This code is used by a producer to
denote a node reference that does not exist on the RTU.

simulated 4 The node value is simulated, i.e., is not connected with a physical
phenomenon.

forced 5 The node value is forced by a client. This code is used when clients
write to a node that is not currently produced.

Datatype Specifier
Reality does not force clients to specify data types when writing or updating node values,
nor does the server place any restriction on- or assumptions about data types. All Reality
values are stored and transmitted as text.

However, once a datatype is attached to a value, it is always supplied together with the
value. For example, if a data producer has updated the value of a node and specified a
boolean data type, all consumers subscribed to that node would receive the new value
together with the boolean datatype specifier. Of course, a data producer may change the
datatype of a node's value at any time, together with a change of value.

Datatypes are beneficial to the system because they allow clients to render node values
correctly. For example, an HMI client can present a check box for a boolean value, as
opposed to an edit box for a text value.

Future versions of Reality will include functionality for automatic conversion between data
types. In addition, a unit specifier could be attached to the value to signify engineering
units. The system then could include rules for conversion of units, e.g., convert m3 to ft3,
or kg/m2 to p/ft2, etc.

12

The following datatypes are currently defined:

Code Number Description
text 0 The value is a text value.
integer 1 The value is a signed integer.
float 2 The value is a floating-point number.
boolean 3 The value is a boolean value. In this case, the value itself is

expected to contain either a number (where 0 is considered false
and anything else true), or a textual representation of a boolean
value (either 'true' or 'false'.)

Datatype specifiers can also be used by data consumers to perform write requests. In that
case, the datatype specifier is passed together with the value to the data producer, and it is
the responsibility of the data producer to make the translation from the specified data type
to the actual datatype in the RTU.

Event Kind Specifier
Event kind specifiers are used to signify different kinds of events. Events are generated by
the server and can only be consumed by clients. The only way for a client to directly
generate events is to send a message to another client. Events are used by the server to tell
clients when the application state changes in a way that should interest the client. For
example, if a client subscribes to a node, then the server will generate an event for the
client whenever the node's state changes. The client can then retrieve the event by issuing a
events query.

The following event kinds are defined:

Code Number Meaning
message 0 Amessage received from another client.
start_track 1 The data producer should start tracking the specified node.
stop_track 2 The data producer should stop tracking the specified node.
update_track 3 The data producer should update the sampling rate and other

configuration for the specified node.
write_request 4 The data producer should perform a write request on the

specified node.
state_changed 5 The state of a subscribed node has changed.

Mode Specifier
Mode specifiers are used in a number of requests that allow long-standing, or blocking
requests. Blocking requests are requests in which the server does not immediately respond,
but rather keeps the connection open and eventually renders a response once a condition
has been fulfilled, or a timeout period has elapsed, whichever comes first.

The events query also allows a streaming mode, in which the server sends events to the
client as they occur, while keeping the connection open for an extended period of time.

13

The following modes are defined:

Code Number Meaning
async 0 The response is rendered immediately.
block 1 The server blocks until a condition has been fulfilled or until

the specified timeout period has elapsed.
stream 2 The server streams chunks of the response according to the

query behavior until the specified timeout period has elapsed.

Timestamp Formats
The timestamps returned in responses vary in format according to the flavor requested.
XML response return timestamps in RFC 2822 format:

day-of-week, DD month-name CCYY hh:mm:ss zone

where the zone is UTC (GMT).

When the flavor requested is JSON, timestamps are rendered as a floating-point number
representing the number of seconds since UNIX epoch (January 1, 1970 at midnight UTC).

Time Ranges
Time ranges specified for historical queries can be expressed in a variety of ways. The
Reality server can understand a variety of partial or complete time formats, and can also
understand (to a degree) human language.

A time duration can include either a single specifier or a pair of specifiers separated by a
comma or the word 'to'.

The following are examples of valid time durations:

Specifier Meaning
2004 06 to 2004-08 June 1, 2004 to August 31, 2004
Feb 1 to Feb 8 February 1 of this year to a Feb 8 (at day end) of this year
last Monday to next Sunday Last monday to next Sunday (at day end)
last week Last monday through Sunday (at day end)
last month The previous month (from first to last day at day end)
last year The previous year (from first to last day at day end)
yesterday Yesterday from 00:00 to 24:00
past week A week ago to now
past month A week ago to now
this month The current month (from first to last day at day end)
12:24 to 12:37 Today from 12:24:00 to 12:37:59
3 hours The last 3 hours
4 days 12 hours The last 4 days and a half
10 minutes The last 10 minutes

Notice that ranges are always considered inclusive. Also notice that it is also possible to
specify times in the future as well as in the past.

14

Operational Scenarios
The following section discusses some possible uses of the API by clients in various
scenarios. It is not comprehensive in any way, nor do clients have to function in the exact
same way to achieve value from the system. The API was designed to allow many different
uses.

In the examples that ensue, the requests are illustrated in a shorthand manner, that is, many
of the HTTP headers are omitted. The omitted headers are replaced by an ellipsys (...). It is
assumed that the reader is familiar with how HTTP requests look.

Consuming Real-Time Data Updates
A real-time data consuming client starts interacting with the server by opening a session. A
session supplies a context in which the client subscribes to arbitrary nodes and receives
updates to node states. When the client is done, it closes the session.

Opening a Session
To open a session, the client issues a open request, supplying a user name and a password:

POST /

...

q=open&u=joe&p=16792403

To which the server responds:

<reality>

<result>OK</result>

<skey>7b39d890731523f1b37e79d9f8cf5b45</skey>

</reality>

The client extracts the session key (skey) from the response and keeps it for usage in later
requests. Notice that as a security measure the skey is always a 128-bit hash value.

Subscribing to a Node
To subscribe to a node, the client issues a sub request:

POST /cex/40130

...

q=sub&skey=7b39d890731523f1b37e79d9f8cf5b45

The response from the server is as follows:

<reality>

<result>OK</result>

</reality>

From here on, the client periodically requests events from the server with an events query.
As will be discussed in the query reference, the client can ask the server to keep the
connection open and send events as they are generated.

15

Retrieving Session Events
To retrieve events, the client issues the following request:

GET /?q=events&skey=7b39d890731523f1b37e79d9f8cf5b45&m=stream&t=60

To which the server responds with:

<reality>

<event>

<kind>state_changed</kind>

<node_id>24</node_id>

<node_path>/cex/40130</node_path>

<quality>good</quality>

<stamp>Thu Jun 15 12:32:55 UTC 2006</stamp>

<value>13</value>

<datatype>integer</datatype>

</event>

(30 seconds pass)

<event>

<kind>state_changed</kind>

<node_id>24</node_id>

<node_path>/cex/40130</node_path>

<quality>good</quality>

<stamp>Thu Jun 15 12:33:25 UTC 2006</stamp>

<value>14</value>

<datatype>integer</datatype>

</event>

(another 30 seconds pass)

</reality>

The client has specified that the server should stream events as they occur and timeout
after 60 seconds. The connection stays open for the 60 seconds, during which the server
checks for any events for the specified session, and adds an event tag to the response for
each occurrence.

In the above response, the server generated two events. When a client first subscribes to a
node, the server will generate a 'first update' event just to get the client up to . When the
node's value changes, the client will have received another event.

This is really all there is to it! When the client no longer needs updates for a node, it issues
a unsub request, in similar fashion to sub. When the client is done conversing with the
server, it issues a close request. Note that this is not mandatory. The server automatically
cleans up after clients if they leave sessions and subscriptions about.

Writing Values
In order to change real-time values, the client can issue a write request:

POST /cex/40130

16

...

q=write&value=46

To which the server responds:

<reality>

<result>OK</result>

</reality>

The client can also ask the server to block until the value is updated. In that case, a timeout
must be specified, since there is no guarantee that the operation would complete in any
amount of time. If the node's value has not changed before the timeout period has elapsed,
the server returns an error response.

POST /cex/40130

...

q=write&value=46&m=block&t=10

The server responds with an event:

<reality>

<result>OK</result>

<event>

<kind>state_changed</kind>

<node_id>24</node_id>

<node_path>/cex/40130</node_path>

<quality>good</quality>

<stamp>Thu Jun 15 12:34:03 UTC 2006</stamp>

<value>46</value>

<datatype>integer</datatype>

</event>

</reality>

In the above example, the client asked the server to block until the value has changed for a
maximum of 10 seconds. The server responded with an event representing the new state of
the node.

Producing Real-Time Data
Data producers have two ways of updating real-time data on the Reality server. The first,
and simpler way is to simply use node_set requests to update node values. Notice that
node_set queries have different effects than node_write queries. This is discussed in more
detail in the query reference. Suffice it to say that node_write is used by consumers and
node_set by producers.

The second manner of producing data involves opening a session and mounting it at a
node. This allows a data producer to get notified which nodes are being subscribed to at
any time. The Reality server consolidates the subscription requests from all consumers and
can supply to a producer an up-to-date list of nodes to track. The server also supplies along
with each node reference a preferred sample rate for the node.

17

This feature of the Reality server allows the creation of sophisticated data producers with
very little effort. Since the data producer does not have to deal with talking to multiple
clients and managing subscriptions, it can simply deal with supplying the data to the
server.

18

Mounting a Session
Like a data consumer, a producer starts by opening a session:

POST /plc1

...

q=open&mount=yes&u=plc1&p=plc1

In the above request, the client has specified that it would like to mount the session at the
node path /plc1. The act of mounting a session means that the client now owns /plc1 and
all of its sub-nodes.

From here on, the client is responsible for providing values for /plc1 and all its sub-nodes,
and will receive events telling it which nodes need to be tracked.

Upon issuing an events request, the server responds with the following hypothetical
events:

<event>

<kind>start_track</kind>

<node_id>13</node_id>

<node_path>V3</node_path>

<sample_rate>10</sample_rate>

</event>

...

<event>

<kind>stop_track</kind>

<node_id>53</node_id>

<node_path>V39</node_path>

</event>

This tells the client to start tracking /plc1/V3 with a sample rate of 10 seconds. The
sample rate is considered the preferred sample rate. The producer is not required to enforce
this sample rate – it is only used to give a clear indication of whether a node's state is stale
or fresh. If multiple consumers subscribing to the same node specify different sample rates,
the server will use the smallest rate as best rate. If the best rate changes, the server will
notify the producer with an update_track event.

The client is also told to stop tracking /plc1/V39. Notice the use of relative node paths in
the response.

Updating Node Values
The data producer is expected to perform a 'first update' for each newly tracked node in
order to bring the server up to date, and then update it whenever a value changes. When a
new value has been acquired, the producer issues a node_set request:

POST /plc1

...

<execute>

<node_set>

<node>V3</node>

<quality>good</quality>

19

<value>5428</value>

<datatype>integer</datatype>

</node_set>

<node_set>

<node>431</node>

<quality>invalid</quality>

</node_set>

<node_set>

<node>V9</node>

<quality>bad</quality>

</node_set>

</execute>

To which the server responds:

<reality>

<result>OK</result>

</reality>

Since '341' is not recognized by the producer as a valid address, it updated /plc1/341 with
'invalid' quality. This change of state is communicated to all clients interested in this node,
and lets them understand the node is not valid without having to be aware in advance of the
producer's address space. The producer has also updated /plc1/V9 with a 'bad' quality.
This means that the producer could not have acquired the value of V9, although it is a valid
address.

Updating Timestamps
The fact that a producer is only required to update a node's state when its value changes,
leads to a situation where if a node's value stays the same for a long time, the timestamp
associated with the node's state will be considered old. It is possible to periodically update
all tracked nodes irrespective of whether their values changed. This might, however, lead
to very high bandwidth and is somewhat inefficient. In order to help update timestamps,
the Reality API includes the touch query:

POST /

...

q=touch&skey=7b39d890731523f1b37e79d9f8cf5b45

The effect of this operation is that all timestamps for currently tracked nodes are brought as
close as possible to the current time, by advancing them according to the specified sample
rate for each node. For example, if the current time is 18:56:23, and we have a node who's
latest timestamp is 18:56:04 and which is tracked with a sample rate of 10 seconds, the
server will advance its timestamp to 18:56:14.

When timestamps are advanced, the new state is not recorded in history, but all subscribed
clients are informed with the updated node state.

20

Passing Messages Between Machines
Clients connected to the same server can send messages to each other. This is useful in a
variety of scenarios, for example using Reality as a gateway through a programming
workstation can talk to a remote PLC:

/POST /cex

...

<message>

<source>/workstation</source>

<body>:110400080001</body>

<mode>block</mode>

<timeout>10</timeout>

</message>

The server responds as follows:

<reality>

<result>OK</result>

<event>

<kind>message</kind>

<source>/cex</source>

<body>:110402000A</body>

</event>

</reality>

In the above example, the client has sent a ModBus message to /cex, and has asked the
server to block until a message comes back, for a maximum of 10 seconds. The server
responded with an event containing the reply from /cex.

Notice that the target of a message is identified by a path. In order to receive messages, a
client must open a session and mount itself at a node path. If the sender of a message
would like to receive a reply, it must also be mounted.

Embedding Reality Data in Web Pages
One of the most profound benefits of using an HTTP-based API is the ability to embed
data provided by the server in regular web pages, with almost no effort. Consider the
following HTML document:

<html>

<body>

<h2>A table of current data from Reality</h2>

<iframe src=”http://reality-scada.com/cex/?n=40130!40132!40133

&q=node_state&f=html_partial”/>

</body>

</html>

The resulting web page would include a frame containing a table with the current values of
/cex/40130, /cex/40132 and /cex/40133.

One can also embed images:

21

<html>

<body>

<h2>Last 24 hours of /cex/40130</h2>

<img src=”http://reality-scada.com/cex/40131?q=node_history&

time=today&f=gif”/>

</body>

</html>

22

Query Reference
The following reference lists all the currently supported query types, each with a list of
parameters, response formats and possible error result codes. The query type is followed
by the appropriate HTTP method in parentheses.

state (GET)
The state query is used to retrieve the last known state of one or more nodes.

Mandatory Parameters
URI path - the node path, or a base path (used in conjunction with the nodes parameter.)

Optional Parameters
node/nodes/n - one or more relative or absolute node paths separated by an exclamation
mark. If this parameter is included in the request, the URI path is considered as a base path
for extending relative paths.

Access Control
The client must have read permission for the specified nodes.

XML Response (Default Flavor)
For each referenced node, a <node> tag is included in the response, containing the
following tags: id, path, quality, stamp, value, datatype.

<reality>

<result>OK</result>

<node>

<id>14</id>

<path>/cex/40130</path>

<quality>good</quality>

<stamp>Thu Jun 15 12:34:03 UTC 2006</stamp>

<value>142</value>

<datatype>integer</datatype>

</node>

...

</reality>

JSON Response
The returned hash shall contain a nodes array containing a hash for each referenced node,
which includes the following keys: id, path, quality, stamp, value, datatype.

{

result: "OK",

nodes: [

{id: 14, path: "/cex/40130", quality: 1, stamp: 1150374843.0,

23

value: "142", datatype: 1},

...

]

}

history (GET)
The history query is used to retrieve historical states for one or more nodes.

Mandatory Parameters
URI path - the node path, or a base path (used in conjunction with the nodes parameter.)

Optional Parameters
node/nodes/n - one or more relative or absolute node paths separated by an exclamation
mark. If this parameter is included in the request, the URI path is considered as a base path
for extending relative paths.

Access Control
The client must have read permission for the specified nodes.

XML Response (Default Flavor)
For each referenced node, a <node> tag is included in the response, containing the
following tags: id, path. For each state transition, the node tag includes a <state> tag with
the following sub-tags: quality, stamp, value, datatype.

<reality>

<result>OK</result>

<node>

<id>14</id>

<path>/cex/40130</path>

<state>

<quality>good</quality>

<stamp>Thu Jun 15 12:34:03 UTC 2006</stamp>

<value>142</value>

<datatype>integer</datatype>

</state>

...

</node>

...

</reality>

24

JSON Response
The returned hash shall contain a nodes array containing a hash for each referenced node,
which includes the following keys: id, path. each node element also includes a states
array containing state hashes with the following keys: quality, stamp, value, datatype.

{

"result": "OK",

"nodes": [

{“path”: "/cex/40130", "states": [

{"quality": 1, "stamp": 1150374843.0,

"value": "142", "datatype": 1},

...

]},

...

]

}

set (POST)
The set query is used to update the state of a node.

Mandatory Parameters
URI path - the node path, or a base path (used in conjunction with the nodes parameter.)

Optional Parameters
q - the quality of the new state. This can be either a quality code or a number. The default
quality is good.

s - the time stamp of the new state. If the time stamp is not specified, the server uses the
current time as time stamp.

v - the new value. If the value is not specified, it is considered null. The value is ignored if
the quality is unknown, bad or invalid.

dt - the datatype for the new value. This can be either a datatype code or number. If no
datatype is specified, an empty datatype.

Access Control
The client must have configure permission for the specified nodes.

XML Response (Default Flavor)
Reality tag containing the result code.

<reality>

<result>OK</result>

</reality>

25

JSON Flavor
The reality hash containing the result code.

{"result": "OK"}

write (POST)
The write query is used to write a node value. If the node is currently produced by a
client, the server generates a write_request event for the producer. However, if the
referenced node is not currently produced, the node's state is immediately updated with a
forced quality.

Mandatory Parameters
URI path - the node path, or a base path (used in conjunction with the nodes parameter.)

Optional Parameters
v - the new value. If the value is not specified, it is considered null. The value is ignored if
the quality is unknown, bad or invalid.

dt - the datatype for the new value. This can be either a datatype code or number. If no
datatype is specified, an empty datatype.

m - the request mode. The client can set the request mode to block, in which the server
waits until the node's value has been updated accordingly, or until a timeout period has
elapsed. If the block mode is used, the timeout parameter must be specified. In the async
mode the server does not perform any checks whether the write request has been
performed by the data producer.

t - a timeout period in seconds for the blocking mode.

Access Control
The client must have write permission for the specified nodes.

XML Response (Default Flavor)
Reality tag containing the result code.

<reality>

<result>OK</result>

</reality>

In blocking mode the server will either return a TimeoutError result code (which means
the node's value was not updated within the timeout period), or an event containing the
node's new state:

<reality>

<result>OK</result>

<event>

<kind>state_changed</kind>

<node_id>24</node_id>

<node_path>/cex/40130</node_path>

26

<quality>good</quality>

<stamp>Thu Jun 15 12:34:03 UTC 2006</stamp>

<value>46</value>

<datatype>integer</datatype>

</event>

</reality>

JSON Flavor
The reality hash containing the result code.

{"result": "OK"}

open (POST)
The open query is used to open a new session. When successful, the response includes the
newly created session's key.

Mandatory Parameters
URI path - the node path (for use when mounting a producer.)

Optional Parameters
m - whether to mount the producer at the specified node path. The value of this parameter
should be yes or no.

u - the user account path.

p - the password for the user account.

Access Control
When mounting, the client must have configure permission for the specified nodes.

XML Response (Default Flavor)
Reality tag containing the result code and session key:

<reality>

<result>OK</result>

<skey>5a24b1823f8e74133b88f8c10e18467d</skey>

</reality>

JSON Flavor
The reality hash containing the result code and session key:

{

"result": "OK",

"skey": "5a24b1823f8e74133b88f8c10e18467d"

}

27

close (POST)
The close query is used to close a session.

Mandatory Parameters
skey - the session key.

XML Response (Default Flavor)
Reality tag containing the result code:

<reality>

<result>OK</result>

</reality>

JSON Flavor
The reality hash containing the result code:

{"result": "OK"}

events (GET)
The events query is used to receive events for a session.

Mandatory Parameters
skey - the session key.

Optional Parameters
m - the mode to use:

normal - The server returns any pending events for the session.

block - If no events are pending, the server waits until an event is available for the
session, or until the timeout period has elapsed.

stream - The server holds the connection open for the entire timeout period, adding
events to the response as they occur.

t - the timeout period in seconds. The default is 60 seconds.

XML Response (Default Flavor)
Reality tag containing the result code and session events:

<reality>

<result>OK</result>

<event>

<kind>state_changed</kind>

<node_id>24</node_id>

<node_path>/cex/40130</node_path>

<quality>good</quality>

<stamp>Thu Jun 15 12:34:03 UTC 2006</stamp>

28

<value>46</value>

<datatype>integer</datatype>

</event>

...

</reality>

JSON Flavor
The reality hash containing the result code and session key:

{

"result": "OK",

"events": [

{"kind": 5, "path": “/cex/40130”, "quality": 1,

"stamp": 17342312.321, "value": "46", "datatype": 1},

...

]

}

Node Paths in Events
Note that node paths specified in events are relative for the following events kinds:
start_track, stop_track, update_track, write_request.

touch (POST)
The touch query is used to update the timestamps of all nodes currently tracked by a
producer. Each node's timestamp is updated according to the currently used sample rate for
the node. Subscribing clients are notified with a state_changed event, but the new node's
state is not logged to history.

Mandatory Parameters
skey - the session key.

XML Response (Default Flavor)
Reality tag containing the result code:

<reality>

<result>OK</result>

</reality>

JSON Flavor
The reality hash containing the result code:

{"result": "OK"}

29

signal (POST)
The signal query can be used to receive state events for all subscribed nodes. This query
is used by consumers to make force the server to generate state_changed events for all
subscribed nodes.

Mandatory Parameters
skey - the session key.

XML Response (Default Flavor)
Reality tag containing the result code:

<reality>

<result>OK</result>

</reality>

JSON Flavor
The reality hash containing the result code:

{reality: {result: "OK"}}

sub (POST)
The sub query is used to subscribe to one or more nodes.

Mandatory Parameters
URI path - the node path, or a base path (used in conjunction with the nodes parameter.)

skey - the session key.

Optional Parameters
node/nodes/n - one or more relative or absolute node paths separated by an exclamation
mark. If this parameter is included in the request, the URI path is considered as a base path
for extending relative paths.

Access Control
The client must have read permission for the specified nodes.

XML Response (Default Flavor)
Reality tag containing the result code:

<reality>

<result>OK</result>

</reality>

JSON Flavor
The reality hash containing the result code:

{result: "OK"}

30

unsub (POST)
The unsub query is used to cancel subscription to one or more nodes.

Mandatory Parameters
URI path - the node path, or a base path (used in conjunction with the nodes parameter.)

skey - the session key.

Optional Parameters
node/nodes/n - one or more relative or absolute node paths separated by an exclamation
mark. If this parameter is included in the request, the URI path is considered as a base path
for extending relative paths.

Access Control
The client must have read permission for the specified nodes.

XML Response (Default Flavor)
Reality tag containing the result code:

<reality>

<result>OK</result>

</reality>

JSON Flavor
The reality hash containing the result code:

{result: "OK"}

exec (POST)
The exec query is used to issue multiple queries in a single request.

XML Response (Default Flavor)
Reality tag containing the result code:

<reality>

<result>OK</result>

</reality>

JSON Flavor
The reality hash containing the result code:

{"result": "OK"}

31

